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MODELING OF CHAOTIC PROCESSES BY MEANS OF
ANTISYMMETRIC NEURAL ODES

VasiliyYe. Belozyorov∗, DanyloV. Dantsev†

Abstract. The main goal of this work is to construct an algorithm for modeling chaotic
processes using special neural ODEs with antisymmetric matrices (antisymmetric neural
ODEs) and power activation functions (PAFs). The central part of this algorithm is
to design a neural ODEs architecture that would guarantee the generation of a stable
limit cycle for a known time series. Then, one neuron is added to each equation of the
created system until the approximating properties of this system satisfy the well-known
Kolmogorov theorem on the approximation of a continuous function of many variables. In
addition, as a result of such an addition of neurons, the cascade of bifurcations that allows
generating a chaotic attractor from stable limit cycles is launched. We also consider the
possibility of generating a homoclinic orbit whose bifurcations lead to the appearance of
a chaotic attractor of another type. In conclusion, the conditions under which the found
attractor adequately simulates the chaotic process are discussed. Examples are given.

Key words: system of ordinary autonomous differential equations, neural network, antisym-
metric matrix, power activation function, Lyapunov stability, limit cycle, homoclinic orbit,
strange non-chaotic attractor, search algorithm.
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1. Introduction

Recurrent neural networks (RNN) are one of the main tools for modeling
various dynamic processes. It should be noted that the quality of modeling with
the help of RNN depends on activation functions used in the network [1–7].

As for activation functions, the good results of modeling various processes were
obtained precisely with the help of those neural networks in which the well-known
rectified linear units (ReLU) were used [4, 6, 8]. Naturally, any generalizations of
ReLU deserve attention. Therefore, we will consider some of them.

We will not focus on the advantages or disadvantages of one or another
activation function, but will focus only on those properties that are essentially
used in this work.

In recent years, an interesting idea has appeared to interpret a system of
ordinary differential equations in the form of a suitable neural network (residual
network) [9–12]. Precisely this interpretation is implemented in the present work:
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a system of differential equations (a system of so-called neural ODEs) is considered
as a continuous analogue of some RNN [13–17]. It should be noted that in [17]
the neural network was considered as a linear control system closed by nonlinear
feedback. In this case, the ReLU activation functions played the role of the
functions constituting the feedback. The task of modeling was not to bring the
trajectories of the model and the real process closer together, but to find the
algebraic invariants that determine the behavior of the model built for a known
time series. If the corresponding invariants for different lengths of this time series
turn out to be equal, then we can talk about the adequacy of the model and the
real process.

Below we will focus on two areas of research, which can be formulated in the
following questions.

1) If a neural network models a certain dynamic process, then how to guarantee
the stability or boundedness of solutions of the system of differential equations
describing a continuous analog of the aforementioned neural network?

2) In the theory of bifurcations, the following result is well known: in any
determinate system, chaotic processes arise as a result of bifurcations of limit
cycles or homoclinic orbits [18–21]. Therefore, how to design the architecture
of neural ODEs system so that the resulting architecture would generate a limit
cycle? (It is now known that most types of chaos in systems of differential equations
begin with bifurcations of limit cycles [18–20].)

The answer to the first question will be successful if the activation functions
are chosen so that Lyapunov analysis can be done for the resulting system of
neural ODEs [22–24]. Piecewise continuous functions, each part of which is a
power function, can be proposed as such functions. The use of power activation
functions (PAFs) in neural networks is a generalization of the rectified linear units.
In the present time ReLU are standard functions to increase the depth of learning.
Therefore, power activation functions are on obvious generalization of ReLU.

Note that for systems of neural ODEs with PAF, the answer to the first
question has already been partially obtained in article [25]. (In the present paper,
the results proved in [25] will be generalized.) As for the second question, the
main part of the article will be devoted to the answer to this question.

It should be said that in a large part of the article neural ODEs with chaotic
modes are discussed. Chaos constitutes the basic form of collective neural activity
for all processes and functions of perception. It acts as a controlled noise source
to ensure uninterrupted access to previous memorized images and memorizing
new ones. Chaos allows the system to be always active, ridding it of the need
to wake up or enter a stable state every time the input changes [26]. Many
researchers agree that the best from the point of view of storing and processing
information is the regime of ordered chaos [27]. On the one hand, this mode has
all the advantages of chaos, on the other hand, this mode can be controlled. The
set of states through which the trajectory of a chaotic system passes is called a
chaotic attractor. Therefore, the conditions for the existence of chaotic attractors
in systems of neural ODEs are the subject of research in this paper.
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The final sections of the article are devoted to the reconstruction of neural
ODE systems. For this purpose, several algorithms have been developed for deter-
mining the parameters of ODE systems for known time series. The essence of these
algorithms lies in the fact that they use the special structure of neural ODEs
(antisymmetric neural ODEs) with which it is possible to generate a limit cycle.
After that, by choosing the weight coefficients, we obtain such bifurcations of the
indicated cycle, which lead to the simulation of a real chaotic process.

This article is organized as follows. Section 2 presents well-known results on
the theory of approximation of continuous functions of several variables, which
are necessary for further research. Section 3 is devoted to the search for conditions
under which periodic solutions and homoclinic orbits can appear in neural ODEs.
Conditions for the emergence of chaos in neural ODEs with PAFs are studied in
Section 4. In Section 5, some generalizations of power activation functions are
studied. Section 6 provides algorithms for tuning the weight coefficients of neural
ODEs with PAFs.

The whole Section 7 is devoted to applying the algorithms of Section 6 to
the problem of restoring ordinary differential equations from known time series
describing the dynamics of certain processes. Finally, some conclusions based on
the results presented in the article are given in Section 8.

2. Mathematical preliminaries

We now recall several well-known results from the theory of approximation of
real functions of n variables [28–30].

Let X be an arbitrary set in the linear space Rn. By C(X) denote a set of
continuous real functions of n variables with domain of definition X.

Definition 2.1. A set of real functions F ⊂ C(X) is called separating points of
the set X ⊂ Rn if for any different x1,x2 ∈ X, there exists a function f ∈ F such
that f(x1) 6= f(x2).

Definition 2.2. A collection of functions F ⊂ C(X) is called closed with respect
to a function of one variable φ : R→ R if φ(f) ∈ F for any f ∈ F.

Theorem 2.1. ( [28]). Let X ⊂ Rn be a compact space and C(X) be the algebra of
continuous real functions on X. Let also the set F ⊂ C(X) containing the constant
1 be the linear subspace closed with respect to the nonlinear continuous function
φ : R→ R and separating points of the set X. Then F is dense in C(X).

Theorem 2.1 can be interpreted as a statement about the universal approxima-
tion possibilities of arbitrary nonlinearity: using linear operations and a single
nonlinear element φ, one can construct an algorithm that builds an analytical
model of any continuous function with any desired accuracy.

From an applied point of view Theorem 2.1 can be presented as follows.
Let (u,v) ≡ ((u1, . . . , un), (v1, . . . , vn)) be a scalar product of vectors u,v ∈

Rn.
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Let F (x1, . . . , xn) be a real continuous function defined on a closed bounded
domain D ⊂ Rn. Let also ε > 0 be any arbitrarily small number, which means the
accuracy of the approximation.

Theorem 2.2. ( [28–30]).Let ψ be a continuous nonlinear real function of one
variable such that ∀f ∈ F we have ψ(f) ∈ F . Then there exist an integer m > 0,
a set of vectors aj ∈ Rn, and sets of real numbers ξj and bj; j = 1, . . . ,m, such
that the function

H(x) ≡ H(x1, . . . , xn) =

m∑
j=1

ξjψ((aj ,x) + bj) (2.1)

approximates the given function F (x1, . . . , xn) with the error ε in the domain D.

Thus, ∀(x1, . . . , xn)T ∈ D, we have |F (x1, . . . , xn)−H(x1, . . . , xn)| < ε.
In terms of neural networks, this theorem can be formulated as follows. Any

continuous function of several variables can be realized with any accuracy using
a two-layer neural network with a sufficient number of neurons and one nonlinear
activation function in the hidden layer [1, 2, 28].

3. Periodic solutions of neural ODEs

We assume that we know the dimension n of the real phase space in which
the considered dynamic process x(t) = (x1(t), . . . , xn(t))T ∈ Rn takes place [17,
25,26]. We will also assume that the functions x1(t), . . . , xn(t) are continuous and
differentiable with respect to time t on the interval [0,∞). Our goal will be to
model this process with a suitable system of neural ODEs. This system will be
based on new concepts, which are demonstrated below.

Introduce the following power functions [25]:

g(u, α ∨ β) =

{
−(−u)β if(u < 0 and β > 0); 0 if(u < 0 and β = 0)
uα if(u ≥ 0 and α > 0); 0 if(u ≥ 0 and α = 0)

(3.1)

and

g(u, α ∨ β) =

{
(−u)β if(u < 0 and β > 0); 0 if(u < 0 and β = 0)
uα if(u ≥ 0 and α > 0); 0 if(u ≥ 0 and α = 0).

(3.2)

Definition 3.1. [25]. Representation (3.1) ((3.2)) is called an odd (even) activation
function.

It is obvious that the linear combination

H(u, s) = s1g(u, α1 ∨ β1) + · · ·+ skg(u, αk ∨ βk), (3.3)

where s = (s1, . . . , sk, α1, . . . , αk, β1, . . . , βk) and s1 ≥ 0, . . . , sk ≥ 0, of the odd
(even) functions of form (3.1) (form (3.2)) again is the odd (even) function (see
[25]).
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Using these concepts, we can refine the form of function ψ(u) in Theorem 2.2.
1) If the activation function ψ(u) := ψ(u, α∨β) is odd, then in representation

(2.1) we can consider ξj = 1; j = 1, . . . ,m.
Indeed, let ξj < 0. Then

ξiψ(u, α ∨ β) =

{
((−ξj)1/β(−u))β if(u < 0)

−((−ξj)1/αu)α if(u ≥ 0)

}
= ψ(−(−ξj)(1/α)∨(1/β)u, α ∨ β).

Similarly, let ξj > 0. Then

ξiψ(u, α ∨ β) =

{
−(−ξ1/β

j u)β if(u < 0)

(ξ
1/α
j u)α if(u ≥ 0)

}
= ψ(ξ

(1/α)∨(1/β)
j u, α ∨ β).

Thus, we have

ξjψ((aj ,x)+bj) =

{
ψ[ξ

(1/α)∨(1/β)
j (aj ,x) + ξ

(1/α)∨(1/β)
j bj ] if(ξj > 0)

ψ[−(−ξj)(1/α)∨(1/β)(aj ,x)−(−ξj)(1/α)∨(1/β)bj ] if(ξj < 0)

}
.

If we now introduce redesignations

ψ[ξ
(1/α)∨(1/β)
j (aj ,x) + ξ

(1/α)∨(1/β)
j bj ] ≡ ψ[(aj ,x) + bj ],

then we get formula (2.1) in which ξj = 1; j = 1, . . . ,m.
2) Let us turn to Definition 2.1 in which we will consider X = Rn and F :=

{H(a1ix1 + · · · + anixn, si)} is the union of all odd functions of the form (3.3);
i = 1, 2, . . . . (Note that any element of the set F is a function of one variable:
a1ix1 + · · ·+ anixn = ui.) Since for any f ∈ F and any a ∈ R equation f(u) = a
has a single root, then it is clear that the set F separates the points of the set X.

3) Let f(u, γ∨δ), g(u, α∨β) ∈ F, where F is the set of all odd functions. Then,
we have

f(g(u, α ∨ β), γ ∨ δ) =

{
−((−u)β)δ = −(−u)βδ if(u < 0)
(uα)γ = uαγ if(u ≥ 0)

}
.

Thus, we have ∀f, g ∈ F f(g) ∈ F and the requirement of Definition 2.2 is satisfied.
As follows from items 1)–3), all conditions of Theorems 2.1 and 2.2 are true

for odd activation functions. In this regard, we can reduce the parameters ξj , j =
1, . . . ,m, in formula (2.1) of Theorem 2.2.

Corollary of Theorem 2.2. Let ψ be the odd activation nonlinear function of
one variable such that ∀f ∈ F we have ψ(f) ∈ F. Then there exist an integer
m > 0, a set of vectors aj ∈ Rn, and a set of real numbers bj; j = 1, . . . ,m, such
that the function

H(x) ≡ H(x1, . . . , xn) =
m∑
j=1

ψ((aj ,x) + bj) (3.4)
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approximates the given function F (x1, . . . , xn) with the error ε in the domain D.

Now, we can apply this Corollary to approximate the derivatives ẋi(t) of the
functions xi(t); i = 1, . . . , n.

As a result, we can get the following system of ordinary differential equations:

ẋ1(t) = h1([A− rI]1 · x + b1) + f11(p
(1)
11 x1 + · · ·+ p

(1)
1n xn + d

(1)
1 ) + · · ·

+f1k1(p
(1)
k11x1 + · · ·+ p

(1)
k1n
xn + d

(1)
k1

),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ẋn(t) = hn([A− rI]n · x + bn) + fn1(p
(n)
11 x1 + · · ·+ p

(n)
1n xn + d

(n)
1 ) + · · ·

+fnkn(p
(n)
kn1x1 + · · ·+ p

(n)
knn

xn + d
(n)
kn

)

(3.5)
with the known vector of initial values (x10, . . . , xn0)T .

Here hi(ui, αi ∨ βi) and fij(ui, γij ∨ δij) are real power odd functions of one
variable ui; x = (x1, . . . , xn)T ∈ Rn is the vector of states, A ∈ Rn×n, I is
the identity n × n matrix; [A − rI]i is the i-th row of the matrix A − rI; r,
bi, p

(i)
11 , . . . , p

(i)
1n, . . . , p

(i)
ki1
, . . . , p

(i)
kin
, d

(i)
1 , . . . , d

(i)
ki

are real parameters; ki is a nonnega-
tive integer (if ki = 0 , then fij(u) ≡ 0); j = 1, . . . , ki; i = 1, . . . , n. (The meaning
of the first terms on the right-hand sides of the equations of system (3.5) will be
explained below.)

In what follows, we will assume that the conditions of Theorem 2.2 (on local
existence and uniqueness of a solution [31]) are fulfilled for system (3.5) with
initial data vector (x10, . . . , xn0)T .

System (3.5) was created for solving approximation problems. However, in
various issues of modeling, it can be interesting in itself. Therefore, in the next
theorem we can weaken the conditions under which system (3.5) was constructed.

Theorem 3.1. (Main Theorem). Suppose that r ≥ 0 is a sufficiently large
number such that the symmetric matrix A + AT − 2rI is negative definite. Let
αi > 0 and βi > 0, and the power function hi(ui, αi ∨ βi) be odd; i = 1, . . . , n.
Let also q = min(α1, . . . , αn, β1, . . . , βn) and let fij(ui, γij ∨ δij) be power (even or
odd) activation functions such that q > γij ≥ 0 and q > δij ≥ 0; j = 1, . . . , ki; i =
1, . . . , n. Then any solution of system (3.5) is bounded.

Proof. The proof of this theorem basically repeats the proof of Theorem 4.1 [25].
Let us introduce a new variable into system (3.5) according to the formula

x→ y = (A− rI)x + b, where b = (b1, . . . , bn)T . Further, the number r ≥ 0 can
be taken large enough so that the matrix (A − rI) will be invertible. Therefore,
the specified replacement will be correct.

In this case, system (3.5) can be rewritten as

ẋ(t) = (A− rI)h(x) + f(x), (3.6)

where h(x) = (h1(x1, α1 ∨β1), . . . , hn(xn, αn ∨βn))T , f(x) = (f1(x), . . . , fn(x))T .
(For simplicity, in the newly obtained system, we will leave the previous notation
of phase variables.)
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We define the applicant for the role of the Lyapunov function for system (3.6)
the real function V (x1, . . . , xn) by the following rule:

V (x1, . . . , xn) =
h1(x1, γ1 + 1)

γ1 + 1
+ · · ·+ hn(xn, γn + 1)

γn + 1

= 0.5
[(h1(x1, γ1)

γ1 + 1
, . . . ,

hn(xn, γn)

γn + 1

)
, (x1, . . . , xn)

]
+ 0.5

[
(x1, . . . , xn),

(
h1(x1, γ1)

γ1 + 1
, . . . ,

hn(xn, γn)

γn + 1

)]
, (3.7)

where the scalar products of the corresponding vectors are placed in square
brackets and ∀i ∈ {1, . . . , n}

γi =

{
βi, if xi < 0,
αi, if xi ≥ 0.

(a1) The case of strictly odd function hi(xi, αi ∨ βi) ; i = 1, . . . , n [25].

Since fractions βi+1 and αi+1 have an even numerator and odd denominator,
then the function V (x1, . . . , xn) will be positive definite. Further, from the definition
of function V (x1, . . . , xn) and system (3.6) it follows that

V̇t(x1(t), . . . , xn(t)) =
(h1(x1, γ1 + 1)

γ1 + 1
+ · · ·+ hn(xn, γn + 1)

γn + 1

)′
t

= h1(x1(t), α1 ∨ β1) · ẋ1(t) + · · ·+ hn(xn(t), αn ∨ βn) · ẋn(t)

=
(
h1(x1(t), α1 ∨ β1), . . . , hn(xn(t), αn ∨ βn)

)
S


h1(x1(t),α1∨β1)
h2(x2(t),α2∨β2)

...
hn(xn(t),αn∨βn)


+ (h(x), f(x)), (3.8)

where S := 0.5(A+AT − 2rI).
Introduce the norm of matrix Q = {qij} ∈ Rn by the following formula:

‖Q‖ =
∑

1≤i,j≤n
|qij |.

Similarly, we define the norm of vector u = (u1, . . . , un)T : ‖u‖ =
∑

1≤i≤n
|ui|.

Now we estimate the derivative V̇t(x1(t), . . . , xn(t)) of function V (x1(t), . . . ,
xn(t)), taking into account the fact that matrix S is negative definite:

V̇t(x(t)) ≤ λmax(S) · (h2
1(x1(t), α1 ∨ β1) + h2

2(x2(t), α2 ∨ β2)

+ · · ·+ h2
n(xn(t), αn ∨ βn)) +W (x1(t), . . . , xn(t)),
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where λmax(S) denotes the maximal eigenvalue of symmetric matrix S ∈ Rn×n
and W (x1(t), . . . , xn(t)) := ‖h(x)‖ · ‖f(x)‖ is a positive definite function.

The last inequality can be rewritten as follows:

d

dt
V (x1(t), . . . , xn(t))

≤W (x1(t), . . . , xn(t))− b · (h1(x1(t), 2γ1) + · · ·+ hn(xn(t), 2γn)), (3.9)

where b = −λmax(S) > 0.
The solution of inequality (3.9) can be found by the formula

V (x1(t), . . . , xn(t)) ≤ V0

× exp

tˆ

0

[
W (x1(τ), . . . , xn(τ))− b · (h1(x1(τ), 2γ1) + · · ·+ hn(xn(τ), 2γn)

V (x1(τ, . . . , xn(τ))

]
dτ,

(3.10)

where the constant V0 = V (x1(0), . . . , xn(0)) > 0.
Note that the functions W (x1, ..., xn), V (x1, . . . , xn), and H(x1, . . . , xn) =

h1(x1, 2γ1) + · · ·+ hn(xn, 2γn) are positive definite power functions. In addition,
degW (x1, . . . , xn) = q · max(γij , δij) < 2q, and degH(x1, . . . , xn) = 2q; j =
1, . . . , ki; i = 1, . . . , n.

In this case, on the one hand, there exists a moment T0 > 0 such that if t > T0,
then W (x1, . . . , xn)− bH(x1, . . . , xn) < 0, and

lim
t→∞

W (x1(t), . . . , xn(t))− bH(x1(t), . . . , xn(t))

V (x1(t), . . . , xn(t))
< 0. (3.11)

Thus, we have V (x1(t), . . . , xn(t)) → 0 at t → ∞. But on the other hand this
fact means that if the function V (x1(t), . . . , xn(t)) is small enough, then there
exists the moment T1 > T0 > 0 such that if t > T1, then W (x1(t), . . . , xn(t)) −
bH(x1(t), . . . , xn(t)) > 0 and the positive function V (x1(t), . . . , xn(t)) increases,
and so on.

Let R be some positive constant. Denote by V = {x1, . . . , xn} ⊂ Rn the
set of all points in Rn satisfying the condition V (x1, . . . , xn) − R2 ≤ 0 . Let
us assume that R is a minimal constant for which the set H = {(x1, . . . , xn) ∈
V | W (x1, . . . , xn) − bH(x1, . . . , xn) ≥ 0} is not empty. Since H(x1, . . . , xn) is
positive definite, it is clear that the set H is compact.

Now we assume that there exists a moment Tu such that for t = Tu x(Tu) 6∈ H,
but x(Tu) ∈ V. Then inequality (3.11) is not satisfied.

Further, since H ⊂ V, then V−H is the compact positively invariant set with
respect to (3.6). Therefore, if solution x(t) of system (3.6) belongs to V−H, then
it is bounded. It means that the solution V (x1, . . . , xn) of equation (3.8) also
should be bounded.

Denote by Ts the moment of time such that x(Ts) ∈ H. Then, by virtue of
(3.11) and according to LaSalle’s Theorem [25], we get that solution x(t) of system
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(3.6) starting at H belongs to H. In addition, x(t) is attracted to the boundary
of H as t→ +∞. Thus, it is bounded.

Now we use Comparison Principle [25]. Then it remain to compare the solution
V (x1, . . . , xn) of equation (3.8) and a similar solution of inequality (3.9). From
here it follows the boundedness of solution x(t) of system (3.6) for any initial
condition x0 ∈ Rn. This completes the proof of case (a1) for strictly odd functions.

(a2) The case of odd function hi(xi, αi ∨ βi) ; i = 1, . . . , n [25].

Now we can apply Theorem 4.1 [25] to equation (3.6). Then all the ideas that
were used in the proof of Theorem 4.1 [25] can be directly carried over to the
proof of Theorem 3.1. Since

min(deg h1(x1, α1 ∨ β1), ...,deg hn(xn, αn ∨ βn))

> max(deg f1(x1, . . . , xn), ...,deg fn(x1, . . . , xn)),

it remains to verify only one condition of Theorem 4.1 [25]: the symmetric matrix
A+AT −2rI must be negative definite. The last condition can always be achieved
by choosing the sufficiently large parameter r ≥ 0. It is clear that the same
statement will also hold for system (3.5). This remark completes the proof. �

Comment 3.1. In the general case the function V (x1, . . . , xn) is not the Lyapunov
function for system (3.6). It is guaranteed to be the Lyapunov function if f(x) ≡ 0.

Let us compose from functions (3.3) the following vector- function:

H(x, s1, ..., sn) = (H1(x1, s1), . . . ,Hn(xn, sn))T , (3.12)

where sj = (sj1, . . . , sjkj ), j = 1, . . . , n.

Corollary of Theorem 3.1. Let the vector h(x) in system (3.6) be replaced
by the vector H(x, s1, . . . , sn). Then, under the conditions of Theorem 3.1, any
solution of system ẋ(t) = (A− rI)H(x, s1, . . . , sn) + f(x) is bounded.

Proof repeats the proof of Theorem 3.1 if in this theorem we replace the function
V (x1, . . . , xn) (3.7) by the function

V (x1, . . . , xn) =

ˆ
H1(x1, s1)dx1 + · · ·+

ˆ
Hn(xn, sn)dxn,

where all the indicated integrals are integrals of power functions. �

Now, we will assume that in system (3.6) r = 0 and f(x) = 0. Then we get
the following system

ẋ(t) = Ah(x). (3.13)

Theorem 3.2. Let αi > 0 and βi > 0, and the power function hi(ui, αi ∨ βi)
be odd; i = 1, . . . , n. Let also A ∈ Rn×n be an antisymmetric matrix such that
rankA = m ≤ n. Let V ⊂ Rn be a (n − m)-dimensional subspace of Rn such
that AV = 0 (if m = n, then V = 0; for odd n > 1, we always have m < n
and V 6= 0). Then any solution x(x0, t) of system (3.13) starting from point
x0 = (x10, . . . , xn0)T /∈ V is periodic.
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Proof. We will again use the Lyapunov function V (x1, . . . , xn) of form (3.7), which
was introduced in the proof of Theorem 3.1.

Let S = {x ∈ Rn|V (x) ≤ V (x0)}. Then the set S ⊂ Rn is compact positively
invariant with respect to (3.13). In addition, from here it follows that V ′t (x) =
0.5hT (x)(A+AT )h(x) = 0. This means that the solution x(x0, t) of system (3.13)
starting from a point x0 ∈ Rn forms a closed curve on the boundary of the set
S ⊂ Rn and therefore the solution x(x0, t) is periodic [31]. �

Now consider the following system of ordinary differential equations:

ẋ(t) = h(Ax + b)⇐⇒


ẋ1(t) = h1(A1 · x + b1)
. . . . . . . . . ,

ẋn(t) = hn(An · x + bn)
(3.14)

with the known vector of initial values x0. Here Ai is the i-th row of the matrix
A; i = 1, ..., n.

Theorem 3.3. Let, under the conditions of Theorem 3.2, m = n − 1 and n be
odd. If αi = βi and bi = 0, i = 1, . . . , n, then any solution of system (3.14) is
periodic; if at least for one k ∈ {1, . . . , n}, we have αk 6= βk or bk 6= 0, then any
solution of system (3.14) is a winding of an infinite cylinder with generatrix V.
In addition, there exist numbers T > 0 and λ = λ(T ) ∈ R that do not depend on
x0, such that for any solution x(t) of system (3.14), we have

x(t+ T )− x(t) = λV,

where λ = 0 if and only if αi = βi and bi = 0, i = 1, . . . , n.

Proof. (b1) With the help of suitable changes of variables y = Ax+b, we transform
system (3.14) into the following system (generally speaking, not equivalent to
system (3.14)):

d

dt
(Ax(t) + b) = A ·

 h1(A1x(t) + b1)
. . . . . . .

hn(Anx(t) + bn)

 , (3.15)

where b = (b1, . . . , bn)T . Then in the new variables y we get the system ẏ(t) =
Ah(y). (This is system (3.13).)

It is clear that in this case all the conditions of Theorem 3.2 are fulfilled
and we obtain a periodic solution p(t) of the system ẏ(t) = Ah(y). In addition,
taking into account the new variables y, system (3.14) can be written in the form
ẋ(t) = h(y). From here it follows that

x(t) =

ˆ
h(y(t))dt. (3.16)

It is important to note that the solutions q(t) of system (3.14) are not (generally
speaking) periodic. (It is found from the solution of the equation p = Aq + b,
where for odd n matrix A is singular.)
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It is known that the indefinite integral of a continuous periodic function of
period T is the sum of a periodic function of the same period T and some linear
function. Thus, from (3.16), (3.14) it follows that q(t) = qT (t) + tλV ⊂ Rn and

d

dt
(qT (t) + tλ) = h(A(qT (t) + tλV) + b).

Here qT (t) = (qT1(t), ..., qTn(t))T ∈ Rn is a periodic vector function.
Let W = A(Rn) be a linear subspace in Rn. Denote by A|W the restriction of

A to W. Then, we have qT (t) + tλV = (A|W)−1(p(t)−b), where tλV is a straight
line in Rn passing through the origin. Thus, the set {qT (t)+ tλV} ⊂ Rn is a curve
wound on the cylinder with generatrix V. (The projection of the periodic curve
qT (t) + tλV, t0 ≤ t ≤ t0 + T onto any (n − 1)-dimensional hyperplane P ⊂ Rn
such that P⊥V is a directrix of cylinder.)

(b2) Let V = (v1, . . . , vn)T ∈ Rn. Consider the situation α1 = β1 and b1 = 0.
Then at A1 · x ≥ 0 the first equation of system (3.14) will not change, and at
A1 · x < 0 this equation will be represented as ẋ1(t) = −h1(A1 · x).

Thus, if A1 · x ≥ 0 , then x1(t) = qT1(t) + tλ · v1; if A1 · x < 0, then x1(t) =
qT1(t) − tλ · v1. Since the initial conditions are the same for both equations,
then, in accordance with the well-known Cauchy theorem on the existence and
uniqueness of solution, there must be λ = 0. Repeating the same reasoning for
each of the equations of system (3.14) for αi = βi and bi = 0, we finally obtain
λ = 0; i = 2, . . . , n. The last statement completes the proof of Theorem 3.3. �

Definition 3.2. System (3.14) in which matrixA is antisymmetric, power activation
functions hi(ui, αi ∨ βi), i = 1, . . . , n, are odd is called the unperturbed system of
antisymmetric neural ODEs.

In addition, the following system

ẏ(t) = T−1 ·

 h1(A1 · T · y + b1)
. . . . . . . ,

hn(An · T · y + bn)

 (3.17)

obtained from system (3.14) of antisymmetric neural ODEs with the help of the
linear invertible transformation T ∈ Rn×n (x = T · y) will also be called the
unperturbed system of antisymmetric neural ODEs.

Definition 3.3. Let the matrix A of system (3.5) be antisymmetric and r ≥ 0.
Then, under the conditions of Theorems 3.1, system (3.5) is called a perturbed
system of antisymmetric neural ODEs.

The next figure demonstrates the statements of Theorem 3.3 (see Fig. 3.1):
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(a1) (a2) (a3)

Fig. 3.1. Trajectories of the system
ẋ = (−y − z + b1)r1 , ẏ = (x− z + b2)r2 , ż = (x+ y + b3)r3 :

(a1) r1 = (1.5 ∨ 1.5), r2 = (2.5 ∨ 2.5), r3 = (2 ∨ 2), and b1 = b2 = b3 = 0;
(a2) r1 = (1.5 ∨ 1.5), r2 = (2.5 ∨ 2.5), r3 = (2 ∨ 2), and b1 = 1, b2 = b3 = 0;
(a3) r1 = (1.5 ∨ 2.5), r2 = (2.5 ∨ 2.5), r3 = (2 ∨ 2), and b1 = b2 = b3 = 0.

4. On conditions for the appearance of chaos in system (3.6)

It is known that the following question often arises when modeling chaotic
processes: can the created model generate chaotic behavior? The same question
can be extended to model (3.6) (or (3.5)).

Let us denote by the symbol

deg h(x) = (deg h1(x1, α1 ∨ β1), . . . ,deg hn(xn, αn ∨ βn)) ∈ Nn,

where N is the set of natural numbers. Then the inequality deg h(x) > deg v(x) =
(deg v1(x1, γ1∨ δ1), . . . ,deg vn(xn, γn∨ δn)) means that αi > γi > 0 and βi > δi >
0; i = 1, . . . , n.

Consider the following simplified version of system (3.6):

ẋ(t) = Bx + v(x) + (A− rI)h(x). (4.1)

Here matrices A,B ∈ Rn×n, and the matrix A is antisymmetric; the power vector
functions v(x),h(x) ∈ Rn such that deg h(x) > deg v(x) > (1, . . . , 1). (If v(x) ≡
0, then deg h(x) > (1, . . . , 1).)

Let us construct for system (4.1) a positive definite function V (x1, . . . , xn)
(3.7). Then, we will have

V̇t(x1, . . . , xn) = 0.5 · (hT (x)(Bx + v(x)) + (xTBT

+ vT (x))h(x))− r · hT (x)h(x).

We denote by W the set of all points from Rn such that V̇t(x1, . . . , xn) ≤ 0.
Let also L ⊂ W be the set of all points in W such that V̇t(x1, . . . , xn) = 0.
We also denote by X ⊂ W an open set in W such that ∀x = (x1, . . . , xn)T ∈
X V̇t(x1, . . . , xn) < 0. (Thus, X ∪ L = W.)
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Theorem 4.1. Let the point 0 be a unique equilibrium point for system (4.1) in
W. Suppose also that:

1) point 0 is a saddle point;
2) there exists a value of parameter r > 0 such that for an arbitrary vector of

initial data (x10, ..., xn0)T ∈ X the solutions x1(x10, ..., xn0, t), ..., xn(x10, ..., xn0, t)
of system (4.1) satisfy to equality

lim inf
t→∞

V (x1(x10, . . . , xn0, t), . . . , xn(x10, . . . , xn0, t)) = 0.

Then under the conditions of Theorem 3.1 in system (4.1) there exists a chaotic
dynamics.

Proof. According to Theorem 3.1, there exists the value r = r0 such that all
solutions of system (4.1) are bounded. Therefore, for r = r0 the set W is a
compact positively invariant set with respect to system (4.1).

According to LaSalla’s theorem every solution of system (4.1) starting in W
approaches to the largest invariant set M ⊂ L as t→∞ (see [25,31]). In our case,
by assumption AT + A = 0 and condition 1) of Theorem 4.1, the role of the set
M can be played either by a limit cycle or by a homoclinic trajectory connected
at 0 (see Theorem 3.2). If both conditions 1) and 2) of Theorem 4.1 are satisfied,
then there exists a sequence of values r01 > r02 > · · · > r0k > · · · of parameter
r such that lim

k→∞
r0k = rc ≥ 0 and the set M(rc) at the critical value rc is the

homoclinic orbit. (Indeed, let Ns and Nu be stable and unstable manifolds of the
point 0 [21, 34]. Let’s denote by x0 = (x01, . . . , x0n)T ∈ Nu the starting point.
Since at the point x0 we have V̇t(x01, . . . , x0n) ≥ 0, then the solution x(x0, t)
of system (4.1) should be attracted to a certain limit cycle in L. According to
condition 2) of Theorem 4.1, this limit cycle for some value of parameter r will
pass arbitrarily close to the origin (to the manifold Ns). In other words, near
point 0 on trajectory x(x0, t) there will be point x1 = (x11, . . . , x1n)T such that
V̇t(x11, . . . , x1n) ≤ 0. Therefore, there must be the value rc of parameter r for
which Ns ∩ Nu 6= ∅. This means the existence of homoclinic orbit.)

The last statement enables us to construct a discrete mapping for system
(4.1). Theorems 3.2 and 3.3 allow us to assert that a limit cycle can exist in
perturbed system (4.1) for some values of parameter r. Let T0 be the period of
this cycle. In this case, the continuous relation (3.10) for the positive definite
function V (t) ≡ V (x1(t), . . . , xn(t)) can be rewritten as

V (x1(tk+1), . . . , xn(tk+1)) ≤ V (x1(tk), . . . , xn(tk))

× exp

tk+1ˆ

tk

[
W (x1(τ), . . . , xn(τ))− b · (h1(x1(τ), 2γ1) + ...+ hn(xn(τ), 2γn)

V (x1(τ, . . . , xn(τ))

]
dτ,

where tk+1 − tk = T0; k = 0, 1, . . .
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A discrete analogue of this relation according to the technique described in [32]
– [34] can be represented in the following form:

Vk+1 = Vk exp(p+ φ(Vk)− rV q
k ); k = 0, 1, 2, . . . (4.2)

Here p ≥ 0; φ(u) is a linear combination of power functions uqi of one variable
u > 0 (with qi > 0) and 0 < deg φ(u) = max qi < q = min(α1, . . . , αn, β1, . . . , βn),
i = 1, . . . , l.

In [32–34] it is shown that for some r = rc mapping (4.2) generates a chaotic
dynamics. Therefore, system (4.1) at r = rc will also exhibit chaotic behavior.
�

Comment 4.1. Theorems 3.2 and 3.3 guarantee the existence of periodic trajec-
tories for unperturbed systems. This means that for small perturbations, periodic
motions (limit cycles) will appear in system (4.1). Namely the existence of limit
cycle in system (4.1) allows starting a cascade of bifurcations leading to the
appearance of a chaotic attractor.

Comment 4.2. Note that the condition AT +A = 0 cannot be omitted. Indeed,
if this condition is satisfied, then ∀r > 0 AT +A−2rI = −2rI < 0. Otherwise (at
AT +A 6= 0), the inequality AT +A− 2rI < 0 does not hold ∀r > 0. Therefore, if
AT +A 6= 0 condition 2) of Theorem 4.1 generally speaking cannot be achieved.

Nevertheless, the results obtained for system (4.1) can be strengthened if
matrix A is replaced by a similar non-antisymmetric matrix An = H−1AH
(ATn +An 6= 0):

ẋ(t) = Bx + v(x) + (An − rI)h(x). (4.3)

In order to check condition 2) of Theorem 4.1 we can proceed in the following
way.

1. In system (4.1) set parameter r large enough. 2. Decrease the parameter r
until the limit cycle appears in system (4.1). 3. Continue slowly decreasing the
parameter r until limit cycles of any multiplicity appear in system (4.1). (This
means that a non-negative function V (x1(t), . . . , xn(t)) will have any number of
minimums.) If parameter r is close enough to value rc (which is unknown), then
the minimums of function V (x1(t), . . . , xn(t)) will take arbitrarily small (not zero!)
values. This will mean that r ≈ rc (see Fig. 4.5).

4.1. Homoclinic chaos

A large number of chaotic attractors arise when so-called homoclinic orbits
exist in a dynamical system (see [18–21,32–37], and references to papers on chaotic
dynamics cited elsewhere).

Definition 4.1. ( [35]). A bounded trajectory x(t,x0) ∈ Rn of system (3.6) is
called a homoclinic orbit if the trajectory converges to the same equilibrium point
as t→ ±∞.
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LetA = (a1, . . . , an)∈ Rn×n be the antisymmetric matrix composed of columns
ai ∈ Rn; i = 1, . . . , n.

Let us ∀s ∈ {1, . . . , n} denote by symbol As ∈ Rn×n (As ∈ Rn×n) the matrix
obtained from matrix A by replacing the column as (row −aTs ) with the column
−as (row aTs ).

Definition 4.2. Matrix As (or As) will be called partially antisymmetric.

Let p < n be a positive integer. If columns as1 , . . . , asp , 1 ≤ s1 < · · · < sp ≤
n of the matrix A are replaced by columns −as1 , . . . ,−asp , then the resulting
matrix will also be denoted as As1...sp and called partially antisymmetric. A similar
designation As1...sp is retained for the rows.

Let h(x) = (h1(x1, α1 ∨ β1), ..., hn(xn, αn ∨ βn))T and f(x) = (f1(x1, γ1 ∨
δ1), ..., fn(xn, γn ∨ δn))T be two vectors of power functions.

Theorem 4.2. Let ψ and φ 6= 0 be arbitrary real numbers and let h(x) be odd
function. Consider the following system of ordinary differential equations

ẋ(t) = ψAs1...spf(x) + φAh(x), (4.4)

in which it is assumed that deg h(x) > deg f(x). Then any solution x(t,x0) of
system (4.4) is periodic. In addition, if the function f(x) is odd, then there exists
a vector of initial conditions x∗0 such that trajectory x(t,x∗0) is the homoclinic orbit
connected at equilibrium point 0.

Proof. (a1) Let ψ = 0. Then the assertion of Theorem 4.2 follows from Theorem
3.2.

Let p = 1 and s1 = s. Introduce also the following vector fs(x) = (f1(x1), . . . ,
−fs(xs), . . . , fn(xn))T , where s ∈{1, . . . , n}.

(a2) Let ψ · φ 6= 0.
Consider two scalar products:
hT (x) · ẋ = ψhT (x) ·Asf(x) + φhT (x) ·Ah(x) = ψhT (x)Afs(x)

and
fTs (x) · ẋ = ψfTs (x) · Asf(x) + φfTs (x) · Ah(x) = ψfT (x) · Assf(x) + φfTs (x) ·

Ah(x) = φhT (x)AT fs(x). (Here we have used the obvious equality: Ass+ (Ass)
T =

0.)
From here it follows that φhT (x)·ẋ+ψfTs (x)·ẋ = 0. Therefore, if we define the

derivative V̇ (x) of some function V (x) by formula V̇ (x) ≡ φhT (x) · ẋ+ψfTs (x) · ẋ,
then we will have

V (x) ≡ φh1(x1, γ1 + 1)

γ1 + 1
+ · · ·+ φ

hn(xn, γn + 1)

γn + 1
+ ψ

f1(x1, ξ1 + 1)

ξ1 + 1

+ · · ·+ ψ
fs−1(xs−1, ξs−1 + 1)

ξs−1 + 1
− ψfs(xs, ξs + 1)

ξs + 1
+ . . .

+ ψ
fn(xn, ξn + 1)

ξn + 1
= C(x0) = const,
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where

∀i ∈ {1, ..., n} γi =

{
βi, if xi < 0,
αi, if xi ≥ 0,

ξi =

{
δi, if xi < 0,
γi, if xi ≥ 0.

Without loss of generality, we can assume that φ > 0. Then from the conditions
of Theorem 4.2 it follows that for a sufficiently large norm ‖x‖ of the vector x,
we have V (x) > 0. This means that if V (x0) = C(x0) > 0, then the function
V (x) = C(x0) > 0 is bounded. Consequently, any solution of system (4.4) is
closed and therefore periodic.

Now let the vector of initial conditions x∗0 be such that V (x∗0) = 0. Therefore,
if the function f(x) is odd, then the function V (x) is even. From here it follows
that V (x∗0) = V (−x∗0) = 0 and in addition, V (0) = 0. Consequently, there is a
trajectory of the system (4.4), which for t = 0 leaves some point x0 6= 0 arbitrarily
close to x∗0 ≈ 0 and at t→ ±∞ approaches to the point 0.

Now, in system (4.4), we will change the sign of time: t → −τ . Then we will
have

ẋ(τ) = −ψAs1...spf(x)− φAh(x). (4.5)

Further, we apply to the study of solutions of equation (4.5) the same technique
as for the study of solutions of equation (4.4). As a result, instead of analyzing of
the equation V (x(t)) = C(xt=0) > 0, we come to an analysis of the equation
−V (x(τ)) = −C(xτ=0) < 0. Thus, based on the structure of even function
V (x(t)), we have V (x(τ)) = V (x(−t)) = V (x(t)) = C(x0) > 0. This means
the existence of a homoclinic orbit.

(a3) Now let p > 1. Introduce the vector

fs1...sp(x) = (f1(x1), . . . , fs1−1(xs1−1),

−fs1(xs1), . . . ,−fsp(xsp), fsp+1(xsp+1), . . . , fn(xn))T .

Then the proof of case p > 1 completely repeats the proof of case p = 1 if we
take into account the obvious equality: As1...sps1...sp +(A

s1...sp
s1...sp)

T = 0. �

We replace the odd activation vector-function h(x) with the odd activation
vector-functionH(x, r1, . . . , rn). Similarly, we make the change of variables f(x)→
F(x,q1, . . . ,qn) (see (3.12)). Then, the following corollary is obvious.

Corollary of Theorem 4.2. The statements of Theorem 4.2 remain valid if
equation (4.4) is replaced by the equation

ẋ(t) = ψAs1...spF(x,q1, . . . ,qn) + φAH(x, r1, . . . , rn),

and keep the conditions presented for functions h(x) and f(x) also for functions
H(x, r1, . . . , rn) and F(x,q1, . . . ,qn).

Since φ 6= 0, we can assume that φ = 1. Consider the following special case of
system (4.1):

ẋ(t) = Bx + ψAs1...spf(x) + (A− rI)h(x), r ≥ 0. (4.6)
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Thus, if conditions of Theorems 4.1 and 4.2 are satisfied for system (4.6),
then we will get some chaotic behavior of this system. (Note that if the vectors
h(x) and f(x) in system (4.4) is replaced by the vectors H(x, s1, . . . , sn) and
F(x, s1, . . . , sn), then by virtue of Corollary of Theorem 3.1, the statement of
Theorem 4.2 is preserved.)

Definition 4.3. Chaos arising in system (4.6) will be called homoclinic.

1. Suppose that in system (4.4) we have n = 2, φ = 1, ψ = 1, and f(x) = (x, y)T ,
h(x) = (x3, y3)T ,

As =

(
0 1
1 0

)
, A =

(
0 −1
1 0

)
.

Then, depending on parameter φ, we obtain the phase portraits (see Fig. 4.1):

(a1) (a2)

Fig. 4.1. Two types of homoclinic orbits in system (4.4) at φ = 5 (a1) and
φ = −5 (a2). The homoclinic orbit resulting from the transformation (at

‖x0‖ → 0): (a1) one periodic trajectory and its self-intersection at point 0; (a2)
two different periodic trajectories lying to the left and right of the vertical axis

and their merging at point 0. The point 0 is saddle; the eigenvalues of the
Jacobi matrix at the point 0 are ±1.

2. Suppose that in system (4.4) we have n = 2, f(x) = (x, y)T ,
h(x) = (piecewise(x < 0,−(−x)1.5, x3.5; piecewise(y < 0,−(−y)2.5, y7.5)T , and
matrices As and A are the same as in the previous example. Then, depending on
parameters ψ and φ, we obtain the following phase portraits (see Fig. 4.2):

(a1) (a2)

Fig. 4.2. Orbits of system (4.4): (a1) ψ = 1, φ = 1 ; (a2) ψ = 1, φ = −1.
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3. Now suppose that in system (4.6) we have n = 3, r = 0.01, and
f(x) = (x1.2∨1,2, y1.2∨1.2, z1.2∨1.2)T , h(x) = (x2∨2, y2∨2, z2∨2)T ,

B = 0 or B =

 0 0 0
0 −0.25 −0.46
0 0.46 0.26

 , As =

 0 −0.8 −0.675
0.8 0 0.7
−0.675 0.7 0

 ,

A =

 −0.01 −0.8 0.675
0.8 −0.01 −0.7
−0.675 0.7 −0.01

 .

Let us first verify Theorem 4.2 (see Fig.4.3).

(a1) (a2) (a3)

Fig. 4.3. Verification of Theorem 4.2 for n = 3 and B = 0: (a1) ψ = 0, there are
only periodic trajectories; (a2) ψ = −2, if the starting points are far from the
origin, then there are only periodic trajectories; (a3) ψ = −2, if the starting

point is near the origin (x0 = 0, y0 = 0.001, z0 = 0.001), then there is a
homoclinic trajectory.

Now let B 6= 0. Then, we obtain the following phase portraits (see Fig.4.4):

(a1) (a2) (a3)

Fig. 4.4. The birth of homoclinic chaos in system (4.6), depending on the change
in parameter ψ: (a1) ψ = −0.5; (a2) ψ = −1; (a3) ψ = −3.

The result of Theorem 4.2 can be generalized in the following way.
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Let P ∈ Rn×n be a real matrix. We introduce the vector

h(Px) =
(
h1(

n∑
j=1

p1jxj), ..., hn(
n∑
j=1

pnjxj)
)T

(see (3.14)).
Introduce also the following l = 2n matrices:

G1 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , G2 =


−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , . . . ,

Gl−1 =


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , Gl =


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 .

Then, equation (4.6) can be rewritten as

ẋ(t) = Bx + ψAGif(x) + (A− rI)h(x); i ∈ {2, . . . , l − 1}. (4.7)

(Matrices G1 and Gl do not change the evenness or oddness of the vector function
f(x). Therefore, they are excluded from further study.)

Equation (4.7) can be used in two directions.
(d1) Simulation of systems containing a limit cycle.

In this case, ψ = 0 and instead of (4.7), you can use the system

ẋ(t) = c +Bx + (A− rI)h(x), c ∈ Rn, r > 0

or the system

ẋ(t) = c +Bx + h((A− rI)x), c ∈ Rn, r > 0. (4.8)

(Here, the shift vector c was added to the right side of system (4.7).)
(d2) Simulation of systems containing a homoclinic orbit (for example, Lorenz-like
systems [37]).

Clearly, if ψ 6= 0, then among the solutions of equation (4.7) there exists a
homoclinic orbit.

In addition, the homoclinic orbit can be obtained in the following way.
Let ψ = −1, h(x) = f(x), c, c0 ∈ Rn, r ≥ 0, and instead of (4.7), you can use

the system

ẋ(t) = c +Bx + h((A− rD0)Gix + c0)− h((A− rD0)Gjx + c0), (4.9)

where D0 =diag(d11, . . . , dnn) ∈ Rn×n; i, j ∈ {2, . . . , l − 1}. (The case D0 = I is
not excluded.)
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Then, for certain values of the parameters, the homoclinic orbit will exist
among the solutions of system (4.9). (Note that in system (4.9) the components
hi(vi), i = 1, . . . , n, of vector h(v) can be either even or odd activation functions.)

For example, for the Lorenz system

ẋ = σ(y − x), ẏ = ax− y − xz, ż = −bz + xy, (4.10)

we have: h(x) = h(x, y, z) = (h1(x), h2(y), h3(z))T = (x2, y2, z2)T , c = c0 =
0, r = 0,

B =

 −σ σ 0
a −1 0
0 0 −b

 ,

A = AG1 = 0.5

 0 1 1
−1 0 1
−1 −1 0

 , AG2 = 0.5

 0 1 1
1 0 1
1 −1 0

 ,

h(AG1x)− h(AG2x) =

 0.25(y + z)2

0.25(−x+ z)2

0.25(−x− y)2

−
 0.25(y + z)2

0.25(x+ z)2

0.25(x− y)2

 =

 0
−xz
xy

 .

The use of representation (4.9) to approximate derivatives can be motivated
by the following considerations.

Let h(u) be the even activation function (3.2). Then the function φ(u) =
h(au+ c)− h(−au+ c); a, c ∈ R, is the extended odd activation function [25].

Indeed, without loss of generality, we can assume that a ≥ 0 and c ≥ 0. Let
u∗ be the root of function φ(u) (it is easy to check that this root is unique).

It is clear that if u ≥ u∗ (u < u∗), then φ(u) ≥ 0 (φ(u) < 0). Thus, if there
are numbers k, i, j such that hk((A − rI)Gix) − hk((A − rI)Gjx) ≡ 0, then the
k-th equation of system (4.9) is a composition of only odd activation functions
(linear and φ(uk), where uk is a function of x); k ∈ {1, . . . , n}; i 6= j. Since
any of these functions separates points (see Definition 2.1), the k-th equation of
system (4.9) satisfies the approximation Theorem 2.2. (Let c0 6= 0. Obviously,
if numbers i, j ∈ {2, . . . , l − 1}, and i 6= j are such that Gi + Gj = 0, then all
nonzero components of vector h((A − rI)Gix + c0) − h((A − rI)Gjx + c0) are
odd activation functions.)

4.2. Examples of attractors of 3D power systems

1. Strange chaotic attractor. Consider a specific system (4.1) for n = 3.
Assume that in this system

v(x) ≡ 0, B =

 0.1 −0.2 4.8
−2.9 −1.4 2.0
−0.1 −1.7 1.9

 , A− rI =

 −r −0.1 −0.7
0.1 −r −0.2
0.7 0.2 −r

 .

The eigenvalues of the matrix B are λ1,2 = −1.1645 ± 2.4811i, λ3 = 2.9291.
Thus, the origin is the saddle focus.

Let’s define vectors: x = (x, y, z)T , h(x) = (h1(x), h2(y), h3(z))T , where
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h1(x) = −(−x)3.0 if(x < 0) and x1.8 if(x ≥ 0)
h2(y) = −(−y)3.0 if(y < 0) and y1.8 if(y ≥ 0)
h3(z) = −(−z)3.0 if(z < 0) and z1.5 if(z ≥ 0).

The following Fig. 4.5 shows the transition of system (4.1) from regular regime
to chaotic behavior:

(a1) (a2) (a3)

(a4) (a5)

Fig. 4.5. A cascade of bifurcations of the limit cycle in system (4.1) for different
values of r (transition to chaos): (a1) r = 0.024, (a2) r = 0.019, (a3) r = 0.0183,
(a4) r = rc ≈ 0.0142 (it is a chaotic dynamic); the verification of condition 2) of

Theorem 4.1 is shown in the graph (a5).

Thus, we have shown that systems (3.5) can simulate a chaotic processes.

2. Strange non-chaotic attractor. Theorems 3.1 and 4.1 are valid if r > 0.
For r = 0 the statements of these theorems have not been proved. In this regard,
consider 3D system (4.3) in which r = 0 (compare with system (3.17)): v(x) ≡ 0,

B =

 0 0.01 0
−0.01 0 1

1 −2 −0.05

 , An = H−1AH =

 0 0 0
0.01 0 −0.1

0 0.005 0

 .

In Fig. 4.6 presents a new type of attractors that can be generated by system
(4.3) with odd activation functions h1(x) = xγ∨δ, h2(y) = yγ∨δ, h3(z) = zγ∨δ:
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(a1) (a2)
Fig. 4.6. New strange attractors in system (4.3): (a1) γ = 3.5714, δ = 3 and (a2)

γ = 3.1428, δ = 4.3314

Note that matrix An = H−1AH is similar to antisymmetric matrix

A =

 0 0 0

0 0 −
√

5/100

0
√

5/100 0

 .

Thus, system (4.3) allows simulating more complex processes than system (4.1).

5. Generalization of the concept of power activation function

Formulas (3.1) and (3.2), which introduce power activation functions, have
two drawbacks:

1) if 0 < α ≤ 1 or 0 < β ≤ 1, then the functions (3.1) and (3.2) are non-
differentiable;

2) functions (3.1) and (3.2) do not take into account the shift of the argument.
In this connection, we introduce the following function (see Fig.7.1, Fig.7.2):

w(u, α, β, b, c) = piecewise
[
u+

b

c
< −c

1
β−1 ,−β − 1

β
c

β
β−1 − 1

β

(
−
(
u+

b

c

))β
,

u+
b

c
≤ c

1
α−1 , c ·

(
u+

b

c

)
,
α− 1

α
c

α
α−1 +

1

α

(
u+

b

c

)α]
. (5.1)

Here α > 0, β > 0, α 6= 1, and β 6= 1 are degrees; c > 0 is the tangent of angle of
inclination of a straight line w = cu+ b; b a given bias of argument.

We put in formula (5.1) b = 0. Then we will have
w(u, α, β, c) = piecewise[
u < −c

1
β−1 ,−β − 1

β
c

β
β−1 − (−u)β

β
, u ≤ c

1
α−1 , cu,

α− 1

α
c

α
α−1 +

uα

α

]
. (5.2)
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(Formula (5.2) can be obtained from formula (5.1) by introducing a new variable
z := u+ b/c, which in (5.2) is denoted again as u := z.)

In the optimization problem using gradient methods, it is necessary to use the
derivative of the function w(u, α, β, c). In the case of α > 0, β > 0, α 6= 1, β 6= 1,
and c ≥ 0 this formula is as follows:

ẇu(u, α, β, c) = piecewise
[
u < −c

1
β−1 , (−u)β−1, u ≤ c

1
α−1 , c, uα−1

]
. (5.3)

If limβ → 1, then

w(u, α, β, c)→ piecewise
[
u ≤ c

1
α−1 , cu,

α− 1

α
c

α
α−1 +

uα

α

]
,

ẇu(u, α, β, c)→ piecewise
[
u ≤ c

1
α−1 , c, uα−1

]
; (5.4)

if limα→ 1, then

w(u, α, β, c)→ piecewise
[
u < −c

1
β−1 ,−β − 1

β
c

β
β−1 − (−u)β

β
, cu
]
,

ẇu(u, α, β, c)→ piecewise
[
u < −c

1
β−1 , (−u)β−1, c

]
; (5.5)

if limα→ 1 and limβ → 1, then w(u, α, β, c)→ cu and ẇu(u, α, β, c)→ c.
(Note that formula (5.2) is transformed into formula (5.1) if we put in (5.2)

u := u+ b/c. Thus, we have w(u+ b/c, α, β, c) ≡ w(u, α, β, b, c).)
Finally, if we put c = 0 in formula (5.2) , then we obtain (with insignificant

additions) function (3.1) :

w(u, α, β) = piecewise
[
u < 0,−(−u)β

β
,
uα

α

]
, (5.6)

ẇu(u, α, β) = piecewise
[
u < 0, (−u)β−1, uα−1

]
;α > 1, β > 1.

(c = 5, α = 2, β = 3) (c = 0.5, α = 0.2, β = 3)
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(c = 7, α = 0.3, β = 0.1) (c = 0.2, α = 0.1, β = 0.01)

(c = 2, α = 0.01, β = 2) (c = 10, α = 1.5, β = 0.02)

Fig.5.1. The activation differentiable power function
w(u) = piecewise

[
u ≤ −c

1
β−1 ,−β−1

β c
β
β−1 − (−u)β

β , u ≤ c
1

α−1 , cu, α−1
α c

α
α−1 + uα

α

]
for different values of the parameters α, β, and c.

(c = 5, b = −20, α = 2, β = 3) (c = 5, b = 20, α = 0.2, β = 0.3)

Fig.5.2. The activation differentiable power function w(u) = piecewise
[
u+ b

c

≤ −c
1

β−1 ,−β−1
β c

β
β−1 − 1

β (−u− b
c)
β, u+ b

c ≤ c
1

α−1 , cu+ b, α−1
α c

α
α−1 + 1

α(u+ b
c)
α
]

with a given bias b 6= 0 for different values of the parameters α, β, and c.

Note that the functions (5.1) and (5.2) are differentiable on the whole interval
(−∞,∞) for any α > 0, α 6= 1 and β > 0, β 6= 1. At the same time, function (5.6)
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is non-differentiable for 0 < α ≤ 1 or 0 < β ≤ 1, at point u = 0. (If α = β = 1,
then we get the linear function w(u) = u, which is useless for modeling with the
help of neural networks.)

Thus, functions (5.1) and (5.2) are by a generalization of the power odd
activation function (3.1) (or (5.6)). This generalization is that function (5.2)
(unlike function (3.1)) is differentiable. Therefore, it becomes possible to use these
functions in the gradient methods of search algorithms (for example, in Algorithms
1 and 2 or in the backpropagation method [1–3,9, 16]).

6. Algorithms for adjusting the weight coefficients of neural
ODEs with power activation functions

Suppose that we study the behavior x(t) of some dynamical system and we
can determine the dimension n of the space in which this system operates.

We introduce real numbers ∆t > 0 and 0 < T < ∞ such that T >> n∆t.
Assume that for any t ∈ [0, T ] vectors x(t + k∆t) and ẋ(t + k∆t) ∈ Rn can be
measured; k = 0, 1, .... (If the measurement of vector ẋ(t) is impossible, then the
standard approximation of derivative

ẋ(t) ≈ 1

∆t
(x(t+ ∆t)− x(t))

is used to find it.)
Algorithms are based on the least squares method [1] and the fact that we

know sufficient precision the components of x(t) and its derivative ẋ(t).
Suppose that n time series

g10, g11, g12, . . . , g1N ,
g20, g21, g22, . . . , g2N ,
. . . . . . . . .
gn0, gn1, gn2, . . . , gnN

are given on the same time interval T in equally spaced N nodes: 0,∆t, . . . , k∆t,
. . . , N∆t = T . Thus, ∆t = T/N .

The objective is to determine the dynamical system described by the equation
ẋ(t) = F(x) from the known time series; here F : Rn → Rn is realized by a
multilayer neural network xk+1 = xk + ∆t ·F(xk); k = 0, 1, . . . (see [9–11,17,25]).
The difference between the input x and the output F(x) is compared with ẋ(t) to
generate an error e(t) ∈ Rn. This error is used to adjust the network parameters
so that e(t) = ẋ(t)−F(x)→ 0. The function F(x) is the right-hand side of system
(3.5) with unknown parameters. It is necessary to minimize the error e(t) (in any
norm) by adjusting some of the parameters included in (3.5).
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6.1. Algorithm 1: architecture of neural ODEs does not use
antisymmetric matrices

The algorithm implements a search procedure for approximating a time series
by solutions of a system of differential equations.

In this system: 1. There is a linear part. 2. The nonlinear part contains one
fixed even and one odd activation function that must be adjusted. 3. All matrices
of the system are matrices of general form (antisymmetric matrices are not used).

The model describing the process should be presented in the form of the
following system of differential equations of order n:

ẋ1(t) = c10 + c11x1 + · · ·+ c1nxn + b11u(x1) + b12u(x2) + · · ·+ b1nu(xn)
+d11h(x1) + d12h(x2) + · · ·+ d1nh(xn),

ẋ2(t) = c20 + c21x1 + · · ·+ c2nxn + b21u(x1) + b22u(x2) + · · ·+ b2nu(xn)
+d21h(x1) + d22h(x2) + · · ·+ d2nh(xn),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ẋn(t) = cn0 + cn1x1 + · · ·+ cnnxn + bn1u(x1) + bn2u(x2) + · · ·+ bnnu(xn)
+dn1h(x1) + dn2h(x2) + · · ·+ dnnh(xn).

(6.1)
Here u(xi) = piecewise(xi < 0, (−xi)δ, xγi ); δ > 1, γ > 1 (even functions with

fix degrees); h(xi) = piecewise(xi < 0,−(−xi)β, xαi ); α > γ, β > δ (odd function
with adjustable degrees); i = 1, . . . , n.

The purpose of the algorithm is to determine vector c0 = (c10, . . . , cn0)T ∈ Rn,
matrices C = {cij} ∈ Rn×n, B = {bij} ∈ Rn×n, D = {dij} ∈ Rn×n, and degrees
α, β of system (6.1); i, j = 1, . . . , n. The answer is presented in the form of matrix
Y = (c0, C,B,D) ∈ Rn×(3n+1).
1. Fix a learning selections

g10, g11, g12, . . . , g1m,
g20, g21, g22, . . . , g2m,
. . . . . . . . .

gn0, gn1, gn2, . . . , gnm,

where 0 < 1 + 3n ≤ m ≤ N. (The number of training elements m in the time
series should be more than the number of unknown coefficients 1 + 3n in any of
the equations of the system.)

1.1. Introduce positive numbers step, γ, δ, and integers Ma > 0, Mb > 0. (Let,
for example, be: step := 0.1, γ := 1.5, δ := 1.5, and Ma := 20, Mb := 20.)

1.2. Construct the matrix of numerical derivatives

DER :=
1

∆t


g11 − g10 g21 − g20 . . . gn1 − gn0

g12 − g11 g22 − g21 . . . gn2 − gn1
...

...
...

...
g1,m − g1,m−1 g2,m − g2,m−1 . . . gn,m − gn,m−1

 ∈ Rm×n.
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1.3. Construct the matrix

U :=


u(g10) u(g20) . . . u(gn0)
u(g11) u(g21) . . . u(gn1)

...
...

...
...

u(g1,m−1) u(g2,m−1) . . . u(gn,m−1)

 ∈ Rm×n.

2. Put ka := 1, kb := 1. (Start a double cycle for integer variables ka and kb.)
2.1. Fix the number α := γ + ka · step.
2.2. Fix the number β := δ + kb · step.
2.3. Construct a perturbation matrix

H :=


h(g10) h(g20) . . . h(gn0)
h(g11) h(g21) . . . h(gn1)

...
...

...
...

h(g1,m−1) h(g2,m−1) . . . h(gn,m−1)

 ∈ Rm×n,

and the Jacobi matrix for system (6.1):

W :=


1 g10 . . . gn0

1 g11 . . . gn1
...

...
...

...
1 g1,m−1 . . . gn,m−1

∣∣∣∣∣∣∣∣∣ U

∣∣∣∣∣∣∣∣∣∣
H

 ∈ Rm×(3n+1).

2.4. Check the condition rankW = 3n+ 1. If rankW < 3n+ 1 then fix some
number µ ∈ (0, 1] else µ := 0.

2.5. Find the matrix Y using the least squares method:

Y T = (W TW + µI)−1W T ·DER ∈ R(3n+1)×n.

(Here I ∈ R(3n+1)×(3n+1) is the identity matrix.)
3. Compute the matrix of errors

ERR := (eij) = DER−W · Y T ∈ Rm×n

and the total computational error at iterative steps ka and kb:

Eka,kb := tr(ERRT · ERR) =

m∑
i=1

n∑
j=1

e2
ij .

4. If kb < Mb then kb := kb + 1 and go to item 2.2.
4.1. If ka = Ma then go to item 5 else kb := 1, ka := ka + 1 and go to item

2.1.
5. Compute the integer numbers la ∈ {1, ...,Ma} and lb ∈ {1, ...,Mb} such that

Ela,lb = min(E1,1, . . . , E1,Mb
, E2,1, . . . , E2,Mb

, . . . , EMa,1, . . . , EMa,Mb
).
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(End of the double cycle for integer variables ka and kb.)
6. Print the matrix Y ≡ Yla,lb ∈ Rn×(3n+1), the numbers α > 1, β > 1 and stop
the algorithm.
7. Solve system (6.1). If the solutions of system (6.1) diverge, then to increase the
values γ and δ by a small number ∆ > 0 (γ := γ + ∆ > 0, δ := δ + ∆) and go
to item 2. If for several values γ and δ the solutions of system (6.1) still diverge,
then stop the algorithm.

Comment 6.1. If there are no matrices B or D in system (6.1), then there
are no fixed degrees of activation functions. Indeed, let B = 0, then Algorithm
1 works directly. If D = 0 holds, then the following redesignations of variables
B → D, γ → α, and δ → β should be introduced into Algorithm 1.
Comment 6.2. If the matrix D + DT is negative definite, then the resulting
model of neural ODE will generate bounded solutions (see [25]).

6.2. Algorithm 2: antisymmetric matrices are used in the architecture
of neural ODEs

It is known that in most real dynamical systems, chaotic phenomena arise
as a result of the development of certain periodic processes. In this regard, in
order to model the chaotic behavior of such systems, it is desirable to include a
mechanism generating a limit cycle in the architecture of the neural network. In
turn, the cascade of bifurcations of the limit cycle will lead to the appearance
of chaos in the modeled system. The following algorithm is designed to simulate
limit cycles in real dynamic processes.

As an object of modeling, we will choose some generalization of system (4.8).
Consider the following matrix

S =


S1

S2
...

Sn−1

Sn

 =


−d11 d12 . . . d1,n−1 d1n

−d12 −d22 . . . d2,n−1 d2n
...

...
. . .

...
...

−d1,n−1 −d2,n−1 . . . −dn−1,n−1 dn−1,n

−d1n −d2n . . . dn−1,n −dnn

 ∈ Rn×n

(6.2)
such that (S +D0) + (S +D0)T = 0. (Thus, (S +D0) is antisymmetric.)

Now, we introduce the following system

ẋ1(t) = f1(c10 +
n∑
i=1

c1ixi) + h1(S1 · x + b1),

ẋ2(t) = f2(c20 +
n∑
i=1

c2ixi) + h2(S2 · x + b2),

. . . . . . . . . . . . . . . . . . . .

ẋn(t) = fn(cn0 +
n∑
i=1

cnixi) + hn(Sn · x + bn).

(6.3)

Here fi(u) = piecewise(u < 0,±(−u)βi , uαi) are odd or even power functions,
hi(v) = piecewise(v < 0,−(−v)γi , vγi) are odd power functions and γi > 1;
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i = 1, . . . , n. (System (4.8) follows from system (6.3) if we put deg fi(u) = 1,
D0 = I, and bi = 0 in the last system.)

It is known that the basis of search algorithms is the Jacobi matrix Jac. Let’s
form this matrix for system (6.3) using representation (6.2). In this case, the
vector of parameters z ∈ RC2

n+n(n+2) will be constructed as follows :

z = (c10, . . . , c1n, . . . , cn0, . . . , cnn, d11, . . . , d1n, d22, . . . , d2n, . . . , dnn, b1, . . . , bn)T .

Let m = 1. We introduce the following auxiliary matrices that will be needed
to construct the Jacobi matrix for system (6.3):

J1 = Diag1 ·

 (1, x1, . . . , xn) . . . 0
...

. . .
...

0 . . . (1, x1, . . . , xn)

 ∈ Rn×(n+1)n,

J2 = Diag2 · (−x, P1, P2, . . . , Pn−1, In) ∈ Rn×(C2
n+n+1),

where

Diag1 =


f
′
1(c10 +

n∑
i=1

c1ixi) . . . 0

...
. . .

...

0 . . . f
′
n(cn0 +

n∑
i=1

cnixi)

 ∈ Rn×n,

Diag2 =

 h
′
1(S1 · x + b1) . . . 0

...
. . .

...
0 . . . h

′
n(Sn · x + bn)

 ∈ Rn×n,

and

Pi =


O(i−1)×(n−i)
−−−−−−
xi+1, . . . , xn
−−−−−
−xiIn−i

 ∈ Rn×(n−i);

O(i−1)×(n−i) ∈ R(i−1)×(n−i) is the zero matrix; In−i ∈ R(n−i)×(n−i) and In ∈ Rn×n
are the identity matrices; i = 1, ..., n− 1.

Now, we briefly describe the algorithm for adjusting the weights for system
(6.3).
1. Introducing objects that do not change in the iterative process.

1.1. Fix a learning selections (they are formed from time series):

g10, g11, g12, . . . , g1m ≡ gT1
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g20, g21, g22, . . . , g2m ≡ gT2

. . . . . . . . . . .

gn0, gn1, gn2, . . . , gnm ≡ gTn .

1.2. Fix triplets of real numbers αi ≥ 1, βi ≥ 1 and γi > αi, γi > βi; i =
1, . . . , n.

1.3. Introduce the matrix

G =

 1 g10 g20 . . . gn0
...

...
...

...
...

1 g1,m−1 g2,m−1 . . . gn,m−1

 = (1,g1,g2, . . . ,gn) ∈ Rm×(n+1).

1.4. Construct the columns of numerical derivatives:

Di =
1

∆t


gi1 − gi0
gi2 − gi1

...
gi,m − gi,m−1

 ∈ Rm; i = 1, . . . , n.

2. k = 0. (The beginning of a global cycle.) Introduce the nonzero vector Yk ∈
RC2

n+n(n+2) of initial approximations:

Yk :=(c10, . . . , c1n, . . . , cn0, . . . , cnn, d11, . . . , d1n, d22, . . . , d2n, . . . , dnn, b1, . . . , bn)T ;

(for example)Y0 := (1, . . . , 1, d11 = 0, ..., dnn = 0, 0, . . . , 0) ∈ RC
2
n+n(n+2),

the previous error Tk−1 = T−1 := 1010, and the number ε := 0.001.
2.1. Construct the matrices

Fi =

 f
(i)
11 · · · 0
...

. . .
...

0 · · · f
(i)
mm

 ∈ Rm×m,

where f (i)
jj = piecewise(ci0 +

n∑
s=1

cisgsj < 0,−βi(−ci0 −
n∑
s=1

cisgsj)
βi−1, αi(ci0 +

n∑
s=1

cisgsj)
αi−1), and

Hi =

 h
(i)
11 · · · 0
...

. . .
...

0 · · · h
(i)
mm

 ∈ Rm×m,

where h(i)
jj = piecewise(

n∑
l=1

Silglj + bi < 0, γi · (−
n∑
l=1

Silglj− bi)γi−1, γi · (
n∑
l=1

Silglj +

bi)
γi−1); i = 1, . . . , n; j = 0, 1, . . . ,m− 1.
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2.2. Now we will use auxiliary matrices J1 and J2 obtained for m = 1 in
order to construct the Jacobi matrix of system (6.3) in case m > 1. To do this,
we need to replace scalar variables 1, x1, . . . , xn, respectively, by vectors vectors
1,g1, . . . ,gn ∈ Rm. Then, we have

Jac = (J1(1,g1, . . . ,gn)|J2(1,g1, . . . ,gn)) = Wk

=


F1 ·G 0 . . . 0

0 F2 ·G . . . 0
...

...
. . .

...
0 0 . . . Fn ·G

∣∣∣∣∣∣∣∣∣
−H1 · g1

0
...
0

H1 · g2 . . . H1 · gn
−H2 · g1 . . . 0

...
. . .

...
0 . . . −Hn · g1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0
−H2 · g2 H2 · g3 . . . H2 · gn

0 −H3 · g2 . . . 0
...

...
. . .

...
0 0 . . . −Hn· g2

∣∣∣∣∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣∣∣∣∣

0
0
0
...

−Hn · gn

∣∣∣∣∣∣∣∣∣∣∣

H1 · 1 0 . . . 0
0 H2 · 1 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Hn · 1

 .

Here Wk is (nm× (C2
n + n(n+ 2)))-matrix and 1 = (1, 1, ..., 1)T ∈ Rm .

2.3. Check condition rankWk = C2
n + n(n + 2). If rankWk < C2

n + n(n + 2)
then fix some number µ ∈ (0, 1] else µ := 0.

2.4. Calculation of the right side of system (6.3):

Rij = piecewise(ci0 +

n∑
s=1

cisgsj < 0,−(−ci0 −
n∑
s=1

cisgsj)
βi , (ci0 +

n∑
s=1

cisgsj)
αi)

+piecewise(
n∑
l=1

Silglj + bi < 0,−(−
n∑
l=1

Silglj − bi)γi , (
n∑
l=1

Silglj + bi)
γi);

where i = 1, ..., n; j = 0, ...,m− 1.
2.5. Form vectors:

Ri =


Ri0
Ri1
...

Ri,m−1

 ∈ Rm; i = 1, . . . , n.

3. Compute the vector of errors

Ek = (e1, . . . , em, em+1, . . . , e2m, e2m+1, . . . , e3m, . . . , en−1,m, . . . , enm)T :=
D1 −R1

D2 −R2
...

Dn −Rn

 ∈ Rnm
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and the total computation error at iteration step k: Tk :=
nm∑
j=1

e2
j .

4. If
Tk−1 > Tk + ε,

then compute the vector

Y T
k+1 := Y T

k + (W T
k ·Wk + µI)−1 ·W T

k · Ek ∈ RC
2
n+n(n+2)

else go to item 6. (Here I ∈ R(C2
n+n(n+2))×(C2

n+n(n+2)) is the identity matrix.)
5. Put k := k + 1,

Yk :=(c10, . . . , c1n, . . . , cn0, . . . , cnn, d11, . . . , d1n, d22, . . . , d2n, . . . , dnn, b1, . . . , bn)T

and go to item 2.1.
6. Print a graph of error changes T0, T1, . . . , Tk−1.
7. Print the vector Yk−1 ∈ RC2

n+n(n+2) and stop the algorithm.
8. Solve system (6.3). (If the solutions of system (6.3) diverge, then in the initial
conditions replace the value d11 = 0 with a sufficiently small value |d11| and go to
item 2.)

Comment 6.3. A chaotic dynamic process modeling should begin with building
a limit cycle. As Theorems 3.2 and 3.3 show, for a periodic trajectory to appear
in system (6.3), it is sufficient that b1 = · · · = bn = 0. Therefore, Algorithm 2 can
be started by putting b1 = · · · = bn = 0.

Comment 6.4. If the constructed model does not satisfy the necessary require-
ments, then it is possible to increase the number of neurons in the equation in
accordance with the architecture of system (3.5).

7. Modeling

7.1. Applications of Algorithm 1

To test the operability of Algorithm 1, the following system [36] will be used:
ẋ(t) = y(t),
ẏ(t) = −x(t) + z(t),
ż(t) = 2− 0.8x2(t) + z2(t).

(7.1)

For system (7.1), we solve the Cauchy problem with initial data x0 = 0, y0 =
2.3, z0 = 0. From the obtained continuous x(t), y(t), z(t), we form time series with
step ∆t = 1. To denote these series, we use the notations x1(t) = x(t), x2(t) =
y(t), x3(t) = z(t); t = 0, 1, 2, . . . , 300. Thus, we have m = 300.

We assume that B = 0. Then the use of Algorithm 1 with odd activation
functions leads to such coefficients of system (6.1):

c0 =

 0.00020
−0.01967
1.96685

 , C =

 0.00955 0.99992 −0.00951
−0.95541 0.00848 0.95059
−4.44895, 0.15144 4.93128

 ,
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D =

 0.00000 0.00000 0.00000
−0.03484 0.00131 0.04126
3.48409 −0.13084 −4.12689

 ; α = 0.66666, β = 1.55555. (7.2)

Phase portraits of system (7.1) and (7.2) are presented in Fig. 7.1:

(a1) (a2)

Fig. 7.1. Phase portraits of system (7.1)(a1) and (7.2)(a2)

Now, in order to simulate processes in system (7.1), we assume D = 0 and
again use Algorithm 1, but with even activation functions. Then we get such
coefficients of system (6.1):

c0 =

 0.00021
−0.02067
2.06700

 , C =

 0.01000 0.99990 −0.01000
−0.99964 0.01018 0.99956
−0.02591 −0.01766 0.03368

 ,

B =

 0.00000 0.00000 0.00000
0.00735 0.00000 0.00926
−0.73552 −0.00296 0.92592

 ; γ = 2.05263, δ = 2.05263 (7.3)

and

c0 =

 0.00006
−0.00619
0.61919

 , C =

 0.00989 0.99993 −0.00021
−0.98893 0.00679 0.98823
−1.09730 0.32107 1.16668

 ,

B =

 0.00000 0.00000 0.00000
0.02060 −0.00296 −0.02438
−2.06034 0.29609 2.43823

 ; γ = 0.66666, δ = 1.55555. (7.4)

Phase portraits of system (7.3) and (7.4) are presented in Fig.7.2:
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(a1) (a2)

Fig. 7.2. Phase portraits of system (7.3)(a1) and (7.4)(a2)

Thus, we can assert that the use of even activation functions leads to more
accurate modeling (especially, system (7.3)) than use of odd activation functions.

7.2. Applications of Algorithm 2

Consider the following special case of system (4.9):

ẋ1(t) = a10 +
3∑
j=1

a1jxj + h(−d11x1 + d12x2 + d13x3)

+νh(−l1d11x1 + l2d12x2 + l3d13x3)

ẋ2(t) = a20 +
3∑
j=1

a2jxj + h(−d12x1 − d22x2 + d23x3)

+νh(−l1d12x1 − l2d22x2 + l3d23x3)

ẋ3(t) = a30 +
3∑
j=1

a3jxj + h(−d13x1 − d23x2 − d33x3)

+νh(−l1d13x1 − l2d23x2 − l3d33x3).

(7.5)

Here if ν = 0(ν = −1), then there is a limit cycle (a homoclinic orbit).
In addition, if ν = 0, then h(vi) = piecewise(vi < 0,−(−vi)γ , vγi ) is an odd

function; if ν = −1, then h(vi) = piecewise(vi < 0, (−vi)γ , vγi ) is an even function.
Here γ > 1; d11, d12, d13, d23 ∈ R, where d11 ≥ 0; i = 1, . . . , 3.

A triple of integers (l1, l2, l3) accepts only one set of 2n−2 = 6 (n = 3) possible:
(−1,−1, 1); (−1, 1,−1); (1,−1,−1); (1, 1,−1); (1,−1, 1); (−1, 1, 1). The triplet
(l1, l2, l3) indicates one of the possible types of homoclinic orbits that can be
realized in system (7.5).

In this subsection, Algorithm 2 will only be used to simulate systems with
possible homoclinic orbits (ν = −1). Therefore, instead of the nonlinear part
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h(Sx + b) in the system (6.3), the nonlinear part h(SG1x + b) − h(SG2x + b)
should be used.

In order to check the performance of Algorithm 2, several well-known systems
were used. From the obtained continuous x(t), y(t), z(t), we form time series with
step ∆t = 1, where t = 0, 1, 2, . . . , 200. Thus, we have m = 200.

1. Lorenz system (4.10) at x0 = 1, y0 = 1, z0 = 8. For the Lorentz approxi-
mation, we need to take (l1, l2, l3) = (−1, 1, 1).

1.1. For the classical Lorentz attractor, we have for system (4.10) σ = 10, a =
27, b = 2.7 and h(vi) = piecewise(vi < 0, (−vi)2, v2

i ); i = 1, . . . , 3. A graph of this
system is shown in Fig. 7.3 (a1).

1.2. We form time series for system (4.10) and assign h(vi) = piecewise(vi <
0, (−vi)1.5, v1.5

i ); i = 1, . . . , 3. Then Algorithm 2 applied to system (7.5) leads to
the following results:

A0 =

 0.71269
0.69584
3.92098

 , A =

 −10.01641 9.94437 −0.00899
54.83057 −2.42695 −0.02138
−0.44238 0.27646 −3.32041

 ,

d11 = 0.00607, d12 = 2.63824, d13 = 1.08829, d22 = d11, d23 = 1.68198, d33 = d11.
The graph of this system is shown in Fig. 7.3(a2).

1.3. Now we add the following terms to the corresponding right-hand sides of
each of equations (7.5):

(a1) (a2) (a3)

Fig. 7.3. Phase portraits of system (4.10)(a1), (7.5)(a2), and [(7.5)+(7.6)](a3)

h1(a10 +
3∑
j=1

a1jxj), h1(a20 +
3∑
j=1

a2jxj), h1(a30 +
3∑
j=1

a3jxj), (7.6)

where h1(vi) = piecewise(vi < 0,−(−vi)1.1, v1.1
i ); i = 1, . . . , 3. In this case,

Algorithm 2 leads to the following results:

A0 =

 −0.09276
−0.37044
−6.40899

 , A =

 −4.25589 4.15270 0.00343
27.12403 −2.14111 0.00926
0.00761 −0.00245 −1.53054

 ,
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d11 = 0.00081, d12 = 2.75407, d13 = 0.83019, d22 = d11, d23 = 2.63333, d33 = d11.
The graph of this system is shown in Fig.7.3 (a3).

Thus, in the case 1.3 (see Fig. 7.3(a3)), there was no improvement in the
quality of approximation.

2. Consider the following system without equilibrium points [38]:
ẋ(t) = 10y(t),
ẏ(t) = −x(t) + 3z(t) + x(t)z(t),
ż(t) = 1 + x(t)− z(t)− x(t)y(t) + 0.25x(t)z(t),

(7.7)

where x0 = y0 = z0 = 1. The graph of this system is shown in Fig. 7.4 (a1).
2.1. From the obtained continuous x(t), y(t), z(t) of system (7.7), we form time

series with step ∆t = 1, where t = 0, 1, 2, . . . , 5000. Thus, we have m = 5000.
We assign h(vi) = piecewise(vi < 0, (−vi)2, v2

i ); i = 1, . . . , 3. Then Algorithm 2
applied to system (7.5) leads to the following results:

A0 =

 0.00017
−0.05053
2.22924

 , A =

 −0.01871 9.98680 0.02484
−0.99742 −0.36465 3.00322
0.99120 0.01164 −0.52040

 ,

d11 = −0.1000, d12 = −0.00573, d13 = −0.00573, d23 = 43.63002, d22 = −0.1182,
d33 = 10.81835. The graph of this system is shown in Fig. 7.4 (a2).

2.2. Now we will assign h(vi) = piecewise(vi < 0, (−vi)1.7, v1.7
i ); i = 1, . . . , 3.

In this case, Algorithm 2 leads to the following results:

A0 =

 0.05826
1.49581
13.51462

 , A =

 −0.22723 9.75617 0.24837
−1.93969 −3.59190 2.94801
0.92691 0.18019 −6.16120

 ,

d11 =0.01850, d12 = 1.30116, d13 = 1.30705, d23 =−0.71111, d22 = 0.01463, d33 =
−0.16564. The graph of this system is shown in Fig. 7.4 (a3).

(a1) (a2) (a3)

Fig. 7.4. Phase portraits of system (7.7)(a1), system (7.5) at deg h(v) = 2 (a2),
and system (7.5) at deg h(v) = 1.7 (a3)

Thus, the quality of the approximation deteriorates if deg h(v) < 2.
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7.3. Modernization of Algorithm 2 for use of activation functions (5.2)

Assume for simplicity that n = 3. Now we will demonstrate Algorithm 2 for
modeling a dynamic process for given time series. We also suppose that the result
of such modeling should be the following system of neural ODEs:

ẋ1(t) = c10 + c11x1 + c12x2 + c13x3 + h1(−d11x1 + d12x2 + d13x3),
ẋ2(t) = c20 + c21x1 + c22x2 + c23x3 + h2(−d12x1 − d22x2 + d23x3),
ẋ3(t) = c30 + c31x1 + c32x2 + c33x3 + h3(−d13x1 − d23x2 − d33x3).

(7.8)

(System (7.8) is a special case of system (6.3), in which we set fi(u) = u, bi =
0; i = 1, . . . , 3.)

Now we will assume that in system (7.8) : hi(u) = wi(u, αi, βi, ci), i = 1, . . . , 3
(see (5.2)). The main goal of the modernization of Algorithm 2 is to replace the
Jacobi matrix of system (6.3) with the Jacobi matrix of system (7.8).

In system (7.8) the space of parameters (weights) is defined by the vector

Y := (c10, . . . , c13, c20, . . . , c23, c30, . . . , c33, d11, d12, d13, d22, d23, d33)T ∈ R18.

Therefore, the Jacobi matrix in this case is

W =

 G 0 0
0 G 0
0 0 G

∣∣∣∣∣∣
−h′1 · g1 h

′
1 · g2 h

′
1 · g3

0 −h′2 · g1 0

0 0 −h′3 · g1

∣∣∣∣∣∣
0 0

−h′2 · g2 h
′
2 · g3

0 −h′3· g2

∣∣∣∣∣∣
0
0

−h′3 · g3

 .

Here the derivative h′i := h
′
iu(u) = h

′
iu(r1x1 +r2x2 +r3x3) is calculated by formula

(5.3). (For example, if h(u) = (x1 + x2 + x3)2, then h′(u) = 2(x1 + x2 + x3)).
Quite often in system (7.8) (or (6.3)) it is assumed that d11 = d22 = d33. In

this case, the space of parameters is defined by the vector

Y := (c10, . . . , c13, c20, . . . , c23, c30, . . . , c33, d11, d12, d13, d23)T ∈ R16

and the Jacobi matrix takes the form

W =

 G 0 0 −h′1 · g1 h
′
1 · g2 h

′
1 · g3 0

0 G 0 −h′2 · g2 −h′2 · g1 0 h
′
2 · g3

0 0 G −h′3 · g3 0 −h′3 · g1 −h′3 · g2

 ∈ R3m×16.

Further, we form the vectors of the right parts of system (7.8): R1j = c10 +
c11g1j + c12g2j + c13g3j + h1(−d11g1j + d12g2j + d13g3j), R2j = c20 + c21g1j +
c22g2j + c23g3j + h2(−d12g1j − d11g2j + d23g3j), R3j = c30 + c31g1j + c32g2j +
c33g3j + h3(−d13g1j − d23g2j − d11g3j); j = 0, . . . ,m− 1.

Finally we compose vectors

Ri =


Ri0
Ri1
...

Ri,m−1

 ∈ Rm; i = 1, . . . , 3.
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System (7.8) is written for arbitrary activation functions h1(u), . . . , h3(u). If
these functions are given by formula (5.2), then system (7.8) takes the following
form:

ẋ1(t) = c10 + c11x1 + c12x2 + c13x3

+piecewise
[
−d11x1 + d12x2 + d13x3 < −c

1
β1−1

1 ,−β1−1
β1

c
β1
β1−1

1

−(d11x1 − d12x2 − d13x3)β1

β1
,−d11x1 + d12x2 + d13x3 ≤ c

1
α1−1

1 ,

c1 ·(−d11x1 + d12x2 + d13x3), α1−1
α1

c
α1
α1−1

1 +
(−d11x1 + d12x2 + d13x3)α1

α1

]
,

ẋ2(t) = c20 + c21x1 + c22x2 + c23x3

+piecewise
[
−d12x1 − d22x2 + d23x3 < −c

1
β2−1

2 ,−β2−1
β2

c
β2
β2−1

2

−(d12x1 + d22x2 + d23x3)β2

β2
,−d12x1 − d22x2 + d23x3 ≤ c

1
α2−1

2 ,

c2 ·(−d12x1 − d22x2 + d23x3), α2−1
α2

c
α2
α2−1

2 +
(−d12x1 − d22x2 + d23x3)α2

α2

]
,

ẋ3(t) = c30 + c31x1 + c32x2 + c33x3

+piecewise
[
−d13x1 − d23x2 − d33x3 < −c

1
β3−1

3 ,−β3−1
β3

c
β3
β3−1

3

−(d13x1 + d23x2 + d33x3)β3

β3
,−d13x1 − d23x2 − d33x3 ≤ c

1
α3−1

3 ,

c3 ·(−d13x1 − d23x2 − d33x3), α3−1
α3

c
α3
α3−1

3 +
(−d13x1 − d23x2 − d33x3)α3

α3

]
.

(7.9)
Now everything is ready to use Algorithm 2 when modeling 3D systems with

activation functions (5.2).

8. Conclusion

As can be seen from the above examples, Algorithms 1 and 2 correctly indicate
the tendency of the behavior of dynamic processes described by certain time series.
Now, based on the obtained models, we can describe them more precisely: for
example, if approximate the derivatives by finite differences of the second or third
order. Various combinations of odd and even power functions can also be used
in the simulation. (Corollary of Theorem 2.2 guarantees the achievement of the
required approximation accuracy only for odd activation functions. Nevertheless,
the introduction of even activation functions sometimes makes it possible to
achieve the required accuracy with a smaller number of terms.) Moreover, adding
new power-law nonlinearities to the model equations also improves the quality of
the approximation.

The main results of this article are as follows:
1. Due to the concept of odd activation function introduced in [25], a simplified

version of the classical approximation Theorem 2.2 (this is Corollary of Theorem
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2.2) was obtained. As a result, representation (2.1), where generally speaking
ξj 6= 1, was replaced by representation (3.4) with ξj = 1; j = 1, . . . ,m.

2. Conditions for the existence of periodic solutions in neural systems of
ordinary differential equations with power nonlinearities were found.

3. Theorems 3.1 and 4.1 represent a constructive approach to solving the
problem of the existence of chaos in dynamical systems with power-law nonlinea-
rities. (This approach is more general than the approaches indicated in [32–34].)

In addition, it was found that neural ODEs with power-law activation functions
can generate strange non-chaotic attractors (see Fig. 4.6).

4. Algorithms for approximating time series using antisymmetric neural ODE,
the architecture of which allows the possibility of modeling limit cycles or homo-
clinic orbits, have been developed (Algorithm 2 and its modifications associated
with modeling systems (4.9) and (7.5)).

5. Let g(Ax + b) := (g1(a11x1 + · · ·+a1nxn + b1), ..., gn(an1x1 + · · ·+annxn +
bn))T . Algorithm 2 can also be applied to simulate the following systems, which
generalize system (6.3):

ẋ(t) = f1(A1x + b1) + ...+ fk(Akx + bk) + h(Sx + c).

Here f1(x), . . . , fk(x),h(x) are power vector functions, and the components of
function h(x) are odd; deg h(x) > deg fi(x), i = 1, . . . , k (see Section 4); A1, . . . ,
Ak, S ∈ Rn×n, and the matrix S is the same as in (6.2); b1, . . . ,bk, c ∈ Rn. In
addition, the first block of the Jacobi matrix Wk in item 2.2 of Algorithm 2 must
be replaced with the following k blocks:

F11 ·G 0 . . . 0
0 F12 ·G . . . 0
...

...
. . .

...
0 0 . . . F1n ·G

∣∣∣∣∣∣∣∣∣ ...
∣∣∣∣∣∣∣∣∣
Fk1 ·G 0 . . . 0

0 Fk2 ·G . . . 0
...

...
. . .

...
0 0 . . . Fkn ·G

∣∣∣∣∣∣∣∣∣ ,
where the matrix G and matrices of derivatives Fi1, . . . , Fin; i = 1, . . . , k are
defined in items 1.3 and 2.1 of Algoritm 2.

6. The developed methods for adjusting the coefficients of antisymmetric
neural ODEs for solving the approximation problem make it possible to use
the obtained coefficients as initial weights for deep learning of recurrent neural
networks for which the mentioned neural ODEs were designed.

Indeed, let us replace the reconstructed neural ODE ẋ(t) = f(x) ∈ Rn with
its difference analogue xk+1 = xk + f(xk) ·∆t ∈ Rn, where k = 0, 1, . . . ,K <∞,
and K is the number of layers. Then, by adjusting the value of step ∆t > 0, we
can get RNN (∆t → 0), which adequately simulates the process under study for
some (∆t)∗ and K∗.
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FICTITIOUS CONTROLS AND APPROXIMATION OF
AN OPTIMAL CONTROL PROBLEM FOR

PERONA-MALIK EQUATION

Peter Kogut∗, Yaroslav Kohut†, Rosanna Manzo‡

Abstract. We discuss the existence of solutions to an optimal control problem for the
Cauchy-Neumann boundary value problem for the evolutionary Perona-Malik equations.
The control variable v is taken as a distributed control. The optimal control problem is
to minimize the discrepancy between a given distribution ud ∈ L2(Ω) and the current
system state. We deal with such case of non-linearity when we cannot expect to have
a solution of the original boundary value problem for each admissible control. Instead
of this we make use of a variant of its approximation using the model with fictitious
control in coefficients of the principle elliptic operator. We introduce a special family of
regularized optimization problems for linear parabolic equations and show that each of
these problems is consistent, well-posed, and their solutions allow to attain (in the limit)
an optimal solution of the original problem as the parameter of regularization tends to
zero.

Key words: Perona-Malik equation, optimal control problem, fictitious control, control
in coefficients, approximation approach..
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1. Introduction

Recently, in the context of time interpolation of satellite multi-spectral images,
the following model has been proposed (see [8])

ut − div (f (|∇u|)∇u) + (∇u, b) = v in Q = (0, T )× Ω, (1.1)
u(0, x) = u0(x) in Ω, (1.2)

∂νu(t, x) = 0 on Σ = (0, T )× ∂Ω, (1.3)

where Ω ⊂ R2 is a Lipschitz domain, b ∈ Bad and v ∈ Vad are the control
functions with

Bad =
{
b ∈ L∞(Q)2 ∩BV (Q)2 : ‖b‖L∞(Q)2 ≤ κ

}
, (1.4)

Vad =
{
v ∈ L2(0, T ;L2(Ω))

}
, (1.5)
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∂ν stands for the outward normal derivative, f ∈ C1,1(R+) is a non-increasing
real function such that f(s)→ 0 when s→ +∞ and f(s)→ 1 when s→ +0. In
particular,

f (|∇u|) =
1

1 + |∇u|2
. (1.6)

In fact, the Cauchy-Neumann problem (1.1)–(1.3) can be viewed as some
improvement of the Perona-Malik model [23] that was proposed in order to avoid
the blurring in images and to reduce the diffusivity at those locations which have
a larger likelihood to be edges. This likelihood is measured by |∇u|2.

However, the indicated problem is ill-posed due to the degenerate behavior
of the multiplayer f(|∇u|), f(|∇u|) −→ 0 as the gradient |∇u| tends to infinity.
So, equation (1.1) acts like a standard convection-diffusion equation inside the
regions where the magnitude of the gradient of u is weak, whereas at those points
where the magnitude of the gradient is large enough, the diffusion is ’stopped’.

Moreover, it can be shown that the equation (1.1), as an example of the
nonlinear equation of the porous medium type, combines forward-backforward
diffusion flow with the convection (or drift) of the function u in accordance
with the velocity field b. In particular, the operator div (f (|∇u|)∇u) implies
the forward diffusion in the regions where the squared gradient magnitude of the
function u is less than 1, whereas the backward diffusion appears in the area where
absolute values of the gradient are larger than 1.

Thus, the model (1.1) is an ill-posed problem from the mathematical point
of view and can produce many unexpected phenomena (see [13]). In particular,
we have no results of existence and consistency of the initial-boundary value
problem (1.1)–(1.3). To overcome this problem, many authors have been looking
for some regularizations of the equation (1.1) which inherit its usefulness in image
restoration but have better mathematical behavior (see, for instance, [1,3,7,14,15,
21] and the references therein). In order to guarantee the existence and uniqueness
of solution to the initial-boundary value problem (1.1)–(1.3), the authors in [8]
proposed to specify the equation (1.1) as follows

ut − div (K(t, x)∇u) + (∇u, b) = v in Q = (0, T )× Ω (1.7)

with K(t, x) = f (|∇Y ∗σ |), where ∇Y ∗σ = ∇Gσ ∗ Y ∗ is the spatially regularized
gradient of Y ∗, Gσ denotes the two-dimensional Gaussian filter kernel,

Gσ(x) =
1

2πσ2
e−
|x|2

2σ2 , x ∈ R2,

(∇Gσ ∗ Y ∗) (x) :=

ˆ
Ω
∇Gσ(x− y)Y ∗(y) dy, ∀x ∈ Ω,

and Y ∗ ∈ C([0, T ];L2(Ω)) is a special function which describes the simplest model
of image evolution over the interval [0, T ], and this function is defined as a solution
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of the following optimization problem
ˆ

Ω

[( ∂Y
∂t

∣∣∣∣
t=(T0+T1)/2

− div (f (|∇Yσ|)∇Y )|t=(T0+T1)/2

+
(
∇Y |t=(T0+T1)/2 , b

)
− v
)2]

dx

+

ˆ
Ω

[
λ2

1|∇v|2 + λ2
2

(
|∇b1|2 + |∇b2|2

)]
dx→ inf

v∈H1(Ω)

b∈H1(Ω;R2)

. (1.8)

However, it is well-known that the Perona–Malik model with the spatially
regularized gradient has several serious practical and theoretical difficulties. The
first one is that the spatial regularization of gradient in the form f (|∇Gσ ∗ u|)
leads to the loss of accuracy in the case when the signal is noisy, with white
noise, for instance [7]. Then the noise introduces very large, in theory unbounded,
oscillations of the gradient ∇u. As a result, the conditional smoothing introduced
by the model will not help, since all these noise edges will be kept.

The second drawback of the Perona–Malik model with the regularized gradient
(see also the model (1.7), (1.2), (1.3)) is the fact that the space-invariant Gaussian
smoothing inside the divergent term tends to push the edges in u away from their
original locations. We refer to [26] where this issue is studied in details. This
effect, known as edge dislocation, can be detrimental especially in the context of
the boundary detection problem and its application to the remote sensing and
monitoring.

In view of this, our prime interest in this paper is to study the equation (1.1)
and the corresponding PDE-constrained optimization problem without the space-
invariant Gaussian smoothing inside the divergent term. With that in mind we
consider the following optimal control problem

(R) Minimize J(v, u) =

ˆ
QT

∣∣∣∣D( 1

1 + |∇u|2

)∣∣∣∣
+

1

2

ˆ
Ω
|u(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u|2 dxdt+

γ

2

ˆ T

0

ˆ
ω
|v|2 dxdt (1.9)

subject to the constraints

ut − div
(

∇u
1 + |∇u|2

)
= vχω in QT := (0, T )× Ω, (1.10)

∂νu = 0 on (0, T )× ∂Ω, (1.11)
u(0, ·) = u0 in Ω, (1.12)

v ∈ Vad := L2(0, T ;L2(ω)), (1.13)

where T > 0, Ω is a bounded open subset of RN with a Lipschitz boundary,N ≥ 2,

ω is an open nonempty subset of Ω, χω =

{
1, x ∈ ω,
0, x ∈ Ω \ ω

}
is the characteristic
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function of the set ω, ∂ν stands for the outward normal derivative, u0, ud ∈ L2(Ω)
are given functions, λ, γ are given positive constants, and v : ω → R is a control.

Let us mention that control problems for the non-smoothed Perona-Malik
equation have received very little attention in the literature. Formulating the
control problem (1.9)–(1.13) for the nonlinear equation of the porous medium type
is mainly motivated by the observation that this statement can be successfully
applied to the image processing, in particular, to the reduction of mixture of
Gaussian and impulse noise with keeping safe the image contours and texture
(see, for instance, [2] and the references therein). On the other hand, the novelty
of this problem is that we involve into optimization the nonlinear equation with
rather special type (non-convex and non-coercive) of non-linearity. Because of this
the situation is even more delicate since (1.10) is not well-posed for the given type
of non-linearity.

As was mentioned before, the operator div (f (|∇u|)∇u) with a function f
given by (1.6) provides an example of a non-linear operator in divergence form
with a so-called degenerate nonlinearity. Moreover, since the function RN 3 s 7→
s

1+|s|2 ∈ RN is neither monotone nor coercive, we have no existence result for the
initial-boundary value problem (IBVP) (1.10)–(1.12) and its uniqueness. With
that in mind, we say that (v, u) is a feasible pair to the problem (1.9)–(1.13) if

v ∈ Vad := L2(0, T ;L2(ω)), u ∈ L2(0, T ;H1(Ω)), J(v, u) < +∞, (1.14)

and the following integral identity
ˆ T

0

ˆ
Ω

(
−u∂ϕ

∂t
+

(∇u,∇ϕ)

1 + |∇u|2

)
dxdt =

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx

(1.15)
holds for any function ϕ ∈ Φ, where

Φ =
{
ϕ ∈ C1(QT ) : ϕ(T, ·) = 0 in Ω and ∂νϕ = 0 on (0, T )× ∂Ω

}
.

In order to find out in what sense the solution takes the initial value u(0, ·) =
u0, we give the following result.

Proposition 1.1. Let (v, u) be a feasible pair to the problem (1.9)–(1.13). Then,

for any η ∈ C∞0 (Ω), the scalar function h(t) =

ˆ
Ω
u(t, x)η(x) dx belongs to

W 1,1(0, T ) and h(0) =

ˆ
Ω
u0(x)η(x) dx.

Proof. We set ϕ(t, x) = η(x)ζ(t) where ζ(·) is a smooth function on [0, T ] and
ζ(T ) = 0. Then it is clear that ϕ ∈ Φ and, therefore, the integral identity (1.15)
yields the equality
ˆ T

0

[
− h(t)ζ ′(t) +

(ˆ
Ω

(∇u,∇η)

1 + |∇u|2
dx−

ˆ
ω
ηv dx

)
︸ ︷︷ ︸

H(t)

ζ(t)

]
dt =

(ˆ
Ω
u0η dx

)
︸ ︷︷ ︸

k

ζ(0).

(1.16)
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Since h ∈ L1(0, T ) and H ∈ L1(0, T ), it follows from (1.16) that h ∈ W 1,1(0, T ),
i.e., the function h(t) is absolutely continuous on [0, T ]. Moreover, from (1.16) we
deduce that h(0) = k.

For further convenience we denote the set of all feasible solutions to the
problem (1.9)–(1.13) by Ξ. Because of the degenerate behavior of multiplier f(|∇u|),
the structure of the set Ξ and its main topological properties are unknown in
general.

The main focus in this paper consists in providing an approximation framework
which in spite of the technical difficulties leads to an implementable scheme,
namely, to the so-called indirect approach proving the existence of optimal solu-
tions and giving the procedure of their efficient approximation. With that in
mind, we show that the original optimal control problem (1.9)–(1.13) can be
approximated efficiently by a special family of optimal control problems for linear
parabolic equations with the fictitious BV -control in the principle part of elliptic
operator div (ρ∇u). In spite of the fact that the concept of fictitious controls is
not new in the literature, in this paper we utilize it in a new manner combining
it with the pointwise convergence of the gradients of solutions to some parabolic
equations.

The paper is organized as follows. In the next section, we give some prelimina-
ries and notions that will be needed in the sequel. Section 3 contains a few technical
results concerning the almost everywhere convergence of the gradients of solutions
to linear parabolic equations with BV -coefficients in the main part of the elliptic
operator. These results were obtained in the spirit of Bocardo and Murat approach
(see Theorems 4.1 and 4.3 in [6]). In Section 4 we give a precise statement of
the fictitious optimal control problems for linear parabolic equations with the
constrained BV -controls in the coefficients. We also discuss in this section the
existence issues for the proposed control problems. The announced approximation
framework is the subject of Section 5, where we provide an asymptotic analysis of
a family of approximated optimal control problems and show that some optimal
pairs to the original problem (1.9)–(1.13) can be attained (in an appropriate
topology) by optimal solutions to the approximated problems.

2. Preliminaries and Basic Definitions

We begin with some notation. For vectors ξ ∈ RN and η ∈ RN , (ξ, η) = ξtη
denotes the standard vector inner product in RN , where t denotes the transpose
operator. The norm |ξ| is the Euclidean norm given by |ξ| =

√
(ξ, ξ).

Let Ω be a given bounded open subset of RN (N ≥ 2) with a sufficiently
smooth boundary. We suppose that the unit outward normal ν = ν(x) is well-
defined for HN−1-a.a. x ∈ ∂Ω, where a.a. it means here with respect to the
(N − 1)-dimensional Hausdorff measure HN−1. For any subset D ⊂ Ω we denote
by |D| its N -dimensional Lebesgue measure LN (D). For a subset D ⊆ Ω let D
denote its closure and ∂D its boundary. We define the characteristic function χD
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of D by

χD(x) :=

{
1, for x ∈ D,
0, otherwise.

Let X denote a real Banach space with norm ‖ · ‖X , and let X ′ be its dual.
Let 〈·, ·〉X′;X be the duality form on X ′ ×X. By ⇀ and ∗

⇀ we denote the weak
and weak∗ convergence in normed spaces, respectively.

For given 1 ≤ p ≤ +∞, the space Lp(Ω;RN ) is defined by

Lp(Ω;RN ) =
{
f : Ω→ RN : ‖f‖Lp(Ω;RN ) < +∞

}
,

where ‖f‖Lp(Ω;RN ) =
(´

Ω|f(x)|p dx
)1/p for 1 ≤ p < +∞. The inner product of

two functions f and g in Lp(Ω;RN ) with p ∈ [1,∞) is given by

(f, g)Lp(Ω;RN ) =

ˆ
Ω

(f(x), g(x)) dx =

ˆ
Ω

N∑
k=1

fk(x)gk(x) dx.

We denote by C∞c (RN ) a locally convex space of all infinitely differentiable
functions with compact support. We recall here some functional spaces that will
be used throughout this paper. We define the Banach space H1(Ω) as the closure
of C∞c (RN ) with respect to the norm

‖y‖H1(Ω) =

(ˆ
Ω

(
y2 + |∇y|2

)
dx

)1/2

.

We denote by
(
H1(Ω)

)′ the dual space of H1(Ω). We also set H1(Ω; ∂Ω) ={
u ∈ H1(Ω) : ∂u

∂ν = 0
}
.

Let k > 0. In what follows, we will often use composition of functions in
Sobolev space H1(Ω) with the Lipschitz continuous function

Tk(s) = max {−k,min {s, k}} .

We recall the well-know result on Sobolev spaces about composition with regular
functions.

Theorem 2.1. Let G : R → R be a Lipschitz continuous function such that
G(0) = 0. If u belongs to H1(Ω), then G(u) belongs to H1(Ω) as well, and

∇G(u) = G′(u)∇u almost everywhere in Ω.

As a result, we have

∇Tk(u) = ∇uχD{|u| ≤ k} almost everywhere in Ω. (2.1)

Weak and Strong Convergence in L1(Ω). Throughout the paper we will often
use the concepts of the weak and strong convergence in L1(Ω). Hereinafter, ε
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denotes a small parameter which varies within a strictly decreasing sequence of
positive numbers converging to 0. When we write ε > 0, we consider only the
elements of this sequence, in the case ε ≥ 0 we also consider its limit ε = 0. Let
{aε}ε>0 be a sequence in L1(Ω). We recall that {aε}ε>0 is called equi-integrable
if for any δ > 0 there is τ = τ(δ) such that

´
S |aε| dx < δ for all aε and for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . A sufficient condition for
the sequence {aε}ε>0 to be equi-integrable is that there exists a constant C > 0
such that

sup
ε>0

ˆ
Ω
|aε|1+θ dx ≤ C (2.2)

for some θ > 0.

Theorem 2.2 (Dunford–Pettis). Let {aε}ε>0 be a sequence in L1(Ω). Then this
sequence is relatively compact with respect to the weak convergence in L1(Ω) if
and only if {aε}ε>0 is uniformly bounded in L1(Ω), i.e., supε>0 ‖uε‖L1(Ω) < +∞,
and {aε}ε>0 is equi-integrable.

Theorem 2.3 (Lebesgue–Vitali). If a sequence {aε}ε>0 ⊂ L1(Ω) is equi-integrable
and there exists a function a ∈ L1(Ω) such that aε(x) → a(x) almost everywhere
in Ω then aε → a in L1(Ω).

A typical application of VitaliвЂ™s theorem is provided by the next simple
lemma.

Lemma 2.1. Let {aε}ε>0 be a sequence in L1(Ω) such that aε(x)→ a(x) almost
everywhere in Ω, and this sequence is uniformly bounded in Lp(Ω) for some p > 1.
Then

aε → a in Lr(Ω) for all 1 ≤ r < p. (2.3)

The next lemma is useful in many applications.

Lemma 2.2. Let {aε}ε>0, {bε}ε>0, a, and b be a measurable functions such that

aε(x)→ a(x) a.e. in Ω, sup
ε>0
‖aε‖L∞(Ω) <∞, (2.4)

bε ⇀ b in L1(Ω). (2.5)

Then

ab ∈ L1(Ω) and aεbε ⇀ ab in L1(Ω). (2.6)

Functions with Bounded Variation. Let f : Ω → R be a function of L1(Ω).
Define
ˆ

Ω
|Df | = sup

{ˆ
Ω
f div ϕ dx :

ϕ = (ϕ1, . . . , ϕN ) ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
,
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where div ϕ =
∑N

i=1
∂ϕi
∂xi

. According to the Radon-Nikodym theorem, if
´

Ω|Df | <
+∞ then the distributionDf is a measure and there exist a vector-valued function
∇f ∈ [L1(Ω)]N and a measure Dsf , singular with respect to the N -dimensional
Lebesgue measure LNbΩ restricted to Ω, such that

Df = ∇fLNbΩ +Dsf.

Definition 2.1. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if
´

Ω|Df | < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation.

Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) +
´

Ω|Df |, BV (Ω) is a Banach space.
The following compactness result for BV -functions is well-known:

Proposition 2.1. The uniformly bounded sets inBV -norm are relatively compact
in L1(Ω).

Definition 2.2. A sequence {fk}∞k=1 ⊂ BV (Ω) weakly-∗ converges to some f ∈
BV (Ω), and we write fk

∗
⇀ f if and only if the two following conditions hold: fk →

f strongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in M(Ω;RN ), where M(Ω;RN )
stands for the space of all vector-valued Borel measures which is, according to
the Riesz theory, the dual of the space C(Ω;RN ) of all continuous vector-valued
functions ϕ vanishing at infinity.

In the proposition below we give a compactness result related to this conver-
gence, together with the lower semicontinuity property (see [4]):

Proposition 2.2. Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging to
some f in L1(Ω) and satisfying supk∈N

´
Ω|Dfk| < +∞. Then

(i) f ∈ BV (Ω) and
´

Ω|Df | ≤ lim infk→∞
´

Ω|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

The following embedding results forBV -function is useful in many applications
(see [5, p.378]).

Proposition 2.3. Let Ω be an open bounded subset of RN with a Lipschitz
boundary. Then the embedding BV (Ω) ↪→ L

N
N−1 (Ω) is continuous and the embed-

dings BV (Ω) ↪→ Lp(Ω) are compact for all p such that 1 ≤ p < N
N−1 . Moreover,

there exists a constant Cem > 0 which depends only on Ω and p such that for all
u in BV (Ω), (ˆ

Ω
|u|p dx

)1/p

≤ Cem‖u‖BV (Ω), ∀ p ∈
[
1,

N

N − 1

]
.
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3. Some Auxiliaries

In this section we give a few technical results that can be viewed as some
specification of the well-known results of Bocardo and Murat (see Theorems 4.1
and 4.3 in [6]).

Proposition 3.1. Let {uk}k∈N be a weakly convergent sequence in L2(0, T ;H1(Ω)),
and

uk ⇀ u weakly in L2(0, T ;H1(Ω)). (3.1)

Assume that
∂uk
∂t

= hk in D′((0, T )× Ω) ∀ k ∈ N, (3.2)

where {hk}k∈N is a bounded sequence in L2(0, T ;H−1(Ω)). Then

uk → u strongly in L2
loc(0, T ;L2

loc(Ω)). (3.3)

Proof. For arbitrary test functions ψ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ), we set

φ(t, x) = η(t)ψ(x), zk = φuk, αk = φhk +
∂φ

∂t
uk.

Then, in view of the dense embeddings H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω), we see that,
for any bounded open subset S such that supp (ψ) ⊂ S ⊂ Ω,

zk(t, ·) ∈ H1
0 (S) and

∂φ(t, ·)
∂t

uk(t, ·) ∈ H−1(S) a.e. t ∈ (0, T ),

∂zk
∂t

= αk in D′((0, T )× S), ∀ k ∈ N,

sup
k∈N
‖zk‖L2(0,T ;H1

0 (S)) ≤ C, sup
k∈N
‖αk‖L2(0,T ;H−1(S)) ≤ C with some C > 0. (3.4)

Moreover, all these functions have their support included in the same compact
subset of (0, T )× S.

Since the embeddings H1
0 (S) ↪→ L2(S) and L2(S) ↪→ H−1(S) are compact,

the brilliant Aubin’s Lemma (see [24, Section 8, Corollary 4]) and conditions
(3.4) ensure that the sequence {zk}k∈N is compact in L2(0, T ;L2(S)). This implies
(3.3).

Proposition 3.2. Let ε ∈ (0, 1) and K ∈ (0,∞) be given values. Assume that
the sequences

{uk}∞k=1 ⊂ L2(0, T ;H1(Ω)), {vk}∞k=1 ⊂ L2(0, T ;L2(Ω)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT )
(3.5)



Optimal Control Problem for the Perona-Malik Equation 51

are bounded and such that

uk ⇀ u weakly in L2(0, T ;H1(Ω)), (3.6)

vk ⇀ v weakly in L2(0, T ;L2(Ω)), (3.7)
ρk ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT , (3.8)

ρk ≥ ε a.e. in QT , ∀ k ∈ N, (3.9)
∂uk
∂t
− div (ρk∇uk) = vk in D′(QT ), ∀ k ∈ N. (3.10)

Then
∇TK(uk)→ ∇TK(u) strongly in L2

loc(0, T ;L2
loc(Ω))N , (3.11)

where TK : R→ R is the truncation at height K.

Proof. Let us denote the duality pairing between

L2(0, T ;H−1(Ω)) and L2(0, T ;H1
0 (Ω))

by < ·, · >QT . We also set SK(u) =

ˆ u

0
TK(s) ds. Then, using the trick with

approximation by convolution, it is easy to show that:

For any φ ∈ C∞0 (0, T ;C∞0 (Ω)) and any u ∈ L2(0, T ;H1(Ω))

with
∂u

∂t
∈ L2(0, T ;H−1(Ω)), we have〈∂u

∂t
, φTK(u)

〉
QT

= −
¨
QT

∂φ

∂t
SK(u) dxdt. (3.12)

With an arbitrary compact subset A ⊂ QT = (0, T )×Ω we associate a function
φA ∈ C∞0 (0, T ;C∞0 (Ω)) such that 0 ≤ φA(t, x) ≤ 1 in QT and φA(t, x) = 1 on A.
Then using in (3.10) the test function

zk = [TK(uk)− TK(u)]φA,

we obtain 〈∂uk
∂t

, φATK(uk)
〉
QT

by (3.12)
= −

¨
QT

∂φA
∂t

SK(uk) dxdt

and, therefore, (3.10) yields

−
¨
QT

∂φA
∂t

SK(uk) dxdt−
〈
∂uk
∂t

, φATK(u)

〉
QT

+

¨
QT

φAρk (∇uk,∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

[TK(uk)− TK(u)] ρk (∇uk,∇φA) dxdt

=

ˆ T

0
〈vk, [TK(uk)− TK(u)]φA〉H−1(Ω),H1

0 (Ω) dt. (3.13)
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As follows from the initial assumptions (3.5)–(3.8), the sequence {hk}k∈N with

hk = div (ρk∇uk) + vk

is bounded in L2(0, T ;H−1(Ω)). Then, Proposition 3.1 implies that, up to a
subsequence, the following assertion holds

TK(uk)− TK(u) ⇀ 0 weakly in L2(0, T ;H1(Ω)),

TK(uk)− TK(u)→ 0 strongly in L2
loc(QT ), and a.e. in QT . (3.14)

Therefore, the last term in (3.13) tends to zero as k →∞.
Moreover, using the fact that ρk(x) − ρ(x) → 0 a.e. in QT and the sequence

{(∇uk,∇φA)}k∈N is bounded in L2(QT ), we deduce that

¨
QT

[TK(uk)− TK(u)] ρk (∇uk,∇φA) dxdt→ 0 as k →∞.

Since

∂

∂t
SK(uk) = TK(uk)

∂uk
∂t

in D′((0, T )× Ω) ∀ k ∈ N,

it follows from Proposition 3.1 that SK(uk)→ SK(u) strongly in L2
loc(QT ), which

yields

lim
k→∞

¨
QT

∂φA
∂t

SK(uk) dxdt =

¨
QT

∂φA
∂t

SK(u) dxdt.

As for the second term in (3.13), we see that φATK(u) ∈ L2(0, T ;H1
0 (Ω)) and ∂uk

∂t
is a bounded term in L2(0, T ;H−1(Ω)). Hence,

〈
∂uk
∂t

, φATK(u)

〉
QT

→
〈
∂u

∂t
, φATK(u)

〉
QT

by (3.12)
=

¨
QT

∂φA
∂t

SK(u) dxdt

as k →∞.
Thus, we have shown that

lim
k→∞

¨
QT

φAρk (∇uk,∇TK(uk)−∇TK(u)) dxdt = 0. (3.15)
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Taking this fact into account, we observe that
¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇TK(uk)− ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt

=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

−
¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt

=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇uk,∇TK(uk)−∇TK(u)) dxdt

−
¨
QT

φA (ρk∇u,∇TK(uk)−∇TK(u))χΛk dxdt

−
¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt, (3.16)

where χΛK stands for the characteristic function of the set

Λk := {(t, x) ∈ QT : |uk(t, x)| > K} .

In view of (3.8), (3.14), and (3.15), we have:
¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt
by Lemma 2.2→ 0,

¨
QT

φA (ρk∇uk,∇TK(uk)−∇TK(u)) dxdt
by (3.15)→ 0,

¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt
by (3.14)→ 0.

As a result, it follows from (3.16) that

lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
= − lim

k→∞

¨
QT

φA (ρk∇u,∇TK(uk)−∇TK(u))χΛk dxdt.
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Utilizing the fact that χΛK∇TK(uk) = 0 almost everywhere in QT , we see that

lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
= lim

k→∞

¨
QT

φA (ρk∇u,∇TK(u))χΛk dxdt.

Moreover, in view of the weak convergence (3.6) and the Lebesgue dominated
Theorem, we have

φA∇TK(u)χΛk → 0 strongly in L2(QT )N .

Hence,

0 = lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt ≥ ε ‖TK(uk)−∇TK(u)‖2 ,

and we arrive at the announced convergence (3.11).

In fact, the main result of Proposition 3.2 can be specified as follows.

Theorem 3.1. Let ε ∈ (0, 1) be a given value and let

{uk}∞k=1 ⊂ L2(0, T ;H1(Ω)), {vk}∞k=1 ⊂ L2(0, T ;L2(Ω)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT )
(3.17)

be bounded sequences satisfying conditions (3.6)–(3.10). Then

∇uk → ∇u strongly in Lq(0, T ;Lq(Ω))N for any q ∈ [1, 2). (3.18)

Proof. We fix an arbitrary compact subset A ⊂ QT = (0, T ) × Ω and associate
with it a smooth function φA ∈ C∞0 (0, T ;C∞0 (Ω)) such that 0 ≤ φA(t, x) ≤ 1
in QT and φA(t, x) = 1 on A. In accordance with the initial assumptions, the
functions {vk}∞k=1 and v belong to the space L2(0, T ;H−1(Ω)). Hence,

∂u

∂t
∈ L2(0, T ;H−1(Ω)) and

∂uk
∂t
∈ L2(0, T ;H−1(Ω)), ∀ k ∈ N.

Therefore, in order to perform the usual integration by parts in the variational
equality (3.10), we can use for this TK(uk − u)φA as a test function. Taking into
account the representation (3.12) and using the fact that

∂ (uk − u)

∂t
− div (ρk∇uk − ρ∇u) = vk − v in D′(QT ), ∀ k ∈ N,

we obtain

−
¨
QT

∂φA
∂t

SK(uk − u) dxdt+

¨
QT

φA (ρk∇uk − ρ∇u,∇TK(uk − u)) dxdt

+

¨
QT

[TK(uk − u)] (ρk∇uk − ρ∇u,∇φA) dxdt

=

ˆ T

0
〈vk − v, [TK(uk − u)]φA〉H−1(Ω),H1

0 (Ω) dt. (3.19)
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Due to Proposition 3.1, we have

TK(uk − u) ⇀ 0 weakly in L2(0, T ;H1(Ω)), (3.20)

TK(uk − u)→ 0 strongly in L2
loc(QT ), and a.e. in QT , (3.21)

SK(uk − u)→ 0 strongly in L2
loc(QT ). (3.22)

Then, in view of (3.7), the first and last terms in (3.19) tend to zero as k → ∞.
Moreover, using the fact that {ρk}∞k=1 ⊂ L∞(QT ), ρk(x) − ρ(x) → 0 a.e. in QT ,
and the sequence {(∇uk −∇u,∇φA)}k∈N is bounded in L2(QT ), by the Lebesgue
dominated theorem we deduce that¨

QT

[
TK(uk − u)

]
(ρk∇uk − ρ∇u,∇φA) dxdt

=

¨
QT

[TK(uk − u)] ρk (∇uk −∇u,∇φA) dxdt

+

¨
QT

[TK(uk − u)] (ρk − ρ) (∇u,∇φA) dxdt→ 0 as k →∞. (3.23)

Thus, passing to the limit in (3.19) when k tends to infinity, we obtain

lim
k→∞

¨
QT

φA (ρk∇uk − ρ∇u,∇TK(uk − u)) dxdt

= lim
k→∞

¨
QT

φAρ (∇uk −∇u,∇TK(uk − u)) dxdt

+ lim
k→∞

¨
QT

φA(ρk − ρ) (∇uk,∇TK(uk − u)) dxdt

= lim
k→∞

¨
QT

φAρ (∇(uk − u),∇TK(uk − u)) dxdt = 0, (3.24)

where
lim
k→∞

¨
QT

φA(ρk − ρ) (∇uk,∇TK(uk − u)) dxdt = 0

by Lemma 2.2. Setting

Ek := φAρ|∇(uk − u)|2 in QT

and splitting the set A onto

BK
k = {(t, x) ∈ A : |uk(t, x)− u(t, x)| ≤ K} ,

GKk = {(t, x) ∈ A : |uk(t, x)− u(t, x)| > K} ,

we see that¨
A
Eθk dxdt =

¨
BKk

Eθk dxdt+

¨
GKk

Eθk dxdt

≤

(¨
BKk

Ek dxdt

)θ
|BK

k |1−θ +

(¨
GKk

Ek dxdt

)θ
|GKk |1−θ
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by Hólder inequality with some θ ∈ (0, 1). Since, for K fixed, we have |GKk | → 0 as
k →∞, and since the sequence {ρ∇(uk − u)}∞k=1 is bounded in L2(0, T ;L2(Ω)N ),
it follows that supk∈N ‖Ek‖L1(QT ) <∞, and, therefore,

lim
k→∞

(¨
GKk

Ek dxdt

)θ
|GKk |1−θ = 0.

Hence,

0 ≤ lim
k→∞

¨
A
Eθk dxdt

≤ lim
k→∞

(¨
BKk

Ek dxdt

)θ
|BK

k |1−θ


=

(
lim
k→∞

¨
QT

φAρ (∇(uk − u),∇TK(uk − u)) dxdt

)θ
× lim
k→∞
|BK

k |1−θ
by (3.24)

= 0. (3.25)

As a result, we deduce from (3.25) that Eθk → 0 strongly in L1(A). So, using a
sequence of compact sets A ⊂ QT , there exists a subsequence of {Ek}k∈N such
that

Ekn(t, x)→ 0 for almost each (t, x) ∈ QT .

Then the estimate (3.9) implies that

∇ukn(t, x)→ ∇u(t, x) for almost each (t, x) ∈ QT as n→∞.

To conclude the proof, it remains to notice that since the sequence {∇uk}∞k=1

is bounded in the space L2(0, T ;L2(Ω)N ), it follows from Vitaly’s theorem (see
Lemma 2.1) that

∇uk → ∇u strongly in Lq(QT ).

4. Regularization of the Original Optimal Control Problem

We introduce the following family of approximating control problems

(Rε) Minimize Jε(ρ, v, u) =
1

2

ˆ
Ω
|u(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|v|2 dxdt+

ˆ
QT

|Dρ|+ 1

ε

ˆ T

0

ˆ
Ω
|ρ− 1

1 + |∇u|2
|2 dxdt (4.1)
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subject to the constraints

ut − div (ρ∇u) = vχω in QT := (0, T )× Ω, (4.2)
∂u

∂ν
= 0 on (0, T )× ∂Ω, (4.3)

u(0, ·) = u0 in Ω, (4.4)

v ∈ Vad := L2(0, T ;L2(ω)), (4.5)
ρ ∈ Rad := {h ∈ BV (QT ) ∩ L∞(QT ) : 0 ≤ h(t, x) ≤ 1 a.e. in QT } . (4.6)

We say that a tuple (ρ, v, u) is a feasible solution to the problem (4.1)–(4.6) if

ρ ∈ Rad, v ∈ Vad, u ∈ L2(0, T ;H1(Ω)), (4.7)

ρ(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇u(t, x)|2

}
a.e. in QT , (4.8)

and this triplet satisfies the following integral identity

ˆ T

0

ˆ
Ω

(−ϕtu+ ρ (∇u,∇ϕ)) dxdt =

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx (4.9)

for each ϕ ∈ Ψ, where

Ψ =
{
ϕ ∈ C1(QT ) : ϕ(T, ·) = 0 in Ω and ∂νϕ = 0 on (0, T )× ∂Ω

}
.

The set of all feasible solution is denoted by Ξε.

Remark 4.1. Let us show that Ξε 6= ∅ for each ε > 0. Indeed, taking z = e−αtu,
we obtain the following IBVP for z:

zt + αz − div Â = e−αtvχω, z
∣∣∣
i=0

= u0, (4.10)

where the vector function Â = ρeαt∇z possesses the following monotonicity,
coercivity, and boundedness conditions(

Â(t, x, ξ)− Â(t, x, η), ξ − η
)
≥ 0,

(
Â(t, x, ξ), ξ

)
≥ ε2

1 + ε2
|ξ|2,

(
Â(t, x, ξ), ξ

)
≤ eαT |ξ|2,

and the operator Bz = αz − div Â is coercive in the space L2(0, T ;H1(Ω)), i.e.

〈Bz, z〉L2(0,T ;(H1(Ω))∗);L2(0,T ;H1(Ω)) ≥ α‖z‖
2
L2(QT ) +

ε2

1 + ε2
‖∇z‖2L2(QT ;RN )

≥ c0‖z‖2L2(0,T ;H1(Ω)).

Hence, the problem (4.10) has a unique solution for each v ∈ Vad [20]. As for the
original IBVP, the same result follows by multiplying of z by eαt. Moreover, in
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this case the integral identity (4.9) holds for any function ϕ ∈ Ψ and the energy
equality

ˆ
Ω
u2(t, x) dx+ 2

ˆ t

0

ˆ
Ω
ρ|∇u|2 dxdt

= 2

ˆ t

0

ˆ
ω
vu dxdt+

ˆ
Ω
u2

0 dx, 0 ≤ t ≤ T, (4.11)

is valid.

Our next step deals with the study of topological properties of the set of
feasible solutions Ξε to the problem (4.1)–(4.6).

Definition 4.1. A sequence {(ρk, vk, uk) ∈ Ξε}k∈N is called bounded if

sup
k∈N

[
‖ρk‖BV (QT ) + ‖vk‖L2(0,T ;L2(ω)) + ‖uk‖L2(0,T ;H1(Ω))

]
< +∞.

Definition 4.2. We say that a bounded sequence {(ρk, vk, uk) ∈ Ξε}k∈N of feasible
solutions τ -converges to a triplet

(ρ, v, u) ∈ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

if conditions

uk ⇀ u weakly in L2(0, T ;H1(Ω)), (4.12)

vk ⇀ v weakly in L2(0, T ;L2(ω)), (4.13)
ρk ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT (4.14)

hold true.

Remark 4.2. As follows from Theorem 3.1, if {(ρk, vk, uk) ∈ Ξε}k∈N is a τ -conver-
gent sequence of feasible solutions and (ρk, vk, uk)

τ→ (ρ, v, u), then ∇uk → ∇u
strongly in Lq(0, T ;Lq(Ω))N for any q ∈ [1, 2) and, passing to a subsequence if
necessary, we can assert that ∇uk(t, x)→ ∇u(t, x) a.e. in QT = (0, T )× Ω.

Remark 4.3. As immediately follows from (4.9), if (ρ, v, u) is a feasible solution
to the problem (4.1)–(4.6), then the equality

∂uk
∂t
− div (ρk∇uk) = χωvk in D′(QT )

holds in the sense of distributions for each k ∈ N. Moreover, if a sequence
{(ρk, vk, uk) ∈ Ξε}k∈N is bounded in the sense of Definition 4.1, then div (ρk∇uk)+
χωvk ∈ L2(0, T ;H−1(Ω)). Therefore, uk ∈ C([0, T ];L2(Ω)) for all k ∈ N (see [25,
Proposition III.1.2]) and due to J.L. Lions [22, Chapitre 1, Theorem 5.1] (we refer
also to [24] for some generalizations), the Banach space

W =

{
ϕ : ϕ ∈ L2(0, T ;H1(Ω)),

∂ϕ

∂t
∈ L2(0, T ;H−1(Ω))

}
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with the norm of the graph

‖ϕ‖W = ‖ϕ‖L2(0,T ;H1(Ω)) +

∥∥∥∥∂ϕ∂t
∥∥∥∥
L2(0,T ;H−1(Ω))

,

is compactly embedded into L2(0, T ;L2(Ω)).
Thus, the first term in the objective functional (4.1) is well defined onto the

set of feasible solutions. So, if {uk}k∈N is a bounded sequence in W and uk ⇀ u
weakly in L2(0, T ;H1(Ω)), then uk → u strongly in L2(0, T ;L2(Ω)) and, as a
consequence, uk(T, ·)→ u(T, ·) strongly in L2(Ω).

Before proceeding further, we establish the following important property.

Proposition 4.1. For every ε ∈ (0, 1) the set Ξε is sequentially closed with
respect to the τ -convergence.

Proof. Let {(ρk, vk, uk)}k∈N ⊂ Ξε be a τ -convergent sequence of feasible solutions
to the optimal control problem (4.1)–(4.6). Let (ρ, v, u) be its τ -limit. Our aim is
to show that (ρ, v, u) ∈ Ξε.

Since the inclusions χωv ∈ Vad := L2(0, T ;L2(Ω)) and u ∈ L2(0, T ;H1(Ω))
are obvious, let us show that the condition (3.9) is valid for some ε > 0. Indeed,
in view of Remark 4.2, we can suppose that, up to a subsequence,

uk(t, x)→ u(t, x) and
1

1 + |∇uk(t, x)|2
→ 1

1 + |∇u(t, x)|2
a.e. in QT .

Hence, in view of the definition of τ -convergence, the limit passage in the relation

ρk(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uk(t, x)|2

}
a.e. in QT

immediately leads us to the inequality (3.9) with ε̂ = ε2

1+ε2
. As for the inclusion

ρ ∈ Rad, it is a direct consequence of the weak-∗ compactness of bounded set Rad

in BV (QT ).
It remains to show that the limit triplet (ρ, v, u) is related by the integral

identity (4.9). To do so, it is enough to fix an arbitrary test function ϕ ∈ Ψ and
pass to the limit in relation

ˆ T

0

ˆ
Ω

(−ϕtuk + ρk (∇uk,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vkϕdxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx. (4.15)

Since ρk∇uk → ρ∇u strongly in Lq(QT ) for q ∈ [1, 2) by Lemma 2.1, it follows
that the limit passage in (4.15) leads to the integral identity (4.9). Thus, (ρ, v, u)
is a feasible solution to optimal control problem (4.1)–(4.6).
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We are now in a position to state the existence of optimal solutions to the
problem (4.1)–(4.6).

Theorem 4.1. Let ud ∈ L∞(Ω) be a given function, and let λ and γ be given
constants. Then, for each ε ∈ (0, 1), the optimal control problem (4.1)–(4.6) admits
at least one solution (ρ0

ε, v
0
ε , u

0
ε) ∈ Ξε.

Proof. Let ε ∈ (0, 1) be a fixed value. Then, as it was indicated in Remark 4.1,
the optimal control problem (4.1)–(4.6) is consistent, that is, Ξε 6= ∅.

Let {(ρk, vk, uk) ∈ Ξε}k∈N be a minimizing sequence to the problem (4.1)–
(4.6). Then the relation

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = lim
k→∞

[1

2

ˆ
Ω
|uk(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇uk|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|vk|2 dxdt +

ˆ
QT

|Dρk|+
1

ε

ˆ T

0

ˆ
Ω
|ρk −

1

1 + |∇uk|2
|2 dxdt

]
< +∞

and definition of the set Rad imply existence of a constant C > 0 such that

sup
k∈N
‖∇uk‖L2(0,T ;L2(Ω)N ) ≤ C,

sup
k∈N
‖vk‖L2(0,T ;L2(ω)) ≤ C,

and sup
k∈N
‖ρk‖BV (QT ) ≤ C.

(4.16)

Then, from the energy equality (4.11), we deduce that
ˆ T

0

ˆ
Ω
u2
k(t, x) dxdt ≤ 2T

ˆ T

0

ˆ
ω
vkuk dxdt+ T

ˆ
Ω
u2

0 dx

≤ 2T 2

ˆ T

0

ˆ
ω
v2
k dxdt+

1

2

ˆ T

0

ˆ
Ω
u2
k dxdt+ T

ˆ
Ω
u2

0 dx.

Hence,
sup
k∈N
‖uk‖L2(0,T ;L2(Ω)) ≤ 4T 2C2 + 2T‖u0‖2L2(Ω).

Utilizing this fact together with (4.16), we see that {(ρk, vk, uk) ∈ Ξε}k∈N is a
bounded sequence in the sense of Definition 4.1. As a result, there exist functions
ρ0
ε ∈ BV (QT ), v0

ε ∈ L2(0, T ;L2(ω)), and u0
ε ∈ L2(0, T ;H1(Ω)) such that, up to a

subsequence, (ρk, vk, uk)
τ→ (ρ0

ε, v
0
ε , u

0
ε) as k →∞. Since the set Ξε is sequentially

closed with respect to the τ -convergence (see Proposition 4.1), it follows that the
τ -limit tuple (ρ0

ε, v
0
ε , u

0
ε) is a feasible solution to optimal control problem (4.1)–

(4.6) (i.e., (ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε). To conclude the proof, we observe that ∇uk(t, x)→

∇u0
ε(t, x) a.e. in QT (see Remark 4.2) and, therefore,

ρk(t, x)− 1

1 + |∇uk(t, x)|2
→ ρ0

ε(t, x)− 1

1 + |∇u0
ε(t, x)|2

a.e. in QT .
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Since ∥∥∥∥ρk − 1

1 + |∇uk|2

∥∥∥∥
L∞(QT )

≤ 2 for all k ∈ N,

it follows that the sequence
{
ρk −

1

1 + |∇uk|2

}
k∈N

is equi-integrable. Hence,

Vitaly’s theorem implies that

ρk −
1

1 + |∇uk|2
→ ρ0

ε −
1

1 + |∇u0
ε|2

strongly in L2(QT ) (4.17)

(see Lemma 2.1). Taking this fact into account and observing that

lim inf
k→∞

ˆ T

0

ˆ
Ω
|ρk −

1

1 + |∇uk|2
|2 dxdt by (4.17)

=

ˆ T

0

ˆ
Ω
|ρ0
ε −

1

1 + |∇u0
ε|2
|2 dxdt,

lim
k→∞

ˆ
Ω
|uk(T )− ud|2 dx

by Remark (4.3)
≥

ˆ
Ω
|u0
ε(T )− ud|2 dx,

lim
k→∞

ˆ T

0

ˆ
Ω
|∇uk|2 dxdt

by (4.12)
=

ˆ T

0

ˆ
Ω
|∇u0

ε|2 dxdt,

lim inf
k→∞

ˆ T

0

ˆ
ω
|vk|2 dxdt

by (4.13)
≥

ˆ T

0

ˆ
Ω
|v0
ε |2 dxdt,

lim inf
k→∞

ˆ
QT

|Dρk|
by (4.14)
≥

ˆ
QT

|Dρ0
ε|,

we see that the cost functional Jε is sequentially lower τ -semicontinuous. Thus

Jε(ρ
0
ε, v

0
ε , u

0
ε) ≤ lim inf

k→∞
Jε(ρk, vk, uk) ≤ lim

k→∞
Jε(ρk, vk, uk) = inf

(ρ,v,u)∈Ξε
Jε(ρ, v, u),

and, therefore, (ρ0
ε, v

0
ε , u

0
ε) is an optimal triplet.

5. Asymptotic Analysis of the Approximated OCP (Rε)

The main goal of this section is to show that the original OCP (R) is solvable
and some solutions can be attained (in an appropriate topology) by optimal
solutions to the approximated problems (Rε). With that in mind, we make use
of the concept of variational convergence of constrained minimization problems
(see [9, 17, 18]) and study the asymptotic behavior of a family of OCPs (Rε) as
ε→ 0.

Before proceeding further, we adopt the following concept.

Definition 5.1. Let

{(ρε, vε, uε)}ε>0 ⊂ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

be an arbitrary sequence. We say that this sequence is bounded if

sup
ε>0

[
‖ρε‖BV (QT ) + ‖vε‖L2(0,T ;L2(ω)) + ‖uε‖L2(0,T ;H1(Ω))

]
< +∞.
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Definition 5.2. We say that a bounded sequence

{(ρε, vε, uε)}ε>0 ⊂ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

is w-convergent as ε → 0 and (ρε, vε, uε)
w→ (ρ, v, u) if (ρε, vε, uε)

τ→ (ρ, v, u) as
ε→ 0, i.e.,

uε ⇀ u weakly in L2(0, T ;H1(Ω)), (5.1)

vε ⇀ v weakly in L2(0, T ;L2(ω)), (5.2)
ρε ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT ; (5.3)

and ∇uε → ∇u strongly in L1(0, T ;L1(Ω)N ).

The following technical result will play a significant role in the sequel.

Lemma 5.1. Let {(ρε, vε, uε) ∈ Ξε}ε>0 be a τ -convergent sequence of feasible
solutions to OCPs (4.1)–(4.6), and let

(ρ, v, u) ∈ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

be its τ -limit. Then (ρε, vε, uε)
w→ (ρ, v, u) as ε → 0, and (ρ, v, u) is subjected to

the constrains

ρ ∈ Rad, v ∈ Vad, u ∈ L2(0, T ;H1(Ω)), (5.4)

ρ(t, x) ≥ 1

1 + |∇u(t, x)|2
a.e. in QT , (5.5)

ˆ T

0

ˆ
Ω

(−ϕtu+ ρ (∇u,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx, ∀ϕ ∈ Ψ. (5.6)

Proof. Since {(ρε, vε, uε) ∈ Ξε}ε>0 is a sequence of feasible solutions, it implies
that the equality

ˆ T

0

ˆ
Ω

(−ϕtuε + ρε (∇uε,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vεϕdxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx, ∀ϕ ∈ Ψ (5.7)

holds true for all ε > 0. Then the limit passage in (5.7) leads to the relation (5.6).
Setting in this relation the test function ϕ as an element of C∞c (QT ) ⊂ Ψ, we see
that the τ -limit (ρ, v, u) satisfies the equation

∂u

∂t
− div (ρ∇u) = χωv
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in the sense of distributions D′(QT ). So, in view of Remark 4.3, we can suppose
that, for each ε > 0, we have the equalities

∂ (uε − u)

∂t
− div (ρk∇uε − ρ∇u) = (vε − v)χω in D′(QT ). (5.8)

Therefore, arguing as in the proof of Theorem 3.1, we use for (5.8) the test
function TK(uε − u)φA, where A is a compact subset of QT , and the function
φA ∈ C∞0 (0, T ;C∞0 (Ω)) is such that 0 ≤ φA(t, x) ≤ 1 in QT and φA(t, x) = 1 on
A. After integration by parts, we obtain

¨
QT

φAρε (∇uε −∇u,∇TK(uε − u)) dxdt =

¨
QT

∂φA
∂t

SK(uε − u) dxdt

−
¨
QT

φA(ρε − ρ) (∇u,∇TK(uε − u)) dxdt

−
¨
QT

φAρ (∇uε −∇u,∇TK(uε − u)) dxdt

−
¨
QT

φA(ρε − ρ) (∇uε,∇TK(uε − u)) dxdt

+

ˆ T

0
〈(vε − v)χω, [TK(uε − u)]φA〉H−1(Ω),H1

0 (Ω) dt. (5.9)

Since, by Proposition 3.1,

TK(uε − u) ⇀ 0 weakly in L2(0, T ;H1(Ω)), strongly in L2
loc(QT ), and a.e. in QT ,

SK(uε − u)→ 0 strongly in L2
loc(QT ) as ε→ 0,

it follows from (5.1)–(5.3) and the Lebesgue dominated theorem that the right
hand side of (5.9) tends to zero as ε→ 0. Hence, passing to the limit in (5.9), we
deduce:

lim
ε→0

¨
QT

φAρε (∇uε −∇u,∇TK(uε − u)) dxdt = 0. (5.10)

Setting
Eε := φAρε|∇(uε − u)|2 in QT

and aligning the set A into

Bε = {(t, x) ∈ A : |uε(t, x)− u(t, x)| ≤ K} ,
Gε = {(t, x) ∈ A : |uε(t, x)− u(t, x)| > K} ,

we see that
¨
A
Eθε dxdt ≤

(¨
Bε

Eε dxdt

)θ
|Bε|1−θ +

(¨
Gε

Eε dxdt

)θ
|Gε|1−θ
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by Hölder inequality with some θ ∈ (0, 1). Since, for K fixed, we have |Gε| → 0
as ε→ 0, and the sequence {ρε∇(uε − u)}ε>0 is bounded in L2(0, T ;L2(Ω)N ), it
follows that supε>0 ‖Eε‖L1(QT ) <∞, and, therefore,

lim
ε→0

(¨
Gε

Eε dxdt

)θ
|Gε|1−θ = 0.

Hence,

0 ≤ lim
ε→0

¨
A
Eθε dxdt

≤ lim
ε→0

[(¨
Bε

Eε dxdt

)θ
|Bε|1−θ

]

=

(
lim
ε→0

¨
QT

φAρ (∇(uε − u),∇TK(uε − u)) dxdt

)θ
lim
ε→0
|Bε|1−θ

by (3.24)
= 0. (5.11)

As a result, we deduce from (5.11) that Eθε → 0 strongly in L1(A). So, using a
sequence of compact sets A ⊂ QT converging in an appropriate sense to QT , there
exists a subsequence of {Eε}ε>0 (still denoted by the same index) such that

Eε(t, x)→ 0 for almost each (t, x) ∈ QT as ε→ 0.

Thus,

ρε(t, x) |∇uε(t, x)−∇u(t, x)|2 → 0 for a.e. (t, x) ∈ QT as εn → 0. (5.12)

Utilizing the fact that (ρε, vε, uε) ∈ Ξε for each ε > 0 and observing that
ε2

1 + ε2
→ 0 as ε→ 0, we see that

ρε(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uε(t, x)|2

}
≥ 1

1 + |∇uε(t, x)|2
a.e. in QT (5.13)

for ε > 0 small enough. Hence, from (5.13) and (5.11) we deduce:

0 ≤ lim
ε→0

¨
QT

1

1 + |∇uε|2
|∇uε −∇u|2 dxdt

≤ lim
ε→0

¨
QT

ρε |∇uε −∇u|2 dxdt = 0. (5.14)
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Since

‖∇uε −∇u‖2L1(0,T ;L1(Ω)N ) =

(ˆ T

0

ˆ
Ω
|∇uε −∇u| dxdt

)2

≤

(ˆ T

0

(ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dx

)1/2(ˆ
Ω

(
1 + |∇uε(x)|2

)
dx

)1/2

dt

)2

≤
ˆ T

0

ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dxdt

ˆ T

0

ˆ
Ω

(
1 + |∇uε(x)|2

)
dx dt

≤
(
|QT |+ sup

ε>0
‖uε‖2L2(0,T ;H1(Ω))

)ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dx,

it follows from (5.14) that

lim
ε→0
‖∇uε −∇u‖2L1(0,T ;L1(Ω)N )

≤ C lim
ε→0

¨
QT

1

1 + |∇uε|2
|∇uε −∇u|2 dxdt = 0. (5.15)

Thus, we can specify the τ -convergence properties (5.1)–(5.3) as follows: in addition
to (5.1) ∇uε → ∇u strongly in L1(0, T ;L1(Ω)N ), and there exists a subsequence
{ε′} such that

∇uε′(t, x)→ ∇u(t, x) a.e. in QT . (5.16)

To conclude the proof, it remains to show that

ρ(t, x) ≥ 1

1 + |∇u(t, x)|2
a.e. in QT . (5.17)

To do so, it is enough to observe that

ρε(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uε(t, x)|2

}
≥ 1

1 + |∇uε(t, x)|2
a.e. in QT (5.18)

for ε > 0 small enough. Using the pointwise convergence (5.16) and (5.3) and
passing to the limit in (5.18) as ε → 0, we arrive to the announced property
(5.5).

Our next step is to discuss the issue related to the existence of solutions to the
original optimal control problem (1.9)–(1.13) and their attainability by optimal
solutions of the approximated problems (Rε). Before we go on, we assume that
the set of feasible solution Ξ to the problem (1.9)–(1.13) is non-empty. In the case
when the initial state u0 is sufficiently smooth and supp (u0) ⊂ ω, this assumption
can be easily verified. Indeed, let ϕ ∈ C∞([0, T ];C∞c (ω)) be an arbitrary function
such that ϕ(0, x) = u0(x) in Ω. Then it is easy to check that the pair

(v, u) :=

([
ϕt − div

(
∇ϕ

1 + |∇ϕ|2

)]⌊
x∈ω

, ϕ

)
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belongs to the set Ξ. Thus, Ξ 6= ∅.
We begin with the following result that can be viewed as a direct consequence

of Lemma 5.1 and Theorem 4.1.

Proposition 5.1. Let ud ∈ L∞(Ω) be a given function, and λ and γ be given
constants. Let

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a bounded sequence of optimal solutions
to the approximated problems (4.1)–(4.6) when the small parameter ε varies
within a strictly decreasing sequence of positive numbers converging to zero. Then
there is a subsequence of

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

, still denoted by the suffix ε, and
distributions ρ0 ∈ Rad ⊂ BV (QT ), v0 ∈ Vad, and u0 ∈ L2(0, T ;H1(Ω)) such that
they satisfy conditions (5.5)–(5.6), and (ρ0

ε, v
0
ε , u

0
ε)

w→ (ρ0, v0, u0) as ε→ 0.

The key point in Proposition 5.1 is the assumption that a given sequence of
optimal solutions to the approximated problems (4.1)–(4.6) is bounded. Let us
show that this assumption can be omitted if only the original optimal control
problem is consistent, i.e. Ξ 6= ∅.

Proposition 5.2. Assume that Ξ 6= ∅. Let
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a sequence
of optimal solutions to the approximated problems (4.1)–(4.6). Then there exists
a constant C > 0 independent of ε > 0 such that

sup
ε>0

[
‖ρ0

ε‖BV (QT ) + ‖v0
ε‖L2(0,T ;L2(ω)) + ‖u0

ε‖L2(0,T ;H1(Ω))

]
≤ C. (5.19)

Proof. Let (v̂, û) ∈ Ξ be a feasible solution to optimal control problem (1.9)–
(1.13). Hence, this pair satisfies conditions (1.14)–(1.15). Setting ρ̂ := (1+|∇û|2)−1

in QT , we see that

0 ≤ ρ̂(t, x) ≤ 1 a.e. in QT and ρ̂ ∈ BV (QT ) ∩ L∞(QT ),

and the pair (ρ̂, û) satisfies inequalities (4.8) for ε > 0 small enough. Hence,
ρ̂ ∈ Rad and, as a consequence, we deduce: (ρ̂, v̂, û) ∈ Ξε for ε > 0 small enough.
Therefore,

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = Jε(ρ
0
ε, v

0
ε , u

0
ε) ≤ Jε (ρ̂, v̂, û)

=
1

2

ˆ
Ω
|û(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇û|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|v̂|2 dxdt+

ˆ
QT

|Dρ̂| = C < +∞.

From this and definition of the set Rad, we deduce that

‖∇u0
ε‖2L2(0,T ;L2(Ω)N ) ≤

2

λ
C, ‖v0

ε‖2L2(0,T ;L2(Ω)) ≤
2

γ
C, (5.20)

ˆ
QT

∣∣Dρ0
ε

∣∣ ≤ C, ‖ρ0
ε‖BV (Ω) ≤ |QT |+ C, (5.21)

ˆ T

0

ˆ
Ω

∣∣∣∣ρ0
ε −

1

1 + |∇u0
ε|2

∣∣∣∣2 dxdt ≤ Cε (5.22)
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for all ε > 0 small enough. Then energy equality (4.11) implies that

ˆ T

0

ˆ
Ω

[
u0
ε

]2
dxdt ≤ 2T

ˆ T

0

ˆ
ω
v0
εu

0
ε dxdt+ T

ˆ
Ω
u2

0 dx

≤ 2T 2

ˆ T

0

ˆ
ω

[
v0
ε

]2
dxdt+

1

2

ˆ T

0

ˆ
Ω

[
u0
ε

]2
dxdt+ T

ˆ
Ω
u2

0 dx.

Therefore,

sup
ε>0
‖u0

ε‖L2(0,T ;L2(Ω)) ≤ 8T 2C

γ
+ 2T‖u0‖2L2(Ω). (5.23)

Thus, the sequence
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

is bounded in

BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω)).

The next step of our analysis is to show that the pair (v0, u0) is optimal to
the original OCP (R) provided (ρ0, v0, u0) is a cluster tuple of a given sequence of
optimal solutions

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

. To do so, we will utilize some hints from
the recent papers [10, 16] where the so-called indirect approach to the existence
problem of optimal solutions has been proposed.

Theorem 5.1. Assume that Ξ 6= ∅. Let
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a sequence
of optimal solutions to the approximated problems (4.1)–(4.6). Let (ρ0, v0, u0) ∈
BV (QT )×L2(0, T ;L2(ω))×L2(0, T ;H1(Ω)) be a w-cluster tuple (in the sense of
Definition 5.2) of a given sequence of optimal solutions Then

(v0, u0) ∈ Ξ, ρ0(t, x) =
1

1 + |∇u0(t, x)|2
a.e. in QT , (5.24)

lim
ε→0

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = lim
ε→0

Jε(ρ
0
ε, v

0
ε , u

0
ε) = J(v0, u0) = inf

(v,u)∈Ξ
J(v, u). (5.25)

Proof. Arguing as in the proof of Proposition 5.2, it can be shown that there exists
a constant C > 0 such that estimates (5.20)–(5.23) hold true. Hence, the sequence{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

is compact with respect to the τ -convergence. Moreover, in
view of Proposition 5.1 and the Lebesgue Dominated Theorem, we can suppose
that, up to a subsequence,

(ρ0
ε, v

0
ε , u

0
ε)

w→ (ρ0, v0, u0) (5.26)
1

1 + |∇u0
ε|2
→ 1

1 + |∇u0|2
strongly in L2(QT ) as ε→ 0, (5.27)

ρ0
ε(t, x)− 1

1 + |∇u0
ε(t, x)|2

→ ρ0(t, x)− 1

1 + |∇u0(t, x)|2
a.e. in QT , (5.28)

and
(
ρ0
ε −

(
1 + |∇u0

ε|2
)−1
)
∈ L∞(Ω).
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Then it follows from Vitaly’s theorem (see Lemma 2.1) that

ρ0
ε −

(
1 + |∇u0

ε|2
)−1 → ρ0 − 1

1 + |∇u0|2
strongly in L2(Ω).

However, as follows from the third estimate in (5.22), the L2-limit of the sequence{
ρ0
ε − 1

1+|∇u0
ε|2

}
ε>0

is equal to zero. Hence, we obtain

ρ0(t, x) =
1

1 + |∇u0(t, x)|2
a.e. in QT .

Thus,

(ρ0
ε, v

0
ε , u

0
ε)

w→
(

1

1 + |∇u0|2
, v0, u0

)
as ε→ 0.

Taking into account Proposition 5.1, we see that (v0, u0) is a feasible solution to
the original OCP (R). Moreover, as a direct consequence of the properties (5.27),
we have the following estimate

lim inf
ε→0

Jε(ρ
0
ε, v

0
ε , u

0
ε) ≥

1

2

ˆ
Ω
|u0(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u0|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v0|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u0|2

)∣∣∣∣ = J(v0, u0). (5.29)

Let us assume for a moment that the pair (v0, u0) is not optimal for (R)-
problem. Then there exists another pair (v∗, u∗) ∈ Ξ such that

J(v∗, u∗) < J(v0, u0) < +∞. (5.30)

Setting ρ∗ =
(
1 + |∇u∗|2

)−1, we deduce from condition (v∗, u∗) ∈ Ξ that the tuple
(ρ∗, v∗, u∗) is a feasible solution to each approximate problem (Rε), i.e.,

(ρ∗, v∗, u∗) ∈ Ξε, ∀ ε ∈ (0, 1). (5.31)

Taking this fact into account, we get

J(v0, u0) =
1

2

ˆ
Ω
|u0(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u0|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v0|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u0|2

)∣∣∣∣
by (5.29)
≤ lim inf

ε→0
Jε(ρ

0
ε, v

0
ε , u

0
ε) = lim inf

ε→0
inf

(ρ,v,u)∈Ξε
Jε(ρ, v, u)

≤ lim
ε→0

Jε(ρ
∗, v∗, u∗) =

1

2

ˆ
Ω
|u∗(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u∗|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v∗|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u∗|2

)∣∣∣∣
+

1

ε

ˆ T

0

ˆ
Ω

∣∣∣∣ρ∗ − 1

1 + |∇u∗ |2

∣∣∣∣2 dxdt = J(v∗, u∗).
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Thus, J(v0, u0) ≤ J(v∗, u∗) and we come into a conflict with condition (5.30).
Hence, the limit pair (v0, u0) is optimal for the original OCP (R).

As follows from Theorem 5.1, the optimal solutions to the approximated
problems (ρ0

ε, v
0
ε , u

0
ε) can be considered as a basis for the construction of suboptimal

controls to the original problem (R) (for the details we refer to [9, 11,12,19])
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NONLINEAR EVOLUTIONARY PROBLEM OF FILTRATION
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CONJUGATION CONDITION
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Abstract. Finite-element solutions of the initial-boundary value problem for a nonlinear
parabolic equation in an inhomogeneous domain with the conjugation condition of a
non-ideal contact were found. The initial boundary value problem is a mathematical
model of an important technical problem of filtration consolidation of inhomogeneous
soils. Inhomogeneity is considered in terms of the presence of thin inclusions, physico-
chemical characteristics of which differ from those of the main soil. The problem of long-
term consolidation is especially pronounced in soils with low filtration coefficient. Low
permeability of the porous medium causes deviation from the linear relationship between
the pressure gradient and the filtration rate. Weak formulation of the problem is suggested,
and the accuracy of the approximate finite element solution, its existence and uniqueness
are substantiated for the case of Darcy’s nonlinear law. A test example and the effect
of the nonlinear filtration law for thin inclusion on the dynamics of scattering of excess
pressures in the entire area of the problem are considered.

Key words: nonlinear initial-boundary value problem, finite element method, consolidation,
threshold gradient, nonlinear filtration law, conjugation condition.
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1. Introduction

A nonlinear initial-boundary value problem is investigated for the parabolic
equation in the inhomogeneous domain Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, where Ω1, Ω2

are some given domains. By inhomogeneity we mean the presence of a contact
interface ω = Ω1 ∩ Ω2 which from a physical view point means a thin inclusion
of the third material. Differences in the physical characteristics of the materials
of the inclusion ω and regions Ωi, i = 1, 2, can lead to the discontinuity of the
solutions of the initial boundary value problem at the inclusion. Regarding the
study of problems in inhomogeneous environments of this type, we will focus on
the methodology where the study of processes at the thin inclusion itself is taken
outside the general initial-boundary value problem. The physical characteristics of
the thin inclusion material and the inclusion thickness are taken into account. The
presence of a thin inclusion is taken into account in the general initial-boundary
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value problem by the so-called conjugation conditions for an unknown function.
This approach, when using numerical methods, avoids solving the problem in the
inclusion itself and thus simplifies the solution process.

The above approach to simulating inhomogeneities in soils began to develop
in the work of I.I. Lyashko, I. V. Sergienko, V. V. Skopetskii, V. S. Deineka and is
quite fully described in review monographs [6,15,16]. The works [2,11,14–17] are
also worth mentioning in this direction which develop both the solution methods
and the qualitative theory of initial-boundary value problems with possible dis-
continuous solutions.

As noted above, the initial-boundary value problem, more specifically the
conjugation with non-ideal contact, include physical characteristics of the material
of the thin inclusion (inclusions themselves may be both of natural origin and
artificial). The parameters of the material of thin soil inclusions (filtration coeffi-
cient, porosity, thermal conductivity, etc.) are nonlinearly dependent on the effect
of external factors. Considering the initial-boundary value problems as mathema-
tical models of physico-chemical processes in porous soil media, the presence
of such dependences requires modification of the conjugation conditions. The
above-mentioned works [2,6,11,14–17] assumed the parameters of inclusions to be
constant, which is reflected in the conjugation conditions with non-ideal contact.
Mathematical models for the distribution of inorganic chemicals in porous media
and modification of conjugation conditions taking into account nonlinear depen-
dences of material parameters of thin geobarriers on the effect of physicochemical
factors, including chemical suffusion [23] were developed in [18,19].

The influence of organic substances on the development of microorganisms
and the effect of bioclogging processes on the value of pressure jumps at a thin
geobarrier were studied in [20,21]. Modified conjugation conditions and mathema-
tical models of moisture transfer in inhomogeneous porous media are presented
in [5, 12]. The method of modification of conjugation conditions for the partial
case of Darcy’s nonlinear law is shown in [13].

Here, we investigate the initial-boundary value problem for a quasilinear para-
bolic equation as a mathematical model of soil consolidation. The problem of
consolidation (compaction) of soils is especially relevant for water-saturated clays.
This is caused by the low filtration coefficient of clay soils and, as a result, the long
time for the transition of clay bases of civil and industrial buildings to a stable
state. Weak permeability of clay soils raises questions about the limits of Darcy’s
filtration law in its classical form [9]. It will be recalled that Darcy’s classical law
mathematically records the linear relationship between the filtration rate and the
pressure gradient. The linearity of Darcy’s basic filtration law has its physically
determined limits. The linearity is violated both for highly permeable porous
media and for weakly permeable ones. In particular, for weakly permeable porous
media, this is manifested in the presence of the so-called “threshold gradient”,
below which the relationship between the filtration rate and the pressure gradient
becomes nonlinear.

The nonlinearity of Darcy’s law for consolidation problems is taken into account
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in e.g. [10,24,25]. However, only homogeneous media without thin inclusions are
considered there. Additionally, power laws were considered nonlinear (dependence
of the filtration rate on the pressure gradient raised to a certain degree other
than unity). Quasilinear filtration processes were studied in [3,4] where the linear
dependence of the filtration rate on the pressure gradient is preserved, but the
filtration coefficient nonlinearly depends on the physico-chemical parameters of
the porous medium.

Thus, the objectives of this work are: 1) modification of the conjugation
condition on a thin inclusion under Darcy’s nonlinear law; 2) formation of a
mathematical model of filtration consolidation of inhomogeneous soil in the pre-
sence of the threshold gradient; 3) investigation of finite element solutions of the
corresponding boundary value problem, numerical experiments and analysis of
the significance of the nonlinearity of Darcy’s law on the value of excess pressures
and their jumps.

2. The problem of nonlinear filtration through a thin inclusion

It is suggested in [9] to generalize nonlinear filtration laws in the form (in
one-dimensional case)

u = −k

(
∂h

∂x
− I

γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α)
sgn

(
∂h

∂x

))
, (2.1)

where i is the absolute value of the pressure gradient, i.e. in the one-dimensional
case i =

∣∣∂h
∂x

∣∣; k is the filtration coefficient of the porous medium; u is the filtration
rate; I is the absolute value of the pressure gradient below which the linearity
of Darcy’s law is violated (the so-called threshold gradient); α is an empirical
parameter;

I∗ =
α

γ
(

1
α

)I,
γ (a, x) =

ˆ x

0
sa−1e−sds,

γ (a) =

ˆ ∞
0

sa−1e−sds.

Here γ (a), γ (a, x) are the so-called gamma function and the lower incomplete
gamma function.

As noted in [9], Eq. (2.1) includes previously proposed nonlinear filtration laws
for permeable soils, i.e. Hansbo’s law (1960), Swartzendruber’s law (1961), Zou’s
law (1996).

The use of the law in the form of (2.1) is quite inconvenient in terms of
applying the finite element method. Given that ∂h

∂x = i sgn
(
∂h
∂x

)
, it follows from

(2.1) that

u = −k(n)

(
1− I

(i+ ε2) γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α)) ∂h

∂x
,
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or
u = −k∗(n, I)

∂h

∂x
, (2.2)

where

k∗(n, I) = k(n)

(
1− I

(i+ ε2) γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α))
.

Here n is the soil porosity; ε > 0 is a small constant. Since in this work we consider
the problem of soil compaction, the dependence of the filtration coefficient on
porosity should be taken into account.

We assume (due to thinness of the inclusion ω, Fig. 1) that the filtration
processes in the cross-section of this inclusion are stationary (or at least quasi-
stationary). Thus, similarly to [5, 12, 13, 18–21], for the inclusion of thickness d,
we consider the following filtration problem:

d

d

(
−k∗ω(nω, Iω)

dh

dξ

)
= 0, 0 < ξ < d, (2.3)

h(0) = h−, h(d) = h+. (2.4)

Here, h−, h+ are the known values of pressures, and the sub-script ω means the
corresponding characteristic for the inclusion ω (Fig. 4.1). Repeating the reasoning
of [5, 12,13,18–21], we have

h(ξ) =

ˆ ξ

0

dx

k∗ω(nω, Iω)ˆ d

0

dx

k∗ω(nω, Iω)

(
h+ − h−

)
+ h−.

However, hereafter we are more interested not in the pressure itself, but in its
gradient. As a result

dh

dξ
=

1

k∗ω(nω, Iω)

ˆ d

0

dx

k∗ω(nω, Iω)

(
h+ − h−

)
. (2.5)

3. Conjugation condition for nonlinear filtration law

According to [16], similarly to [5, 13] the conjugation condition is derived on
the basis of the law of conservation of fluid flow through the cross-section area of
the inclusion surface along the normal in time ∆t. As the flow

q = −k∗ω(nω, Iω)
dh

d
∆t = u∆t

and
q = q+ = q−,
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then
u±
∣∣
x=ξ

= −k∗ω(nω, Iω)
dh

dξ
. (3.1)

From (2.5) and (3.1) we have the final formula of the conjugation condition with
non-ideal contact for pressures at the inclusion, with nonlinear filtration law in
the form (2.2)

u±
∣∣
x=ξ

= − [h]ˆ d

0

dx

k∗ω(nω, Iω)

. (3.2)

Here [h] = h+ − h− is the pressure jump at the inclusion.
Before formulating the mathematical model of the problem, we note that the

porosity n (as well as nω) of the soil in the regions Ωi, i = 1, 2, is related
to the void ratio e as n = e

1+e . In its turn, and it is shown in the section of
numerical experiment results, e depends on pressures h(x, t). Thus n = n(h), and
in subsequent calculations k∗ = k∗(h, I), k∗ω = k∗ω(h, Iω).

4. Nonlinear mathematical model of filtration consolidation of
porous medium with thin inclusion

Here we consider the process of filtration consolidation of the soil layer of total
thickness l with a thin inclusion ω of thickness d which is located at the depth
x = ξ (Fig. 4.1). The material of the thin inclusion differs in its physico-chemical
characteristics from those of the main soil.

Fig. 4.1. A layer of soil of thickness l with a thin inclusion ω of thickness d (d � l).

The formulation of the mathematical model of the described problem will
partially use the work of scientists reviewed in Introduction. The mathematical
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model will include the equations of filtration consolidation [8,22,23]. As a result,
we have the following boundary value problem:

∂h

∂t
=

1 + e

γa

∂

∂x

(
k∗(h, I)

∂h

∂x

)
, x ∈ Ω1 ∪ Ω2, t ∈ (0, T ], (4.1)

h (x, t)|x=0 = 0, t ∈ [0, T ], (4.2)

u (x, t)|x=l =

(
−k∗(h, I)

∂h

∂x

)∣∣∣∣
x=l

= 0, t ∈ [0, T ], (4.3)

h (x, 0) = h0 (x) , x ∈ Ω1 ∪ Ω2, (4.4)

u±
∣∣
x=ξ

=

(
−k∗(h, I)

∂h

∂x

)±∣∣∣∣∣
x=ξ

= − [h]ˆ d

0

dx

k∗ω(h, Iω)

. (4.5)

Here,

k∗(h, I) = k (h)

(
1− I

(i+ ε2) γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α))
,

Ω1 = (0; ξ) ,Ω2 = (ξ; l) , 0 < ξ < l; Ω = Ω1 ∪ Ω2;

T > 0 is the specified time duration; h0 (x) is a known function; a is the soil
compressibility coefficient; n, nω are the porosity of soil and inclusion material,
respectively; e = n

1−n is the soil void ratio; γ is the specific weight of the pore
fluid; h is the pressure; k, kω are the filtration coefficients of the main soil and
soil inclusion, respectively; u is the filtration rate which is determined according
to (2.2); u± are the filtration rates at x = ξ − 0 and x = ξ + 0, respectively;
[h] = h+ − h− is the pressure jump at the thin inclusion.

We shall show that k∗ is always positive. Let us turn to the starting relations
from [9] from which the generalized Darcy’s law (2.1) is derived. Particularly, it
is based on ( [9, formula (1.20)])

dq

di
= k

(
1− e−i(

i
I∗ )

α)
(4.6)

from which we have [9, formula (1.21)]

q = k

(
i− I

γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α))
. (4.7)

From (4.7), q|i=0 = 0, from (4.6), dq
di

∣∣∣
i>0

> 0. Therefore, the function q as the

function of the absolute value of i is increasing for i ∈ (0; +∞), and is equal to
zero for i = 0. That is, q|i>0 > 0. It follows that

i− I

γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α)
> 0



Nonlinear evolutionary problem of filtration consolidation 77

or

1− I

iγ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α)
> 0.

Then it further reinforces the above inequality that when i > 0

1− I

(i+ ε2)γ
(

1
α

)γ ( 1

α
,

(
i

I∗

)α)
> 0.

Since γ
(

1
α , 0
)

= 0, then for i = 0 from the formula for k∗(h, I) we obtain
k∗(h, I) = k(h) > 0. Therefore

k∗(h, I) > 0, i ∈ [0; +∞)

and similarly
k∗ω(h, Iω) > 0, i ∈ [0; +∞).

Similarly to [6] we introduce the following notation: QT = Ω × (0;T ] , Q1
T =

Ω1 × (0;T ] , Q2
T = Ω2 × (0;T ] .

Assume that the function h0(x) is continuous on each of the closures Ω1, Ω2.
Also with respect to the coefficients k∗, k∗ω, assume that

1)
0 < k∗min ≤ k∗(s1, s2) ≤ k∗max <∞,

0 < k∗ω,min ≤ k∗ω(s1, s2) ≤ k∗ω,max,

∀s1 ∈ (−∞; +∞), ∀s2 ∈ [0; +∞); k∗min, k
∗
max, k∗ω,min, k

∗
ω,max are positive constants;

2)
|k∗ (p1, s1)− k∗ (p2, s2)| ≤ k∗L |p1 − p2| , 0 < k∗L <∞;

|k∗ω (p1, s1)− k∗ω (p2, s2)| ≤ k∗ω,L |p1 − p2| , 0 < k∗ω,L <∞.

Also, the function k∗ = k∗(h, I) must be continuous on Ω1, Ω2 and continuously
differentiated on Ω1, Ω2.

Definition 4.1. The classical solution of the initial-boundary value problem
(4.1)–(4.5) which allows a discontinuity of the first kind at the point x = ξ is
a function h(x, t) ∈ Ψ that satisfies ∀(x, t) ∈ QT equation (4.1) and the initial
condition (4.4).

Here, Ψ is a set of functions ψ(x, t) which, together with ∂ψ
∂x , are continuous

on each of the closures Q1
T , Q

2
T , have bounded continuous partial derivatives ∂ψ

∂t ,
∂2ψ
∂x2 on Q1

T , Q
2
T , and satisfy conditions (4.2), (4.3), (4.5).

For further calculations we will note one more aspect. The conjugation condition
with non-ideal contact (see [16, page 291, formula (7.4)]) which can be called
classic (

κ (x, u)
∂u

∂x

)∣∣∣∣
x=ξ

= r [u]
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includes r, a known constant, and 0 < r0 ≤ r < ∞. Consider condition (4.5).
When the second of conditions 1) for the coefficient in the right part of the
conjugation condition (4.5)(

−k∗(h, I)
∂h

∂x

)±∣∣∣∣∣
x=ξ

= − [h]ˆ d

0

dx

k∗ω(h, Iω)

is satisfied, we have

d

k∗ω,max
≤
ˆ d

0

dx

k∗ω(h, Iω)
≤ d

k∗ω,min
.

Further,

k∗ω,min
[h]

d
≤ [h]ˆ d

0

dx

k∗ω(h, Iω)

≤ k∗ω,max
[h]

d
.

Thus, in the case of a modified conjugation condition (4.5), we have

0 <
k∗ω,min
d

≤ r ≤
k∗ω,max
d

<∞. (4.8)

Estimate (4.8) allows us to generalize the theorems proved in [6,16] for problems
with the classical conjugation condition with non-ideal contact, for the case of a
modified conjugation condition (4.5).

5. Generalized solution of problem (4.1)-(4.5)

Similarly to [6] let H0 be the space of functions s (x) that in each of the regions
Ωi belong to the Sobolev space W 1

2 (Ωi), i = 1, 2, and they acquire zero values
at the ends of the segment [0; l] where the function h (x, t) is set the boundary
conditions of the first kind.

Let h(x, t) ∈ Ψ be the classical solution of the initial-boundary value problem
(4.1)–(4.5). Take s (x) ∈ H0. Multiply equation (4.1) and initial condition (4.4)
by s (x). Integrating them on the segment [0; l] and taking into account the
conjugation conditions (4.5), we obtain

ˆ l

0

γa

1 + e

∂h

∂t
s (x) dx+

ˆ l

0
k∗(h, I)

∂h

∂x

ds

dx
dx+

[h] [s]ˆ d

0

dx

k∗ω(h, Iω)

= 0, (5.1)

ˆ l

0
h (x, 0) s (x) dx =

ˆ l

0
h0 (x) s (x) dx. (5.2)

Thus, if h(x, t) ∈ Ψ is a classical solution of the initial-boundary value problem
(4.1)-(4.5), then h(x, t) is a solution of problem (5.1), (5.2) in a weak formulation.
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Let H be the space of functions v (x, t) that are square-integrable together
with their first derivatives ∂v

∂t ,
∂v
∂x on each of the intervals (0; ξ), (ξ; l), ∀t ∈ (0 ; T ],

T > 0 , and they satisfy the same boundary conditions of the first kind as the
function h (x, t).

Definition 5.1. Function h (x, t) ∈ H that for any s (x) ∈ H0 satisfies integral
relations (5.1), (5.2) is called a generalized solution of the initial-boundary value
problem (4.1)–(4.5).

An approximate generalized solution of the initial-boundary value problem
(4.1)-(4.5) will be sought in the form

ĥ (x, t) =
N∑
i=1

hi (t)ϕi (x), (5.3)

where {ϕi(x)}Ni=1 is the basis of finite-dimensional subspace M0 ⊂ H0; hi (t),
i = 1, N are unknown coefficients that depend only on time.

The set of functions that can be represented in the form (5.3) generate a
finite-dimensional subspace M1 ⊂ H1.

Definition 5.2. An approximate generalized solution of the initial-boundary
value problem (4.1)–(4.5) is a function ĥ(x, t) ∈M1 that for an arbitrary function
S(x) ∈M0 satisfies integral relations

ˆ l

0

γa

1 + e

∂ĥ

∂t
S (x) dx+

ˆ l

0
k∗(ĥ, I)

∂ĥ

∂x

dS

dx
dx+

[
ĥ
]

[S]
ˆ d

0

dx

k∗ω(ĥ, Iω)

= 0, (5.4)

ˆ l

0
ĥ (x, 0)S (x) dx =

ˆ l

0
h0 (x)S (x) dx. (5.5)

Next, from the weak formulation of (5.4), (5.5) we obtain (assuming the
function S(x) equal to each basis function ϕi(x), i = 1, N) the Cauchy problem
for a system of nonlinear differential equations

M (H)
dH

dt
+ L (H) H (t) = 0, (5.6)

M̃H(0) = F̃, (5.7)

where

F̃ =
(
f̃ i

)N
i=1
, M̃ = (m̃ij)

N
i,j=1, m̃ij =

ˆ l

0
ϕiϕjdx, M = (mij)

N
i,j=1,

L = (lij)
N
i,j=1, H = (hi (t))Ni=1, H(0) = (hi (0))Ni=1,
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mij =

ˆ l

0

γa

1 + e
ϕiϕjdx,

lij =

ˆ l

0
k∗(ĥ, I)

dϕi
dx

dϕj
dx

dx+
[ϕi] [ϕj ]ˆ d

0

dx

k∗ω(ĥ, Iω)

.

The square matrix M (H) is symmetric and positive definite because γa
1+e > 0,

∀(x, t) ∈ QT . Given the proven positivity of the coefficients k∗, k∗ω, as well as
the assumptions 1) made regarding their limitations, the matrix L (H) will also
be symmetric and positively definite [6, page 417]. Next, similarly to [6, problem
(3.14) of Chapter 8], we write the system (5.7) in the form

dH

dt
= Φ (H) , (5.8)

where Φ (H) = −M−1L (H) H (t). The functions Φ (H), ∂Φ/∂H are continuous.
Thus, there is a single approximate generalized solution ĥ (x, t) ∈M1 of the initial-
boundary value problem (4.1)–(4.5).

We will introduce the following norms [6, page 380]:

‖u‖2L2
=

ˆ l

0
u2(x, t)dx,

‖u‖2H1
0

=

∥∥∥∥∂u∂x
∥∥∥∥2

L2

,

‖u‖2L2×L2
= ‖u‖2L2(QT ) =

ˆ T

0

ˆ l

0
u2dxdt,

‖u‖2H1
0×L2

=

ˆ T

0
‖u‖2H1

0
dt =

ˆ T

0

ˆ l

0

(
∂u

∂x

)2

dxdt,

‖u‖L2×L∞ = sup
t∈(0,T ]

‖u(·, t)‖L2
,

‖∇xu‖L∞×L∞ = sup
(x,t)∈QT

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣ ,
‖u‖2W 1

2×L2
=

ˆ T

0

ˆ l

0

(
u2 +

(
∂u

∂x

)2
)
dxdt,

‖[u]‖2L2
=

ˆ T

0
[u]2dt =

ˆ T

0
(u(ξ + 0, t)− u(ξ − 0, t))2dt.

Similarly to [6, page 380, Theorem 1] we can prove the following result.

Theorem 5.1. Let h(x, t) be a classical solution of the initial-boundary value
problem (4.1)–(4.5), and ĥ(x, t) be a generalized solution of this problem from
spaceM1. Then, under the conditions 1), 2) imposed on k∗, k∗ω, taking into account
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(4.8), there are such positive constants c, δ1, δ2, that for an arbitrary function
h̃(x, t) ∈M1 the following inequality holds:∥∥∥h− ĥ∥∥∥2

L2×L∞
+ δ1

∥∥∥h− ĥ∥∥∥2

H1
0×L2

+ δ2

∥∥∥[h− ĥ]∥∥∥2

L2

≤ c
{∥∥∥h− h̃∥∥∥2

L2×L∞
+
∥∥∥h− h̃∥∥∥2

H1
0×L2

+
∥∥∥[h− h̃]∥∥∥2

L2

+

∥∥∥∥∥∂(h− h̃)

∂t

∥∥∥∥∥
2

L2×L2

}
, ∀h̃ ∈M1. (5.9)

Dependence (5.9) is used in estimating the accuracy of the finite element
method.

6. Finite element method

We will cover the closure Ω = Ω1∪Ω2 with a finite element grid with the total
number of nodes N. The point x = ξ should be double numbered, the node on
the left x = ξ − 0 and the node on the right x = ξ + 0. Let in (4.8) ϕi(x) be the
basis functions of the finite element method which allow a discontinuity of the
first kind at the point x = ξ and are polynomials of m-th degree. Then the space
of functions ĥ(x, t) of the form (5.3) with the specified basic functions is denoted
HN
m .

Theorem 6.1. Let the classical solution h(x, t) of the boundary value problem
(4.1)–(4.5) have partial derivatives ∂m+1(·)

∂xm+1 ,
∂m+2(·)
∂xm∂t limited on QiT , i = 1, 2. Then

the approximate generalized solution ĥ(x, t) ∈ HN
m has an estimate∥∥∥h− ĥ∥∥∥

W 1
2×L2

≤ c · hmmax,

where m is the degree of FEM polynomials, c = const > 0,

hmax = max
i=0,N−1

(xi+1 − xi) ,

[xi+1;xi] are finite elements.

Proof. The validity of the theorem follows from the estimate (5.9) of the previous
theorem taking into account the interpolation estimates [6, page 387, Theorem
2].

7. Time discretization methods

Problem (5.6), (5.7) is a Cauchy problem for a system of nonlinear differential
equations of the first order. Finding its solution also requires the use of appropriate
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discretization methods. The application of the Crank-Nicolson method is subґ-
stantiated in [15]:

M

(
1

2

(
H(j+1) + H(j)

)) H(j+1) −H(j)

τ

+ L

(
1

2

(
H(j+1) + H(j)

))
· 1

2

(
H(j+1) + H(j)

)
= 0, j = 0, 1, 2, ...,mτ − 1.

Here the time segment [0, T ] is divided into mτ equal parts with the step τ = T
mτ

;
H(j) is the approximate solution of the Cauchy problem (5.6), (5.7) for t = jτ .
Let also introduce the following notation: hj is the classical solution of the initial-
boundary value problem (4.1)–(4.5) for t = jτ ; ĥj is the approximate generalized
solution of the initial-boundary value problem (4.1)-(4.5) for t = jτ ; φj+1/2 =
1
2(φj+1 + φj); zj = hj − ĥj .

Given (4.8), similarly to Theorem 5 [6, Chapter 8] it is also valid the following
result.

Theorem 7.1. Let h(x, t) be a classical solution of the initial-boundary value
problem (4.1)–(4.5). Let the functions ∂h

∂t ,
∂h
∂x be twice continuously differentiable

over time on Q
i
T , i = 1, 2. Let also assume that the derivatives ∂3h

∂t3
, ∂3h
∂t2∂x

are
uniformly limited in modulus by a constant c1, ∀(x, t) ∈ QT . If conditions 1),
2) are satisfied, then there are positive constants c, δ1, r0, τ0, that depend on
the constants of conditions 1), 2), as well as T , l, such that for ∀τ ≤ τ0 the
classical solution h(x, t) and the approximate generalized solution obtained using
the Crank-Nicolson method, ĥ(x, t) ∈ M1, of the problems (4.1)–(4.5) and (5.6),
(5.7), respectively, satisfy the inequality

‖zmτ ‖
2
L2

+ δ1

mτ−1∑
j=0

∥∥zj+1/2

∥∥2

H1
0
τ + r0

mτ−1∑
j=0

[
zj+1/2

]2
τ

≤ c

mτ−1∑
j=0

∥∥∥(h− h̃)j+1/2

∥∥∥2

H1
0

τ + +

mτ−1∑
j=1

∥∥∥∥∥(h− h̃)j+1/2 − (h− h̃)j−1/2

τ

∥∥∥∥∥
2

L2

τ

+

mτ−1∑
j=0

[
(h− h̃)j+1/2

]2
τ +

∥∥∥(h− h̃)0

∥∥∥2

L2

+
∥∥∥(h− h̃)mτ−1/2

∥∥∥2

L2

+
∥∥∥(h− h̃)1/2

∥∥∥2

L2

+ O(τ4)
)
, ∀h̃ ∈M1. (7.1)

Similarly to Theorem 6 [6, Chapter 8] and taking into account estimate (7.1),
we have:

Theorem 7.2. Let the classical solution h(x, t) of the problem (4.1)–(4.5) satisfy
the conditions of Theorem 7.1. Then for the errors z of the approximate generalized
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solution ĥ(x, t) ∈ HN
m of the problem (5.4), (5.5) obtained using the Crank-

Nicolson method, the following estimate is valid:

‖zmτ ‖
2
L2

+ δ1τ

mτ−1∑
j=0

∥∥zj+1/2(h)
∥∥2

H1
0
≤ c ·

(
h2m
max + τ4

)
.

However, the practical implementation of the Crank-Nicolson method for the
nonlinear Cauchy problem (5.6), (5.7) requires the use of iterations. Instead of the
Crank-Nicolson method, one can use the predictor-corrector method [16], which
for the system of equations (5.6) has the following form:

M
(
H(j)

)W(j+1) −H(j)

τ
+ L

(
H(j)

) 1

2

(
W(j+1) + H(j)

)
= 0,

M

(
1

2

(
W(j+1) + H(j)

)) H(j+1) −H(j)

τ
+

+L

(
1

2

(
W(j+1) + H(j)

))
· 1

2

(
H(j+1) + H(j)

)
= 0, j = 0, 1, 2, ...,mτ − 1,

where W(j+1) are auxiliary vector functions.
From the view point of the simplicity of practical implementation, a fully

implicit linearized difference scheme has proved itself well [8,21,23]. For the system
(5.6), it has the form

M
(
H(j)

) H(j+1) −H(j)

τ
+ L

(
H(j)

)
·H(j+1) = 0, j = 0, 1, 2, ...,mτ − 1.

8. Results of numerical experiments and their analysis

According to [9, formula (1.24)],

I = Ak̃
B
,

where A = 4.0 × 10−12 and B = −0.78 are empirical parameters; k̃ (
[
k̃
]

= m2)

is the soil permeability coefficient, i.e. k = k̃ρg
µ , ρ is the density of pore fluid, µ

is its viscosity, g is the acceleration of free fall. Since these studies do not yet
take into account non-isothermal conditions, the dynamic viscosity of water at
constant temperature 25

◦
C is used which is

µ = 1.03 · 10−8 Pa · day.

Soil parameters for the numerical experiments were taken from the Hydrus-
1D freeware. Specifically, Sandy Clay was considered as the main soil, with k0 =
0.0288 m/day, n0 = 0.38. Then for the main soil k̃ = 2.98 · 10−14 m2, and I =
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0.142. Silty Clay was taken as the inclusion soil, with k0ω = 0.0048 m/day, n0ω =
0.46, where index "0"denotes the initial values. Then for the inclusion soil k̃ =
4.97 · 10−15 m2, I = 0.574.

The parameter α is also important. According to [9, formula (1.24)] α ≥ 0.
The authors state that the parameter α mainly characterizes the smoothness of
the transition from nonlinear to linear part of the curve of dependence u = u(i)
for the filtration rate and depends on the distribution of pore sizes in the porous
medium. An increase in α means a sharper transition. A larger distribution range
of pore sizes means a smoother transition between the linear and nonlinear parts
and thus a smaller α value. For instance, for α→∞ we have from the generalized
law (2.1) [1]

u =

{
0, i ≤ I;

−k (i− I) sgn(i), i ≥ I.
When α→ 0 we obtain the transition to Darcy’s linear law.

We used α = 2 for the main soil, and α = 5 hor the thin inclusion soil in the
following numerical experiments.

According to the linear compression dependence for soils,

e = −aσ + const.

Here σ are vertical stresses in the soil skeleton (in one-dimensional case). Further,

∂e

∂t
= −a∂σ

∂t
.

Also, according to Terzaghi’s effective stress principle [22,23]

∂σ

∂t
= −γ ∂h

∂t
,

and
∂e

∂t
= aγ

∂h

∂t
.

From the last ratio we obtain

e(j+1) − e(j)

τ
= aγ

h(j+1) − h(j)

τ
, j = 0, 1, 2, ...,mτ − 1,

or
e(j+1) = aγ

(
h(j+1) − h(j)

)
+ e(j), j = 0, 1, 2, ...,mτ − 1.

Obtained ratio was used to determine the variable filtration coefficient in the void
ratio according to the Kozeny-Carman equation [7]

k = k0
1 + e0

1 + e

(
e

e0

)3

,

where k0, e0 are the initial values of filtration coefficient and void ratio; k, e are
their variable values over time.
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In equation (4.1), the soil compressibility coefficient a = 5.12×10−7m2

H , specific
gravity of pore fluid γc = 104 H

m2 . Initial pressure distribution h0 (x) = 20 m
is corresponding to the application of the respective load to the soil surface.
Unobstructed outflow of pore fluid is provided at the upper limit, and there is no
drainage at the lower limit.

The model problem considered a soil layer of l = 25 m thickness. The depth of
inclusion ξ = 10 m, and its thickness d = 0.2 m. The x variable step was 0.04 m,
the time step τ = 10 day. Piece-square functions were used as FEM basis. The
results of numerical experiments are plotted in Figs. 8.2, 8.3.

Fig. 8.2. Difference of the distribution of the pressure fields for cases of nonlinear and linear
Darcy’s laws.

The nonlinearity in Darcy’s law has virtually no effect on the distribution
of excess pressure during the first 1000 days from the beginning of the study
process (Figs. 8.2, 8.3). However, as of the 3000th day, the relative difference in
the pressure jumps on the thin inclusion in the linear and nonlinear laws reached
8.4%. Then such relative differences continue to increase and reach 42% on the
9000th day (about 1.5 meters in absolute terms). Thus, the nonlinearity in Darcy’s
law and the presence of the threshold gradient can introduce significant changes
in the distribution of pressures, particularly in the long run. This is important
both in terms of natural heterogeneous soils and in terms of hydraulic structures
with fine inclusions.
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Abstract. In this paper necessary and sufficient conditions of a minimum for the uncon-
strained degenerate optimization problem are presented. These conditions generalize the
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1. Introduction

Unconstrained optimization is the aim of many papers, and it has a variety of
applications (see, for example, [1–5]).Nevertheless, the existing numerical methods
for solving the general unconstrained optimization problem up to the second order
have a very low convergence rate in the case of degenerate problems [6–17] since
for increasing the convergence rate, it is necessary to use derivatives of orders
greater than two [6, 7]. At the same time, using derivatives of the 3rd and 4th

orders makes a numerical method very time-consuming.
For the analysis of the convergence rate for unconstrained optimization me-

thods in the case of a singular minimum point, it is necessary to have appropriate
high-order optimality conditions.

A broad literature review on optimality conditions is presented in [18], therefore
we will not go into details in this paper. In addition to the above review, many
papers have been devoted to high-order optimality conditions (for example, [19,
20]). For the unconstrained optimization degenerate problem, high-order optima-
lity conditions are formulated in [19], but the form of these conditions is not
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convenient for application. In [20] high-order optimality conditions for unconstrai-
ned optimization have been also considered, but they are not convenient for usage
as well.

This paper aims to represent generalized necessary and sufficient conditions of
a minimum for unconstrained optimization degenerate problems, which improve
to some extent mixed order necessary and sufficient conditions for a minimum
proposed in [19] , but also differ from high-order optimality conditions suggested in
[20]. The developed optimality conditions should be more convenient for evaluating
the convergence rate of unconstrained optimization methods in the case of a
singular minimum point.

2. Higher-order optimality conditions

Remind that the degenerate problem of unconstrained optimization is to find

min f(x), x ∈ Rn, (2.1)

where f(x) is of class Cp (p ≥ 4) under the assumption that a point x∗ ∈ Rn of
local minimum of f(x) is such that the Hessian matrix f (2)(x∗) is degenerate but
is not zero identically.

Introduce the following notations:

R1 = Ker(f (2)(x∗)) = {x ∈ Rn| f (2)(x∗) · x = 0}; R2 = {y ∈ Rn | y⊥x}

is the orthogonal complement of R1 (i.e., Rn = R1⊕R2); P is an orthogonal
projector onto the subspace R1; P⊥ is an orthogonal projector onto the subspace
R2; f (l)(x∗) is an l -th derivative of f(x) at f (l) (x∗) ·

[
ui, vl−i

]
is a multilinear form

of l arguments u, v ∈ Rn (the superscripts i and l-i indicate the multiplicity of
occurrences of the corresponding argument). Notice that the value of symmetric
multilinear form is invariant concerning various permutations of arguments.

Denote by R(n)p/2 the space of
(p

2

)
-dimensional arrays of the dimension n ×

n× . . .×n. Then f( p2 +1) (x∗) can be considered as a linear mapping f( p2 +1) (x∗) :

R(n)p/2 → Rn; the mapping (f( p2 +1) (x∗))T : Rn → R(n)p/2 is a conjugate to
f( p2 +1) (x∗) linear mapping. The mapping f (p) (x∗) can be considered as a linear

mapping f (p) (x∗) : R
(n)p/2 → R(n)p/2 , i.e. the value of the multilinear form f (p) ·

(x∗) [up] = UT f
(p)

(x∗)U , where U ∈ R(n)p/2 , is a
(p

2

)
— dimensional matrix with

entries Ui,j,...,k = uiuj · · ·uk.
Remark also that if (f (2) (x∗))+ is a pseudoinverse matrix [21] to f (2)(x∗),

then
P = I − (f (2) (x∗))+f (2) (x∗) , P⊥ = (f (2) (x∗))+f (2)(x∗). (2.2)

Theorem 2.1. (generalized necessary condition for minimum). Let f(x) be a
function such that

• f attains at point x∗ ∈ Rn a local minimum;



90 V.M. Zadachyn

• f is p times (p ≥ 4, p is even) continuously differentiable in the neighborhood
V (x∗) of x∗;

• for all u ∈ Rn

f (2l) (x∗)
[

(Pu)2l
]

= 0, (2.3)

for l = 1, . . . ,
(p

2 − 1
)
.

Then for all u ∈ Rn

f (1) (x∗) = 0, f (2) (x∗)
[
u2
]
≥ 0; (2.4)

f (2) (x∗)

[ (
P⊥u

)2
]
≥ m2||P⊥u||2; (2.5)

f (2l+1) (x∗)
[

(Pu)2l+1
]

= 0,

for l = 1, . . . ,
(p

2 − 1
)
, f (p) (x∗) [(Pu)p] ≥ 0;

(2.6)

f (l+1) (x∗)
[ (

P⊥u
)
, (Pu)l

]
= 0, for l = 1, . . . ,

(p
2
− 1
)

; (2.7)

(
f (p) (x∗)− p!

2
((p

2

)
!
)2 (f( p2 +1) (x∗))T (f (2) (x∗))+(f( p2 +1) (x∗))

)
[(Pu)p] ≥ 0,

(2.8)

where m2 > 0.

Proof. The conditions (2.4) are well known. The condition (2.5) means that
the matrix f (2)(x∗) is not identically zero. Moreover, m2 > 0 is equal to a
minimal nonzero eigenvalue of the matrix f (2)(x∗). The conditions (2.6) and
(2.7) follow from Theorem 2.1 [19] that was proved for the case of Hilbert space.
Additionally, in Theorem 2.1 [19] it was proved that under condition (2.3) the
following inequality

F0(x∗, u) ≡ 1

2
f (2) (x∗)

[ (
P⊥u

)2
]

+
1(p
2

)
!
f( p2 +1) (x∗)

[(
P⊥u

)
, (Pu)p/2

]
+

1

p!
f (p) (x∗) [(Pu)p] ≥ 0 (2.9)

holds for all u ∈ Rn.
Taking into account (2.2), we can rewrite (2.9) as follows

F0 (x∗, u) =
1

2
f (2) (x∗)

(P⊥u+
1(p
2

)
!
(f (2) (x∗))+(f( p2 +1) (x∗))

[
(Pu)p/2

])2


+
1

p!

(
f (p) (x∗)− p!

2
((p

2

)
!
)2 (f( p2 +1) (x∗))T (f (2) (x∗))+(f( p2 +1) (x∗))

)
[(Pu)p].

(2.10)
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Since F0(x∗, u) ≥ 0 for all u ∈ Rn, consider decomposition u = u1 +u2, where
u1 = Pu ∈ R1, u2 = P⊥u = − 1

( p2 )!
(f (2) (x∗))+(f( p2 +1) (x∗))

[
(Pu)p/2

]
∈ R2.

Then (2.8) follows from (2.4), (2.9), (2.10).

Corollary 2.1. (generalized necessary conditions for a minimum of 4th order).
Let f(x) be a function such that it attains at point x∗ ∈ Rn a local minimum and
is four times continuously differentiable in the neighborhood of x∗.

Then, for all u ∈ Rn

f (1) (x∗) = 0, f (2) (x∗)
[
u2
]

= f (2) (x∗)

[ (
P⊥u

)2
]
≥ 0; (2.11)

f (2) (x∗)

[ (
P⊥u

)2
]
≥ m2||P⊥u||2;

f (3) (x∗)
[
(Pu)3

]
= 0, f (4) (x∗)

[
(Pu)4

]
≥ 0; (2.12)(

f (4) (x∗)− 3 (f (3) (x∗))T (f (2) (x∗))+(f (3) (x∗))
)

[(Pu)4] ≥ 0, (2.13)

where m2 > 0.

Theorem 2.2. (generalized sufficient minimum condition). Let f(x) be a p times
(p ≥ 4, p is even) continuously differentiable function in the neighborhood V (x∗)
of point x∗at which the conditions (2.3)–(2.7) are satisfied and for all
u ∈ Rn(

f (p) (x∗)− p!

2
((p

2

)
!
)2 (f( p2 +1) (x∗))T (f (2) (x∗))+(f( p2 +1) (x∗))

)
× [(Pu)p] ≥ mp||Pu||p, (2.14)

where mp > 0.
Then x∗ is a point of strict local minimum of the function f(x) and for all x

from the sufficiently small neighborhood V (x∗) the following inequality

f (x)− f (x∗) ≥ m0 · (||P⊥v||2 + ||Pv||p), (2.15)

where v = x− x∗ and m0 > 0, holds.

Proof. Since the function f(x) is p times continuously differentiable in the
neighborhood V (x∗), according to the Taylor series expansion we have the following:

f (x)− f (x∗) =

p∑
l=1

1

l!
f (l) (x∗)

[
(v)l

]
+O(||v||p+1)

= f (1) (x∗) [v] +
1

2
f (2) (x∗)

[(
P⊥v

)2
]

+

p∑
l=3

1

l!

l∑
i=0

Cil f
(l) (x∗)

[(
P⊥v

)l−i
, (Pv)i

]
+O(||v||p+1),
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for all x ∈ V (x∗), where v = x−x∗. Taking into account the conditions (2.3)–(2.7),
in a sufficiently small neighborhood V (x∗) the following equality

f (x)− f (x∗) =
1

2
f (2) (x∗)

[ (
P⊥v

)2
]

+
1(p
2

)
!
f( p2 +1) (x∗)

[ (
P⊥v

)
, (Pv)

p
2

]
+

1

p!
f (p) (x∗) [(Pv)p]

+O(||P⊥v||3) +O(||P⊥v|| · ||Pv||
p
2

+1)

+O(||P⊥v||2 · ||Pv||
p
2 ) +O(||v||p+1)

holds. Because of (2.9) and (2.10), we have

f(x)− f(x∗) =
1

2
f

(2)

(x∗)

(P⊥v +
1(p
2

)
!
(f (2)(x∗))+(f ( p

2
+1)(x∗))

[
(Pv)

p
2

])2


+
1

p!

(
f (p) (x∗)− p!

2
((p

2

)
!
)2 (f( p2 +1) (x∗))T (f (2) (x∗))+(f( p2 +1) (x∗))

)
[(Pv)p]

+O(||P⊥v||3) +O(||P⊥v|| · ||Pv||
p
2

+1) +O(||P⊥v||2 · ||Pv||
p
2 ) +O(||v||p+1).

Thus, from (2.5) and (2.14) it follows that

f(x)− f (x∗) ≥ m2

2

∥∥∥∥P⊥v +
1

(p2)!
(f (2)(x∗)) + (f ( p

2
+1)(x∗))

[
(Pv)

p
2

]∥∥∥∥2

+
mp

p!
‖Pv‖p −N1

∥∥∥P⊥v∥∥∥3
−N2

∥∥∥P⊥v∥∥∥ · ‖Pv‖ p2 +1

−N3

∥∥∥P⊥v∥∥∥2
· ‖Pv‖

p
2 −N4 ‖v‖p+1 , (2.16)

where N1, N2, N3, and N4 are some positive constants.
Consider x ∈ V (x∗) such that∥∥∥P⊥v∥∥∥ ≥ 2(p

2

)
!

∥∥∥(f (2) (x∗))+
∥∥∥ · ∥∥∥f( p2 +1) (x∗)

∥∥∥ · ‖Pv‖ p2 .
Then ∥∥∥∥∥P⊥v +

1(p
2

)
!
(f (2) (x∗))+(f( p2 +1) (x∗))

[
(Pv)

p
2

]∥∥∥∥∥ ≥ ∥∥∥P⊥v∥∥∥
−

∥∥∥∥∥ 1(p
2

)
!
(f (2) (x∗))+(f( p2 +1) (x∗))

[
(Pv)

p
2

]∥∥∥∥∥ ≥ 1

2

∥∥∥P⊥v∥∥∥ ,
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and hence (2.16) implies

f (x)− f (x∗) ≥ 1

2

(
m2

8

∥∥∥P⊥v∥∥∥2
+
mp

p!
‖Pv‖p

)
≥ min(

m2

16
,
mp

2 · p!
) ·
(∥∥∥P⊥v∥∥∥2

+ ‖Pv‖p
)

(2.17)

in a sufficiently small neighborhood V (x∗).

Let x ∈ V (x∗) is such that∥∥∥P⊥v∥∥∥ < 2(p
2

)
!

∥∥∥(f (2) (x∗))+
∥∥∥ · ∥∥∥f( p2 +1) (x∗)

∥∥∥ · ‖Pv‖ p2 .
Then

‖Pv‖
p
2 >

(p
2

)
!

2

∥∥∥(f (2) (x∗))+
∥∥∥−1
·
∥∥∥f( p2 +1) (x∗)

∥∥∥−1
·
∥∥∥P⊥v∥∥∥ .

The inequality (2.5) implies that
∥∥∥(f (2) (x∗))+

∥∥∥ ≤ 1
m2

and, hence,

‖Pv‖
p
2 >

(p
2

)
!

2

∥∥∥(f (2) (x∗))+
∥∥∥−1 ∥∥∥f( p2 +1) (x∗)

∥∥∥−1 ∥∥∥P⊥v∥∥∥
≥
(p

2

)
!

2
m2

∥∥∥f( p2 +1) (x∗)
∥∥∥−1 ∥∥∥P⊥v∥∥∥ .

Then from (2.16) we obtain

f (x)− f (x∗) ≥ 1

2

mp

p!
‖Pv‖p

≥ 1

4

mp

p!
‖Pv‖p +

1

4

mp

p!

((p
2

)
!

2
m2

)2 ∥∥∥f( p2 +1) (x∗)
∥∥∥−2 ∥∥∥P⊥v∥∥∥2

≥ min

 mp

4 · p!
,

1

4

mp

p!

((p
2

)
!

2
m2

)2 ∥∥∥f( p2 +1) (x∗)
∥∥∥−2


×
(∥∥∥P⊥v∥∥∥2

+ ‖Pv‖p
)

(2.18)

in a sufficiently small neighborhood V (x∗).

It is worth to emphasize that in our calculations given above (see, for instance,
(2.18)), we implicitly assumed that

∥∥∥f( p2 +1) (x∗)
∥∥∥ > 0. In the case when∥∥∥f( p2 +1) (x∗)

∥∥∥ = 0

(i.e., f( p2 +1) (x∗) ≡ 0), from (2.16) we conclude that
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f (x)− f (x∗) ≥ 1

2

(
m2

8

∥∥∥P⊥v∥∥∥2
+
mp

p!
‖Pv‖p

)
≥ min(

m2

4
,
mp

2 · p!
) ·
(∥∥∥P⊥v∥∥∥2

+ ‖Pv‖p
)

(2.19)

in a sufficiently small neighborhood V (x∗),

Thus, according to (2.17) – (2.19) , for all x ∈ V (x∗) different from x∗, there
is a positive constant m0 such that inequality (2.15) is fulfilled, i.e. x∗ is a point
of a strict local minimum of the function f(x).

Corollary 2.2. (generalized sufficient condition for a minimum of the 4th order).
Let f(x) be a four times continuously differentiable function in some neighborhood
V (x∗) of the point x∗, at which conditions (2.11) and (2.12) are satisfied, and for
all u ∈ Rn(

f (4) (x∗)− 3 (f (3) (x∗))T (f (2) (x∗))+(f (3) (x∗))
)

[(Pu)4] ≥ m4 ‖Pu‖4 , (2.20)

where m4 > 0.
Then x∗ is a point of the strict local minimum of the function f(x) and for all

x from a sufficiently small neighborhood V (x∗) the following inequality

f (x)− f (x∗) ≥ m0 ·
(∥∥∥P⊥v∥∥∥2

+ ‖Pv‖4
)
, (2.21)

where v = x− x∗ and m0 > 0, holds.

The given above generalized necessary and sufficient minimum conditions
provide constructive optimality criteria for degenerate problem (2.1). We illustrate
the naturalness of conditions (2.13) and (2.20) with the following examples.

Example 2.1. Consider the function f (x) = (x1 + x2
2)

2, x ∈ R2. This function
attains its minimum at the points of a set X =

{
x ∈ R2| x1 = −x2

2

}
.

Consider the point x∗ = (0, 0)T ∈ X. Then,

f (2) (x∗) =

(
2 0
0 0

)
,
(
f (2) (x∗)

)+
=

(
1
2 0
0 0

)
,

f (3) (x∗) = (A | B) , f (4) (x∗) =

(
(C | C)
(C | D)

)
,

where A =

(
0 0
0 4

)
, B =

(
0 4
4 4

)
, C =

(
0 0
0 0

)
, D =

(
0 0
0 24

)
. The orthogonal

projector P =

(
0 0
0 1

)
and the orthogonal projector P⊥ =

(
1 0
0 0

)
.
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The point x∗ is not a point of strict local minimum, although the following
condition

f (2) (x∗)

[ (
P⊥u

)2
]

= 2
∥∥∥P⊥v∥∥∥2

, f (4) (x∗) [(Pu)
4
] = 24 · ‖Pv‖4 , ∀ u ∈ R2

is satisfied. In addition,(
f (4) (x∗)− 3 (f (3) (x∗))T (f (2) (x∗))+(f (3) (x∗))

)
[(Pu)4] = 0, ∀ u ∈ R2.

Example 2.2. Consider the function f (x) = x2
1 +x1x

2
2 +x4

2, x ∈ R2. This function
attains the minimal value at x∗ = (0, 0)T , which is a point of the strict local
minimum.

Then

f (2) (x∗) =

(
2 0
0 0

)
,
(
f (2) (x∗)

)+
=

(
1
2 0
0 0

)
,

f (3) (x∗) = (A | B) , f (4) (x∗) =

(
(C | C)
(C | D)

)
,

where A =

(
0 0
0 2

)
, B =

(
0 2
2 0

)
, C =

(
0 0
0 0

)
, D =

(
0 0
0 24

)
. The orthogonal

projector P =

(
0 0
0 1

)
and the orthogonal projector P⊥ =

(
1 0
0 0

)
.

For x∗ the following conditions

f (2) (x∗)

[ (
P⊥u

)2
]

= 2
∥∥∥P⊥u∥∥∥2

, f (4) (x∗) [(Pu)
4
] = 24 · ‖Pu‖4 , ∀ u ∈ R2

(
f (4) (x∗)− 3 (f (3) (x∗))T (f (2) (x∗))+(f (3) (x∗))

)
[(Pu)

4
]] = 18 ·‖Pu‖4 , ∀ u ∈ R2

are satisfied.
Therefore, the condition (2.20) provides strictness of the minimum, while the

condition f (4) (x∗) [(Pu)
4
] ≥ m ‖Pu‖4 , ∀ u ∈ R2,m > 0, is not sufficient for this.

3. Conclusion

The suggested necessary and sufficient conditions of a minimum for unconst-
rained optimization degenerate problems generalize the known optimality condit-
ions. The formulation and appearance of these conditions differ from the high-
order optimality conditions proposed by other authors. Owing to the results
obtained, the suggested optimality conditions can be used for the analysis of the
convergence rate of unconstrained optimization methods in the case of a singular
minimum point, for example, Newton’s method and quasi-Newton’s methods.
These issues will be considered in future papers.
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1. Introduction

Let n be a natural number, and Rn be the linear space of ordered collections
x = (x1, ..., xn) of real numbers with a norm |x| := (|x1|2 + ...+ |xn|2)1/2. Suppose
that Ω is an unbounded domain in Rn, and ∂Ω (boundary of the domain Ω) is a
piecewise-smooth surface. Let ν = (ν1, ..., νn) be a outward-pointing normal unit
vector on ∂Ω. Suppose ∂Ω = Γ0 ∪ Γ1, where Γ0 is a closure of an open set on
∂Ω (in particular, Γ0 = ∅ or Γ0 = ∂Ω), Γ1 := ∂Ω \ Γ0. Put Q := Ω × (0, T ),
Σ0 := Γ0 × (0, T ), Σ1 := Γ1 × (0, T ), where T > 0. Denote by Bd(Ω) the set of
all bounded subdomains of Ω.

We consider the problem: to find the function u : Q → R that satisfies (in
some sense) the parabolic equation

ut −
n∑
i=1

d

dxi
ai(x, t, u,∇u) + a0(x, t, u,∇u) = f(x, t), (x, t) ∈ Q , (1.1)

∗Department of Mathematical Statistics and Differential Equations, Ivan Franko National University
of Lviv, 1, Universytetska St., Lviv, 79000, Ukraine, mm.bokalo@gmail.com

© M. Bokalo, 2022.
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the boundary conditions

u
∣∣∣
Σ0

= 0,
∂u

∂νa

∣∣∣
Σ1

= 0, (1.2)

and the initial condition

u(x, 0) = u0(x) , x ∈ Ω, (1.3)

where ai : Q× R1+n → R, i = 0, n, f : Q→ R, u0 : Ω→ R are given real-valued

functions,
∂u(x, t)

∂νa
:=
∑n

i=1 ai(x, t, u,∇u) νi(x) is an exterior conormal derivative

of u in point (x, t) ∈ Σ1.

Remark 1.1. An simpler example of the equations of type (1.1) considered here is

ut−
n∑

i,j=1

(âij(x, t)uxj )xi +
n∑
j=1

âj(x, t)uxj + â0(x, t)u = f(x, t), (x, t) ∈ Q, (1.4)

where âij = âji ∈ L∞(Q), i, j = 1, n, are functions such that for a.e. (x, t) ∈ Q
we have

n∑
i,j=1

âij(x, t)ηiηj > ω
n∑
l=1

|ηl|2, (η1, ..., ηn) ∈ Rn, ω = const > 0,

and âj ∈ L∞(Q), j = 0, n, f : Q → R is such that f ∈ L2(Ω′ × (0, T )) for all
Ω′ ∈ Bd(Ω).

In Remark 3.4, we have given additional conditions for the coefficients of
equation (1.4), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.4), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. �

Remark 1.2. An more complex example of the equations of type (1.1) considered
here is

ut −
k∑

i,j=1

(âij(x, t)uxj )xi

−
n∑

i=k+1

(âi(x, t)|uxi |pi(x)−2uxi)xi + â0(x, t)u = f(x, t), (1.5)

(x, t) ∈ Q, where k ∈ {1, ..., n−1} and Ω such that Ω∩{x = (x1, ..., xk, xk+1, ..., xn)
∈ Rn

∣∣ |x1|2+...+|xk|2 < τ2} is bounded for each τ > 0, for example, Ω = Ω1×Ω2,
Ω1 is an unbounded domain in space {(x1, ..., xk)

∣∣x1, ..., xk ∈ R}, and Ω2 is a
bounded domain in space {(xk+1, ..., xn)

∣∣xk+1, ..., xn ∈ R}. Also we suppose that
1) âij = âji ∈ L∞(Q), i, j = 1, k, are functions such that for a.e. (x, t) ∈ Q a
quadratic form

∑k
i,j=1 âij(x, t)ηiηj , (η1, ..., ηk) ∈ Rk, is positive, 2) for every i ∈
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{0, k + 1, ..., n} a function âi : Q → R is measurable, and 0 < ess infΩ′×(0,T ) âi 6
ess supΩ′×(0,T ) âi < +∞ for all Ω′ ∈ Bd(Ω), 3) for every i ∈ {k + 1, ..., n} a
function pi : Ω → R is measurable, and 1 < ess infΩ′ pi 6 ess supΩ′ pi < +∞
for all Ω′ ∈ Bd(Ω) (the functions pi, i = k + 1, n, are called exponents of the
nonlinearity).

In remark 3.5, we have given additional conditions for the coefficients of
equation (1.5), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.5), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. �

Initial-boundary value problems for parabolic equations in unbounded domains
with respect to the spatial variables were studied by many authors. As is well
known, to guarantee the uniqueness of the solution of the initial-boundary value
problems for linear parabolic equations in unbounded domains (in particular,
these problems can be described by (1.4), (1.2), (1.3)) we need some restrictions
on solution’s behavior as |x| → +∞ (for example, solution’s growth restriction
as |x| → +∞, or belonging of solution to some functional spaces). Since the
uniqueness of solution is the determining condition to the well-posedness of prob-
lems for evolutionary equations, then it is naturally to formulate the initial-
boundary value problem for equation (1.1) in the following form: to find the
solution of this equation that satisfies conditions (1.2), (1.3), and some restrictions
on its behavior as |x| → +∞. Firstly this was obtained in [1]. There it was shown
that the classical solution of the Cauchy problem for heat equation

ut −∆u = 0, (x, t) ∈ Rn × (0, T ], u|t=0 = u0(x), x ∈ Rn, (1.6)

is a unique in the class of the functions such that

|u(x, t)| 6 Aea|x|2 for all (x, t) ∈ Rn × [0, T ], (1.7)

where constants a,A are depending on u, while restriction (1.7) is an essential
condition for the uniqueness of the solution of the problem. Or rather, in [1],
[2] was proved that problem (1.6) with u0 ≡ 0 has a nontrivial solution with
growth Aea|x|

2+ε as |x| → +∞ for ε > 0. Remark that restriction (1.7) can be
interpreted as an analog of the boundary condition at infinity. Similar results for
weak solutions of linear parabolic equations from a wide class were obtained in [3],
and to substantiate these results used an analogue of the principle of Saint-Venant
known in mechanics. The similar situation is with nonlinear parabolic equations
from certain classes (see [4–9], etc).

Note that we need some restrictions on the data-in behavior as |x| → +∞ to
solvability of the initial-boundary value problems for parabolic equations conside-
red above. In particular, in the paper [1] it was shown that a classical solution of
a problem (1.6), (1.7) exists if u0 satisfies the condition: |u0(x)| 6 B eb|x|

2 for all
x ∈ Rn, where b, B are any constants.

However, there are nonlinear parabolic equations for which the corresponding
initial-boundary value problems are unique solvable without any conditions at
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infinity. First result was proved in [10] for equation (1.5) with p0 = const > 2,
and pk+1 = . . . = pn = 2. Similar results were obtained for nonlinear parabolic
equations in [10–20], etc.

Nonlinear differential equations with variable exponents of the nonlinearity
(for example, equation (1.5)) appear as mathematical models in various physical
processes. In particular, these equations describe electroreological substance flows,
image recovering processes, electric current in the conductor with changing tempe-
rature field (see [21]). Nonlinear differential equations with variable exponents
of the nonlinearity were intensively studied in [22–29], etc. The corresponding
generalizations of Lebesgue and Sobolev spaces (see [30]) were used in these
investigations.

In this work we consider a class of second order parabolic equations in unboun-
ded domains with respect to the spatial variables, which require for the correct
formulation of the initial-boundary value problems of setting conditions for the
behavior of the solution at infinity. This class contains both linear (see, for
example, (1.4)) and nonlinear equations with variable exponents of the nonlinearity
(see, for example, (1.5))). Here we complement and generalize results for linear
(see, for example, [3]), and nonlinear parabolic equations with constant exponents
of the nonlinearity (see, for example, [6]). As we know from the available sources,
nonlinear parabolic equations with variable exponents of the nonlinearity were
not previously investigated in the context of the problem under consideration. In
our researches, we use an analog of the well-known in mechanics Saint-Venant
principle. It was developed in [3, 6, 31, 32], and others. Moreover, to prove the
solvability of our problem we use the method of exhaustion for unbounded domains,
and the monotonicity method [33].

The article is organized as follows. In Section 2, we describe functional spaces
which are used in the sequel. In Section 3, we set the researched problem and
formulate the main results. Section 4 contains auxiliary statements that are used
in the next section. Finally, Section 5 is devoted to substantiation of the main
results.

2. Main notation

Firstly, we introduce some functional spaces. Let r : Ω → R be a measurable
function, r(x) > 1 for almost every (a.e.) x ∈ Ω, and ess supx∈Ω′ r(x) <∞ for any
Ω′ ∈ Bd(Ω). For any Ω′ ∈ Bd(Ω) we denote by Lr(·)(Ω′) the linear space of (classes
of) measurable functions v : Ω′ → R such that ρΩ′,r(v) :=

´
Ω′ |v(x)|r(x) dx < ∞.

This is the Banach space with a norm

‖v‖Lr(·)(Ω′) := inf{λ > 0 | ρΩ′,r(v/λ) 6 1}.

Space Lr(·)(Ω′) is called the Lebesgue space with variable exponent or generalized
Lebesgue space (see, for example, [30]). If r(x) > 1 for a.e. x ∈ Ω, put by definition
r′(x) := r(x)/(r(x)−1) for a.e. x ∈ Ω. As is well known, the dual space (Lr(·)(Ω

′))′

can be identified with Lr′ (·)(Ω
′) under the condition ess infx∈Ω′ r(x) > 1. Note
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also that in the case r(x) = r = const > 1 for a.e. x ∈ Ω′ ∈ Bd(Ω) we have
Lr(·)(Ω

′) = Lr(Ω
′), and ‖ · ‖Lr(·)(Ω′) = ‖ · ‖Lr(Ω′).

Denote by Lr(·), loc(Ω) the linear space of (classes of) measurable functions
v : Ω → R such that their restrictions v|Ω′ belong to the space Lr(·)(Ω′) for
any set Ω′ ∈ Bd(Ω). This space with a family of seminorms {‖ · ‖Lr(·)(Ω′) |Ω

′ ∈
Bd(Ω)} is complete locally convex. Then a sequence {vl}∞l=1 converges to v in
Lr(·), loc(Ω) strongly (correspondly, weakly), if for any domain Ω′ ∈ Bd(Ω) the
sequence {vl|Ω′}∞l=1 converges to v|Ω′ in Lr(·)(Ω′) strongly (correspondly, weakly).
As above, we introduce the space Lr(·)(Q′), where Q′ = Ω′ × (0, T ), Ω′ ∈ Bd(Ω),
by using the functional ρQ′,r(w) :=

˜
Q′ |w(x, t)|r(x) dxdt instead of ρΩ′,r(v). Then

we define a complete locally convex space Lr(·), loc(Q) along with a family of
seminorms {‖ · ‖Lr(·)(Ω′×(0,T )) | Ω′ ∈ Bd(Ω)}.

Let the following condition holds:

(P) p = (p0, p1, . . . , pn) : Ω→ R1+n is a vector-valued function such that for every
i ∈ {0, 1, . . . , n} the function pi : Ω → R is measurable, and for any Ω′ ∈ Bd(Ω)
we have 1 < ess infΩ′ pi 6 ess supΩ′ pi < +∞.

Let p′= (p′0, p
′
1, . . . , p

′
n) be the vector-valued function such that 1

pi(x) + 1
p′i(x)

=1

for a.e. x ∈ Ω, i = 0, n. Obviously, the function p′ satisfies condition (P) with p′i
instead of pi, i = 0, n.

For any domain Ω′ ∈ Bd(Ω) we define the space

W 1
p(·)(Ω

′) := {v ∈ Lp0(·)(Ω
′) | vxi ∈ Lpi(·)(Ω

′), i = 1, n}.

This is the Banach space with the norm

‖v‖W 1
p(·)(Ω

′) := ‖v‖Lp0(·)(Ω′) +

n∑
i=1

‖vxi‖Lpi(·)(Ω′).

Space W 1
p(·)(Ω

′) is called the Sobolev space with variable exponent or generalized
Sobolev space (see, for example, [30]). Denote by W 1

p(·), loc(Ω) the complete locally
convex space of (classes of) functions v ∈ Lp0(·), loc(Ω) such that vxi ∈ Lpi(·), loc(Ω),
i = 1, n, along with a family of seminorms

{
‖v‖W 1

p(·)(Ω
′)) | Ω′ ∈ Bd(Ω)

}
. Let

W̃ 1
p(·), loc(Ω) be the closure of the set C̃1(Ω) := {v ∈ C1(Ω) | v|Γ0 = 0} in

space W 1
p(·), loc(Ω). By W̃ 1

p(·),c(Ω) we denote a subspace of W̃ 1
p(·), loc(Ω) consisting

of functions with bounded supports.
For the domain Q′ = Ω′ × (0, T ), where Ω′ ∈ Bd(Ω), we put

W 1,0
p(·)(Q

′) := {w ∈ Lp0(·)(Q
′) | wxi ∈ Lpi(·)(Q

′), i = 1, n}.

This is the Banach space with the norm

‖w‖
W 1,0
p(·)(Q

′) := ‖w‖Lp0(·)(Q′) +

n∑
i=1

‖wxi‖Lpi(·)(Q′).
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Denote by W 1,0
p(·), loc(Q) the complete locally convex space of (classes of) functions

w ∈ Lp0(·), loc(Q) such that wxi ∈ Lpi(·), loc(Q), i = 1, n, along with a family
of seminorms

{
‖w‖

W 1,0
p(·)(Ω

′×(0,T ))

∣∣ Ω′ ∈ Bd(Ω)
}
. By W̃ 1,0

p(·), loc(Q) we denote a

subspace of functions w ∈W 1,0
p(·), loc(Q) such that w(·, t) belongs to W̃ 1

p(·), loc(Ω) for
a.e. t ∈ (0, T ).

By definition, put

C([0, T ];L2,loc(Ω)) := {w : [0, T ]→ L2,loc(Ω)
∣∣ w ∈ C([0, T ];L2(Ω′)) ∀Ω′ ∈ Bd(Ω)}.

This space with the family of seminorms

{‖w‖C([0,T ];L2(Ω′)) := max
t∈[0,T ]

‖w(·, t)‖L2(Ω′) |Ω′ ∈ Bd(Ω)}

is complete locally convex.
Denote by

Up,loc(Q) := W̃ 1,0
p(·),loc(Q) ∩ C([0, T ];L2,loc(Ω)).

This space is complete locally convex along with a family of seminorms
{‖w‖

W 1,0
p(·)(Ω

′×(0,T ))
+ ‖w‖C([0,T ];L2(Ω′)) | Ω′ ∈ Bd(Ω)}.

Finally, let C1
c (0, T ) ⊂ C1(0, T ) be a set of functions with compact supports

on (0, T ).

3. Statement of the problem and formulation of main results

We will consider weak solutions of the problem (1.1) – (1.3). To define them,
we introduce corresponding data-in classes.

Let p = (p0, p1, . . . , pn) be a vector-valued function that satisfies condition
(P). By Ap we denote all ordered collections (a0, a1, . . . , an) of the real functions
satisfying the following conditions:

(A1) for every i ∈ {0, 1, . . . , n}, function ai(x, t, ρ, ξ), (x, t, ρ, ξ) ∈ Q× R1+n, is
a Carathéodory, i.e., function ai(x, t, ·, ·) : R1+n → R is a continuous for
a.e. (x, t) ∈ Q, and function ai(·, ·, ρ, ξ) : Q → R is a measurable for every
(ρ, ξ) ∈ R1+n; in addition, ai(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q, i = 0, n;

(A2) for every i ∈ {0, 1, . . . , n}, for a.e. (x, t) ∈ Q, and for every (ρ, ξ) ∈ R1+n

the following inequality holds

|ai(x, t, ρ, ξ)| 6 hi,1(x, t)
(
|ρ|p0(x)/p′i(x) +

n∑
j=1

|ξj |pj(x)/p′i(x)
)

+ hi,2(x, t),

where hi,1 ∈ L∞, loc(Q), hi,2 ∈ Lp ′i(·), loc(Q).
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Now we give a definition of a weak solution of problem (1.1) – (1.3). We assume
that p satisfies condition (P), (a0, a1, ..., an)∈Ap, f ∈ L2,loc(Q), u0 ∈ L2,loc(Ω).

Definition 3.1. A weak solution of problem (1.1) — (1.3) is called a function
u ∈ Up,loc(Q) that satisfies (in the sense of space C([0, T ];L2,loc(Ω))) the initial
condition

u(·, 0) = u0(·) a.e. on Ω, (3.1)

and the integral identity
¨
Q

[
−uψϕ′ +

n∑
i=1

ai(x, t, u,∇u)ψxiϕ+ a0(x, t, u,∇u)ψϕ
]
dxdt

=

¨
Q
fψϕdxdt ∀ψ ∈ W̃ 1

p(·),c(Ω), ∀ϕ ∈ C1
c (0, T ). (3.2)

Suppose 0 ∈ Ω. Let k ∈ {1, . . . , n} be a number such that for any τ > 0 the
set Ω̃τ := Ω ∩ {x ∈ Rn

∣∣ |x1|2 + . . . + |xk|2 < τ2} is bounded. For any τ > 0 we
denote by Ωτ a connected component of the set Ω̃τ that contains 0. For any τ > 0
put Qτ := Ωτ × (0, T ). Obviously, Ω =

⋃
τ>0 Ωτ , Q =

⋃
τ>0Qτ .

The choice of value k depends on the geometry of the domain Ω (up to the
numbering of variables x1, ..., xn). Obviously, in the general case we can take
k = n, and, in this case, the class of equations considered below will consist of
generalizations of equation (1.4), or rather, of almost linear equations. But in the
case of k < n the class of equations to which the following results apply is wider
than in the case of k = n, and the smaller the value of k the wider the class of
these equations (to confirm this, see (1.5)).

Let us illustrate possibilities of the value’s k considered two examples.
Example 3.1. Assume Ω = Ω1 × Ω2, where Ω1 is an unbounded domain in Rl :=
{(x1, . . . , xl) | xi ∈ R, i = 1, l} for some l ∈ {1, . . . , n−1}, Ω2 is a bounded domain
in Rn−l := {(xl+1, . . . , xn) |xi ∈ R, i = l + 1, n}, and 0 ∈ Ω. Then we can take
arbitrary k ∈ {l, . . . , n}. If k = l, then Ωτ = Ω1,τ ×Ω2 for any τ > 0, where Ω1,τ is
a connected component of the set Ω1∩{(x1, . . . , xl) ∈ Rl | |x1|2 + . . .+ |xl|2 < τ2}
such that 0 ∈ Ω1,R. �

Example 3.2. Suppose

Ω := {(x1, x2) ∈ R2 | −∞ < x1 < +∞, −φ1(x1) < x2 < φ2(x1)},

where for each m ∈ {1, 2} a function φm is continuous on R, and φm(s) > 0 for
all s ∈ R. Then we can take either k = 1 or k = 2. In case k = 1, we have
Ωτ =

{
(x1, x2)∈R2

∣∣ |x1| < τ, −φ1(x1) < x2 < φ2(x1)
}
for any τ > 0. If k = 2,

then

Ωτ =
{

(x1, x2)∈R2
∣∣ |x1| < τ,

−min{φ1(x1),
√
τ2 − |x1|2

}
< x2 < min{φ2(x1),

√
τ2 − |x1|2

}
for any τ > 0. �



Initial-boundary value problems for parabolic equations 105

By definition, put

Γj,τ := Γj ∩ ∂Ωτ , j = 0, 1, Γ∗,τ := Ω ∩ ∂Ωτ ,

Σj,τ := Γj,τ × (0, T ), j = 0, 1, Σ∗,τ := Γ∗,τ × (0, T ), τ > 0.

We will use a notation

∇kv := (vx1 , . . . , vxk), |∇kv| := (|vx1 |2 + . . .+ |vxk |
2)1/2.

Everywhere further we will consider that is carried out the following condition:

(P∗) p = (p0, p1, . . . , pn) : Ω→ R1+n satisfy condition (P), and p0(x) = p1(x) =
. . . = pk(x) = 2 for a.e. x ∈ Ω.

Suppose A∗p is a subset of Ap, which every element satisfies conditions (A1),
(A2), and the following condition:

(A3) for a.e. (x, t) ∈ Q and for every (ρ1, ξ
1), (ρ2, ξ

2) ∈ R1+n, we have

k∑
i=1

|ai(x, t, ρ1, ξ
1)− ai(x, t, ρ2, ξ

2)| 6 g1(x, t)|ξ′1 − ξ′2|+ g2(x, t)|ρ1 − ρ2|,

(3.3)
n∑
i=1

(ai(x, t, ρ1, ξ
1)− ai(x, t, ρ2, ξ

2))(ξ1
i − ξ2

i ) + (a0(x, t, ρ1, ξ
1)

− a0(x, t, ρ2, ξ
2))(ρ1 − ρ2) > q1(x, t)|ξ′1 − ξ′2|2 + q2(x, t)|ρ1 − ρ2|2, (3.4)

where ξ′j := (ξj1, . . . , ξ
j
k), |ξ

′j | := (|ξj1|2 + . . . + |ξjk|
2)1/2, j ∈ {1, 2}, and g1,

g2, q1, q2 : Q→ R are continuous functions on Q that satisfy the following
conditions:

• g1(x, t) > 0, g2(x, t) > 0, q1(x, t) > 0 for all (x, t) ∈ Q, infQ q2 > −∞;

• there exist a real number µ, and continuous functions d1, d2, λ defined on
[1,+∞) such that

q2(x, t) + µ > 0 for all (x, t) ∈ Q, (3.5)

for all τ > 1 : d1(τ) > max
Σ∗,τ

g1√
q1
, d2(τ) > max

Σ∗,τ
g2, (3.6)

for all τ > 1 : −µ < λ(τ) 6 inf
t,v

ˆ
Γ∗,τ

[
q1|∇kv|2 + q2|v|2

]
dΓ

ˆ
Γ∗,τ

|v|2 dΓ

, (3.7)

where the infimum is taken over all numbers t ∈ [0, T ], and all functions v
that are continuously differentiable in the neighborhood of Γ∗,τ , and v = 0
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on ∂Γ∗,τ ∩ Γ0 (in particular, −µ < λ(τ) 6 minΣ∗,τ
q2),

while ˆ +∞

1

dτ

Aµ(τ)
= +∞, (3.8)

where
Aµ(τ) :=

d1(τ)√
λ(τ) + µ

+
d2(τ)

λ(τ) + µ
, τ > 1. (3.9)

Remark 3.1. If supQ
g1√
q1

< +∞, supQ g2 < +∞, then functions d1, d2, λ can

be chosen as constants. Namely, d1(τ) := d1,0, d2(τ) := d2,0, λ(τ) := λ0 for all
τ > 1, where d1,0, d2,0, λ0 are constants such that

d1,0 > sup
Q

g1√
q1
, d2,0 > sup

Q

g2, λ0 6 inf
Q
q2.

Then we can take µ such that λ0 > −µ, and

Aµ(τ) = Aµ,0 :=
d1,0√
λ0 + µ

+
d2,0

λ0 + µ
for all τ > 1.

�

Suppose A∗∗p , in the case of k < n, is a subset of A∗p, which arbitrary element
satisfies the following condition:

(A4) for a.e. (x, t) ∈ Q and for every (ρ, ξ) ∈ R1+n, we have

n∑
i=0

ai(x, t, ρ, ξ)ξi+a0(x, t, ρ, ξ)ρ > q3(x, t)

n∑
i=k+1

|ξi|pi(x)−q4(x, t)|ρ|2−h(x, t),

(3.10)
where q3, q4 ∈ C(Q), q3(x, t) > 0 for all (x, t) ∈ Q, 0 6 supQ q4 < +∞,
h ∈ L1,loc(Q), h > 0 a.e. on Q.

In the case of k = n we will assume that A∗∗p := A∗p.

It is easy to prove that the initial problem

dτ

dα
= Aµ(τ), τ(0) = 1 (3.11)

has a unique solution τ(α), α ∈ [0,+∞), and this solution is determined by the
equality ˆ τ(α)

1

ds

Aµ(s)
= α, α > 0. (3.12)

From this and (3.8) it follows that

τ(α)→ +∞ as α→ +∞. (3.13)
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Suppose τ(α), α ∈ [0,+∞), is a solution of problem (3.11), and put

Ωα := Ωτ(α), Γαj := Γj,τ(α), j = 0, 1, Γα∗ := Γ∗,τ(α),

Qα := Qτ(α), Σα
j := Σj,τ(α), j = 0, 1, Σα

∗ := Σ∗,τ(α).

Note that in view of (3.13) we have Ω =
⋃
α>0 Ωα, Q =

⋃
α>0Q

α.

Let {Λm}∞m=1 be a sequence of real numbers such that for all m ∈ N we have

−µ < Λm 6 inf
t,v

ˆ
Ωm

[
q1|∇kv|2 + q2|v|2

]
dx

ˆ
Ωm
|v|2 dx

, (3.14)

where the infimum is taken over all numbers t ∈ [0, T ], and functions v ∈ C1(Ωm)
such that v = 0 on ∂Ωm \ Γm1 (in particular, −µ < Λm 6 minQm q2).

Denote
Ek,µ(w) := q1|∇kw|2 + (q2 + µ)|w|2,

〈w〉α :=

(˜
Qα Ek,µ(w)e−2µt dxdt

)1/2

, α > 0.
(3.15)

Now we formulate our main results.

Theorem 3.1 (a uniqueness of the solution). Let p satisfies condition (P∗), f ∈
L2,loc(Q), u0 ∈ L2,loc(Ω), (a0, a1, . . . , an) ∈ A∗p. Then problem (1.1) – (1.3) has at
most one weak solution such that

e−R/2 〈u〉R → 0 as R→ +∞ (3.16)

(an analog of the boundary condition at infinity), where 〈·〉R defined in (3.15).

Remark 3.2. Assertion (3.16) is equivalent to the condition

e
−
´ r
1

ds
Aµ(s)

¨
Qr

[
q1|∇ku|2 + (q2 + µ)|u|2

]
dxdt→ 0 as r → +∞. (3.17)

It follows from (3.12), if to remark that QR = Qr, if R =
´ r

1
ds

Aµ(s) . �

Theorem 3.2 (an existence of the solution). Let p satisfies condition (P∗), f ∈
L2,loc(Q), u0 ∈ L2,loc(Ω), (a0, a1, . . . , an) ∈ A∗∗p . Also suppose for some number
κ ∈ (0, 1) the following inequality holds

(Λm + µ)−1

¨
Qm
|f |2e−2µt dxdt+

ˆ
Ωm
|u0|2 dx 6 C1 e

(1−κ)m ∀m ∈ N, (3.18)

where C1 > 0 is a constant.
Then there exists a weak solution of problem (1.1) – (1.3) satisfying condition

(3.16). Moreover, for this solution the following estimate is fulfilled:

〈u〉m 6 C2 e
(1−κ)m/2 ∀m ∈ N, (3.19)

where C2 := [(2 + e1/2 − e−κ/2)/(1− e−κ/2)]
√
C1, 〈·〉m defined in (3.15).
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Remark 3.3. Estimate (3.19) is equivalent to the estimate
¨
Qr

[
q1|∇ku|2 + (q2 + µ)|u|2

]
e−2µt dxdt 6 C3 e

(1−κ)
´ r
1

ds
Aµ(s) ∀ r > 1, (3.20)

where C3 > 0 is a constant depending only on κ and C1.
The statement is substantiated in the same way as (3.17). �

Remark 3.4. For equation (1.4) the conditions of Theorems 1 and 2 are satisfied if
functions âij , i, j = 1, n, âi, i = 0, n, are as in Remark 1.1, and for a.e. (x, t) ∈ Q
following hold

g1(x, t) >
n∑
i=1

( n∑
j=1

|âij(x, t)|2
)1/2

, g2(x, t) = 0,

q1(x, t) = ω/2, q2(x, t) 6
(
â0(x, t)− 1

2ω

n∑
i=1

|âi(x, t)|2
)
,

where g1, g2, q1, q2 are as in (A3) with µ = 0, and f, u0 satisfy (3.18). �

Remark 3.5. For equation (1.5) the conditions of Theorems 1 and 2 are satisfied
if functions âij , i, j = 1, k, âi, i = k + 1, n, â0 are as in Remark 1.2, and for a.e.
(x, t) ∈ Q following inequalities hold

√
k

k∑
i=1

max
j∈{1,...,k}

∣∣âij(x, t)∣∣ 6 g1(x, t),

k∑
i,j=1

âij(x, t)ηiηj > q1(x, t)
k∑
i=1

|ηi|2 ∀ (η1, ..., ηk) ∈ Rk,

â0(x, t) > q2(x, t), min
i∈{k+1,...,n}

âi(x, t) > q3(x, t),

where g1, q1, q2, q3 are as in (A3), (A4) together with g2 = 0, q4 = 0, µ = 0, and
f, u0 satisfy (3.18). �

4. Auxiliary statements

Here we give some auxiliary results which will be used in Section 5. We denote

ai(v)(x, t) := ai(x, t, v(x, t),∇v(x, t)), (x, t) ∈ Q, i = 0, n, (4.1)

∂0v = v, ∂iv = ∂iv, i = 1, n. (4.2)

Recall that Lip(Ω) is the linear space of Lipschitz continuous functions on Ω.



Initial-boundary value problems for parabolic equations 109

Lemma 4.1 (Lemma 1, [24]). Suppose p satisfies condition (P), R > 0 is an
arbitrary fixed number, and a function w ∈ W̃ 1,0

p(·),loc(Q) satisfies the integral
identity ¨

QR

[
−wψϕ′ +

n∑
i=0

gi∂iψϕ

]
dxdt = 0

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ ΩR, ∀ϕ ∈ C1

c (0, T ),

(4.3)

where gi ∈ Lp′i(·),loc(Q), i = 0, n, are given functions.
Then for arbitrary function ζ ∈ Lip(Ω), supp ζ ⊂ ΩR, ζ > 0 we have

√
ζw ∈

C([0, T ];L2(ΩR)) (hence, w ∈ C([0, T ];L2(ΩR′)) for every R′ ∈ (0, R)). Moreover,
for arbitrary functions θ ∈ C1([0, T ]), and for any numbers t1, t2 ∈ [0, T ] (t1 < t2)
the following equality holds

1

2

[
θ(t)

ˆ
ΩR

|w(x, t)|2ζ(x) dx
]∣∣∣t=t2
t=t1
− 1

2

ˆ t2

t1

ˆ
ΩR

|w|2ζ θ′ dxdt

+

ˆ t2

t1

ˆ
ΩR

[ n∑
i=0

gi∂i(wζ)
]
θ dxdt = 0. (4.4)

If, in addition, it is known that w|Γ∗,R×(0,T ) = 0, then w ∈ C([0, T ];L2(ΩR)), and
we can take ζ(x) = 1, x ∈ Ω, in (4.4).

Lemma 4.2 (an analog of Saint-Venant principle). Assume p satisfies condition
(P∗), (a0, a1, . . . , an) ∈ A∗p, f ∈ L2,loc(Q), u0 ∈ L2,loc(Ω). Suppose R > 0 is an
arbitrary number, and u1, u2 ∈ Up,loc(Q) such that for each l ∈ {1, 2} we have

ul(·, 0) = u0(·) a.e. on ΩR, (4.5)

and

¨
QR

[
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ
]
dxdt =

¨
QR

fψϕdxdt,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ ΩR, ∀ϕ ∈ C1

c (0, T ). (4.6)

Then for every R1, R2, 0 < R1 < R2 6 R, the following inequality holds

〈u1 − u2〉R1 6 e
(R1−R2)/2 〈u1 − u2〉R2 . (4.7)

Remark 4.1. The inequality of type (4.7) has been obtained in [3] for weak
solutions from W 1,1

2,loc to linear parabolic equations, and in [6], [31], [32] and
other works for weak solutions fromW 1,0

2,loc to quasilinear parabolic equations with
constant nonlinearty exponents. This inequality is an analog of the well-known in
elasticity theory Saint-Venant principle. �
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The proof of Lemma 2. For an arbitrary x ∈ Rn we set x = (x′, x′′), where x′ =
(x1, ..., xk) ∈ Rk, x′′ = (xk+1, ..., xn) ∈ Rn−k. Let |x′| = (|x1|2 + . . . + |xk|2)1/2.
For any δ ∈ (0, 1), τ ∈ [1,+∞), x′ ∈ Rk we denote

ψδ(x
′, τ) :=


1, if |x′| 6 τ − δ,
(τ − |x′|)/δ, if τ − δ < |x′| < τ,

0, if |x′| > τ.

Obviously, for every i ∈ {1, . . . , k} we have ∂iψδ(x′, τ) := 0 if |x′| < τ − δ or
|x′| > τ , and

∂iψδ(x
′, τ) = − xi

δ|x′|
if τ − δ < |x′| < τ. (4.8)

By definition, put w := u1 − u2. Let δ ∈ (0, 1), τ ∈ (1, τ(R)) be arbitrary
fixed. We subtract the integral identity (4.6) for l = 2 from this identity for l = 1.
Applying Lemma 1 to their difference with t1 = 0, t2 = T , θ(t) := e−2µt, t ∈ R,
ζ(x) := ψδ(x

′, τ), x = (x′, x′′) ∈ Ω, we obtain

1

2

[
e−2µt

ˆ
Ωτ

|w(x, t)|2ψδ(x′, τ) dx
]∣∣∣t=T
t=0

+ µ

¨
Qτ

|w|2ψδe−2µt dxdt

+

¨
Qτ

[ n∑
i=0

(ai(u1)− ai(u2))∂iwψδ

]
e−2µt dxdt

= −
¨
Qτ

[ k∑
i=1

(ai(u1)− ai(u2))w∂iψδ

]
e−2µt dxdt. (4.9)

Let ∇kw := (∂1w, . . . , ∂kw), |∇kw| := (
∑k

i=1 |∂iw|2)1/2. In view of (3.3) we have

k∑
i=1

|ai(u1)− ai(u2)| 6 g1|∇kw|+ g2|w| a. e. on Q. (4.10)

From (4.9), taking into account (3.4), (4.5), (4.8), and (4.10), we deduce

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
ψδe
−2µt dxdt

6
1

δ

¨
Qτ\Qτ−δ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dxdt. (4.11)

Note that for an arbitrary function P ∈ L1,loc(Q) we have

¨
Qτ\Qτ−δ

P (x, t) dxdt =

ˆ τ

τ−δ

( ¨
Σ∗,σ

P (x, t) dΓ dt
)
dσ, τ > 0.
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Using the latter assertion, we pass to the limit in (4.11) as δ → 0+. So, we get

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dxdt

6
¨

Σ∗,τ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dΓ dt for a.e. τ ∈ (0, τ(R)). (4.12)

From Cauchy-Bunyakovsky-Schvartz inequality it follows that for a.e. τ ∈
(0, τ(R))

¨
Σ∗,τ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dΓ dt 6

(¨
Σ∗,τ

|g1|2|∇kw|2e−2µt dΓ dt
)1/2

×
(¨

Σ∗,τ

|w|2e−2µt dΓ dt
)1/2

+

¨
Σ∗,τ

g2|w|2e−2µt dΓ dt. (4.13)

By virtue of (3.6) and (3.7), we obtain for a.e. τ ∈ (0, τ(R)) and for a.e.
t ∈ (0, T )

ˆ
Γ∗,τ

|g1|2|∇kw|2 dΓ 6
ˆ

Γ∗,τ

[|g1|2/q1]q1|∇kw|2 dΓ

6 (d1(τ))2

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ, (4.14)

ˆ
Γ∗,τ

|w|2 dΓ 6
ˆ

Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ/[ ˆ

Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ
/ˆ

Γ∗,τ

|w|2 dΓ
]

6 (λ(τ) + µ)−1

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ, (4.15)

ˆ
Γ∗,τ

g2|w|2 dΓ 6 d2(τ)

ˆ
Γ∗,τ

|w|2 dΓ

6 d2(τ)(λ(τ) + µ)−1

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ. (4.16)

From (4.12), taking into account (4.13) – (4.16), we infer

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dxdt

6
[
d1(τ)(λ(τ) + µ)−1/2 + d2(τ)(λ(τ) + µ)−1

]
×
¨

Σ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dΓ dt. (4.17)
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In view of (3.9), (3.15), and (4.17) we establish for a.e. τ ∈ (0, τ(R))

¨
Qτ

Ek,µ(w)e−2µt dxdt 6 Aµ(τ)

¨
Σ∗,τ

Ek,µ(w)e−2µt dΓ dt. (4.18)

Denote

F (τ) :=

¨
Qτ

Ek,µ(w)e−2µt dxdt ≡
ˆ τ

0

( ˆ
Σ∗,σ

Ek,µ(w)e−2µt dΓ dt
)
dσ, (4.19)

for all τ ∈ [1, τ(R)]. Then for a.e. τ ∈ (1, τ(R))

¨
Σ∗,τ

Ek,µ(w)e−2µt dΓ dt =
d

dτ

ˆ τ

0

( ˆ
Σ∗,σ

Ek,µ(w)e−2µt dΓ dt
)
dσ =

dF (τ)

dτ
.

(4.20)
From (4.18), using (4.19), and (4.20), we obtain

F (τ) 6 Aµ(τ)
dF (τ)

dτ
for a.e. τ ∈ [1, τ(R)]. (4.21)

Suppose τ = τ(α), α ∈ [0,+∞), is a solution of problem (3.11), and R1, R2 are
arbitrary real numbers such that 0 < R1 < R2 6 R. In view of (3.11) and (4.21)
we get

F (τ(α)) 6
dF (τ(α))

dτ

dτ(α)

dα
, α ∈ [R1, R2].

It follows that
0 6

dF (τ(α))

dα
− F (τ(α)), α ∈ [R1, R2]. (4.22)

Multiplying (4.22) by e−α, we deduce 0 6
d

dα

(
e−αF (τ(α))

)
, α ∈ [R1, R2].

Integrating the latter inequality in α from R1 to R2, we infer

F (τ(R1)) 6 eR1−R2F (τ(R2)). (4.23)

From (4.23), taking into account 〈w〉α =
√
F (τ(α)), we imply (4.7).

5. Proofs of the main results

The proof of Theorem 1. Let us show that problem (1.1) – (1.3) has no more
than one weak solution. Assume the opposite. Let u1 and u2 be different weak
solutions of problem (1.1) – (1.3), which satisfy condition (3.16). It is clear that
for arbitrary R > 0 a functional 〈·〉R is a seminorm in space Up,loc(Q). From this
fact and (3.16) we deduce

e−R/2 〈u1 − u2〉R 6 e−R/2(〈u1〉R + 〈u2〉R) = e−R/2〈u1〉R + e−R/2〈u2〉R = β(R),



Initial-boundary value problems for parabolic equations 113

where β(R) → 0 as R → +∞. Using this assertion and Lemma 2 (see (4.7)) for
arbitrary R1, R2 such that R1 < R2, we obtain the estimate

〈u1 − u2〉R1 6 e
(R1−R2)/2〈u1 − u2〉R2 = eR1/2β(R2). (5.1)

We fix R1, and tend R2 to +∞. From (5.1) it follows that 〈u1 − u2〉R1 = 0. Thus
u1 = u2 almost everywhere on QR1 . As R1 is arbitrary, we get u1 = u2 almost
everywhere on Q. This contradiction proves Theorem 1.

The proof of Theorem 2. The proof is in four steps.
Step 1 (the solution’s approximations). Let α > 0 be an arbitrary number. By
Ŵ 1
p(·)(Ω

α) define the closure of space {v ∈ C1
(
Ωα
)
| v
∣∣
∂Ωα\Γα1

= 0} in W 1
p(·)(Ω

α).

By Ŵ 1,0
p(·)(Q

α) denote a space of functions w ∈ W 1,0
p(·)(Q

α) such that, for a.e. t ∈
(0, T ), w(·, t) belongs to Ŵ 1

p(·)(Ω
α). We set Ûp(Qα) := Ŵ 1,0

p(·)(Q
α)∩C([0, T ];L2(Ωα)).

For every l ∈ N we consider the problem: to find the function ul ∈ Ûp(Ql) that
satisfies (in the sense of space C([0, T ];L2(Ωl))) the initial condition

ul(·, 0) = u0(·) almost everywhere in Ωl, (5.2)

and the integral identity

¨
Ql

{
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ
}
dxdt =

¨
Ql
fψϕdxdt,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ Ωl, ∀ϕ ∈ C1

c (0, T ). (5.3)

To prove the existence of the function ul ∈ Ûp(Ql) we use Faedo-Galerkin
method (see, for example, [22]). In view of (A3) it is easy to show that the
function ul is a unique.

For every l ∈ N the function ul is extended by zero to Q, and the extension
denote by ul again. Obviously, that ul ∈ Up,loc(Q). Now we show that there exists
a subsequence of the sequence {ul}∞l=1 converging to the weak solution of problem
(1.1) – (1.3), (3.16) in some sense. We use an approach from [3], [6], and [33].

Step 2 (the convergence of the sequence of solution’s approximations). First we
estimate 〈ul〉l for an arbitrary fixed l ∈ N. From Lemma 1, putting w = ul, R = l,
t1 = 0, t2 = T , θ(t) = e−2µt, t ∈ R, ζ(x) = 1, x ∈ Ω, and using (5.3) instead of
(4.3), we obtain (see (4.1))

1

2
e−2µT

ˆ
Ωl
|ul(x, T )|2 dx+

¨
Ql

[ n∑
i=0

ai(ul) ∂iul + µ|ul|2
]
e−2µt dxdt

=

¨
Ql
f ul e

−2µt dxdt+
1

2

ˆ
Ωl
|u0|2 dx. (5.4)
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From this assertion, taking into account (A1) (or rather, the condition ai(0) =
0, i = 0, n), (A3) (see (3.4)), and Cauchy inequality:

ab 6
ε

2
a2 +

1

2ε
b2, a, b ∈ R, ε > 0, (5.5)

we infer
¨
Ql

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
e−2µt dxdt

6
ε1

2

¨
Ql
|ul|2e−2µt dxdt+

1

2ε1

¨
Ql
|f |2e−2µt dxdt+

1

2

ˆ
Ωl
|u0|2 dxdt, (5.6)

where ε1 > 0 is an arbitrary constant.
We have

¨
Ql
|ul|2e−2µt dxdt =

ˆ T

0
e−2µt

( ˆ
Ωl
|ul|2 dx

)
dt

=

ˆ T

0
e−2µt

( ˆ
Ωl

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
dx
/[ ˆ

Ωl

[
q1|∇kul|2

+ (q2 + µ)|ul|2
]
dx
/ ˆ

Ωl
|ul|2 dx

])
dt

6
1

Λl + µ

¨
Ql

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
e−2µt dxdt, (5.7)

where Λl is defined in (3.14).
From (5.6) and (5.7), putting ε1 = Λl + µ, we get
¨
Ql
Ek,µ(ul)e

−2µt dxdt 6 (Λl + µ)−1

¨
Ql
|f |2e−2µt dxdt+

ˆ
Ωl
|u0|2 dx.

The latter inequality and (3.18) imply the estimate

〈ul〉l 6
√
C1 e

(1−κ)l/2, l ∈ N. (5.8)

Letm ∈ N be an arbitrary fixed number, and let l, r ∈ N be arbitrary numbers,
while l > m. We have

〈ul+r − ul〉m 6
r−1∑
i=0

〈ul+i+1 − ul+i〉m. (5.9)

For each i ∈ {0, . . . , r − 1} and the functions ul+i+1, ul+i, using Lemma 2 with
R = l + i, we obtain

〈ul+i+1 − ul+i〉m 6 e−1/2〈ul+i+1 − ul+i〉m+1 6 . . .

6 e−(l+i−m)/2〈ul+i+1 − ul+i〉l+i. (5.10)
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In view of (5.8), we have

〈ul+i+1 − ul+i〉l+i 6 〈ul+i+1〉l+i+1 + 〈ul+i〉l+i
6
√
C1

[
e(1−κ)(l+i+1)/2 + e(1−κ)(l+i)/2]

6
√
C1

[
e1/2 + 1]e(1−κ)(l+i)/2 = C4 e

(1−κ)(l+i)/2, (5.11)

where C4 :=
√
C1

(
e1/2 + 1).

Using (5.9) – (5.11), we find

〈ul+r − ul〉m 6 C4

r−1∑
i=0

e−(l+i−m)/2 e(1−κ)(l+i)/2

6 C4e
(m−κl)/2

∞∑
i=0

(e−κ/2)i 6 C5e
(m−κl)/2, (5.12)

where
C5 := C4/(1− e−κ/2) =

√
C1(e1/2 + 1)/(1− e−κ/2). (5.13)

From (5.12) it follows that 〈ul+r − ul〉m → 0 as l→ +∞ uniformly by r ∈ N,
that is, {∂iul}, i = 0, k, are Cauchy sequences in space L2(Qm), where m ∈ N
is an arbitrary fixed. Hence, there exists a function u ∈ L2, loc(Q) such that
∂iu ∈ L2,loc(Q), i = 1, k, and

∂iul−→
l→∞

∂iu strongly in L2, loc(Q), i = 0, k. (5.14)

Taking into account (A3) (see (3.3)), from (5.14) we get

ai(ul)−→
l→∞

ai(u) strongly in L2, loc(Q), i = 1, k. (5.15)

Suppose m ∈ N is an arbitrary fixed number, and l, r ∈ N are arbitrary
numbers such that l > m, r > m. Under the condition suppψ ⊂ Ωm, we subtract
the integral identity (5.3) for l = r from this identity for l. Applying Lemma 1
to their difference with t1 = 0, t2 = s ∈ (0, T ], θ(t) := e−2µt, t ∈ R, ζ(x) :=
ψ1/2(x′, τ(m)), x = (x′, x′′) ∈ Ω, we obtain

1

2

[
e−2µt

ˆ
Ωm
|ulr(x, t)|2ψ1/2(x′, τ(m)) dx

]∣∣∣t=s
t=0

+

ˆ s

0

ˆ
Ωm

[ n∑
i=0

(ai(ul)− ai(ur))∂iulr + µ|ulr|2
]
ψ1/2e

−2µt dxdt

= −
ˆ s

0

ˆ
Ωm

[ k∑
i=1

(ai(ul)− ai(ur))ulr∂iψ1/2

]
e−2µt dxdt, (5.16)

where ulr := ul − ur.
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By virtue of (A3) and (4.8), (5.2), from (5.16) for all s ∈ [0, T ] we deduce
ˆ

Ωm
|ulr(x, s)|2ψ1/2(x′, τ(m)) dx

6 4e2|µ|T
ˆ s

0

ˆ
Ωm

[ k∑
i=1

|ai(ul)− ai(ur)||ulr|
]
dxdt. (5.17)

From (5.17), in view of Cauchy-Bunyakovsky-Schvartz inequality, it implies that

max
t∈[0,T ]

ˆ
Ωτ(m)−1/2

|ul(x, t)− ur(x, t)|2 dx

6 4e2|µ|T
k∑
i=1

(¨
Qm
|ai(ul)− ai(ur)|2 dxdt

)1/2

×
(¨

Qm
|ul − ur|2 dxdt

)1/2
. (5.18)

Using (5.14) and (5.15), from (5.18) we infer that {ul} is the Cauchy sequence in
space C([0, T ];L2,loc(Ω)). Hence,

u ∈ C([0, T ];L2,loc(Ω)) and ul−→
l→∞

u in C([0, T ];L2,loc(Ω)). (5.19)

Assume m ∈ N is an arbitrary fixed number, and l ∈ N is an arbitrary
number such that l > m. Putting w = ul, R = τ(m), t1 = 0, t2 = T , ζ(x) :=
ψ1/2(x′, τ(m)), x = (x′, x′′) ∈ Ω, θ(t) := e−2qt, t ∈ R, where q := supQ q4 (q4 from
condition (A4)), and using (5.3) instead of (4.3), from Lemma 1 we obtain

1

2
e−2qT

ˆ
Ωm
|ul(x, T )|2ψ1/2(x′, τ(m)) dx

+

¨
Qm

[ n∑
i=0

ai(ul)∂iul + q|ul|2
]
ψ1/2e

−2qt dxdt

= −
¨
Qm

k∑
i=1

ai(ul)ul ∂iψ1/2e
−2qt dxdt+

¨
Qm

fulψ1/2e
−2qt dxdt

+
1

2

ˆ
Ωm
|u0|2ψ1/2(x′, τ(m)) dx. (5.20)

Estimating the terms of (5.20) with conditions (A1), (A3) (see (3.3)), (A4),
(4.8) and Cauchy-Bunyakovsky-Schvartz inequality, we get
¨
Qτ(m)−1/2

[
q3

n∑
i=k+1

|∂iul|pi(x) + (q − q4)|ul|2
]
e−2qt dxdt

6 C7

(¨
Qm

[ k∑
i=0

|∂iul|2
]
e−2qt dxdt+

¨
Qm

[
|f |2 +h

]
e−2qt dxdt+

ˆ
Ωm
|u0|2 dx

)
,

(5.21)
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where constant C7 > 0 is independent of l, but it may be depended on m.
Using (5.14), from (5.21) we obtain

¨
Qτ(m)−1/2

n∑
i=0

|∂iul|pi(x) dxdt 6 C8, m, l ∈ N, l > m, (5.22)

where constant C8 > 0 is independent of l, but it may be depended on m.
By virtue of (A2), (5.14), (5.22), and discrete Hölder inequality we deduce

that for every i ∈ {0, k + 1, . . . , n} and arbitrary m, l ∈ N, l > m,
¨
Qτ(m)−1/2

|ai(ul)|p
′
i(x) dxdt 6 C9

¨
Qτ(m)−1/2

[ n∑
j=0

|∂jul|pj(x)
]
dxdt+ C10 6 C11,

(5.23)
where positive constants C9, C10, C11 are independent of l, but they may be
depended on m.

In view of (5.22), (5.23), and the reflexivity of spaces Lpi( · )(Qτ ), Lp′i(·)(Qτ ),
i = k + 1, n, τ > 0, it follows that there exists a subsequence of the sequence{
ul
}∞
l=1

(without loss of generality we use the notation
{
ul
}∞
l=1

for this subsequence),
and functions χ0 ∈ L2, loc(Q), χi ∈ Lp′i(·),loc(Q), i = k + 1, n, such that

∂iul−→
l→∞

∂iu weakly in Lpi(·),loc(Q), i = k + 1, n, (5.24)

a0

(
ul
)
−→
l→∞

χ0 weakly in L2,loc(Q), (5.25)

ai
(
ul
)
−→
l→∞

χi weakly in Lp′i(·),loc(Q), i = k + 1, n. (5.26)

Put
χi := ai(u), i = 1, k. (5.27)

Remark that for every l ∈ N (see (5.3)) we have the identity
¨
Q

[
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ− fψϕ
]
dxdt = 0,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ Ωl, ∀ϕ ∈ C1

c (0, T ). (5.28)

In (5.28) we fix an arbitrary ψ ∈ W̃ 1
p(·),c(Ω), ϕ ∈ C1

c (0, T ), and pass to the limit
as l→∞, taking into account (5.14), (5.15), (5.25) – (5.27). So, we get

¨
Q

[
−uψϕ′ +

n∑
i=0

χi∂iψϕ− fψϕ
]
dxdt = 0. (5.29)

To conclude that u is a weak solution of problem (1.1) – (1.3). It remains to show
that the following identity holds
¨
Q

n∑
i=0

χi∂iψϕdxdt =

¨
Q

n∑
i=0

ai(u)∂iψϕdxdt ∀ψ ∈ W̃ 1
p(·),c(Ω), ∀ϕ ∈ C1

c (0, T ).

(5.30)
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Indeed, if (5.30) is true, then from this and (5.29) we obtain the integral identity
(3.2). In view of (5.14), (5.24) we have u ∈ W̃ 1,0

p(·), loc(Q). From (5.2), (5.19) we
deduce u ∈ C([0, T ];L2,loc(Ω)) (it means that u ∈ U b

p,loc(Q)) and the initial
condition (1.3) is true. Hence, the function u is a weak solution of problem (1.1)
– (1.3).

Step 3 (the correctness of identity (5.30)). To verify the correctness of identity
(5.30) we use the monotonicity method [33].

Let v ∈ L2,loc(Q) be an arbitrary function such that ∂iv ∈ Lpi(·), loc(Q), i =

1, n, let ζ(x′), x′ = (x1, . . . , xk) ∈ Rk, be a nonnegative continuously differentiable
function with bounded support, and let θ ∈ C1

c (0, T ), θ > 0. By virtue of condition
(A3) (see (3.4)), for every l ∈ N we have
¨
Q

[ n∑
i=0

(ai(ul)− ai(v))(∂iul − ∂iv) + µ(ul − v)2
]
ζθe−2µt dxdt > 0. (5.31)

We rewrite inequality (5.31) as
¨
Q

[ n∑
i=0

ai(ul)∂iul
]
ζθe−2µt dxdt−

¨
Q

[ n∑
i=0

(
ai(ul)∂iv + ai(v)(∂iul − ∂iv)

)
+ µ(ul − v)2

]
ζθe−2µt dxdt > 0 ∀ l ∈ N. (5.32)

Assume m ∈ N such that supp ζ ⊂ {x′ | |x′| 6 τ(m)}. Using Lemma 1, we
obtain from identity (5.28) as l > m
¨
Q

[ n∑
i=0

ai(ul)∂iul
]
ζθe−2µt dxdt =

¨
Q
|ul|2ζ(θ′/2− µθ)e−2µt dxdt

−
¨
Q

[ k∑
i=1

ai(ul)ul∂iζ − fulζ
]
θe−2µt dxdt. (5.33)

From (5.32) and (5.33) we get

¨
Q
|ul|2ζ(θ′/2− µθ)e−2µt dxdt−

¨
Q

[ k∑
i=1

ai(ul)ul∂iζ − fulζ
]
θe−2µt dxdt

−
¨
Q

[ n∑
i=0

(
ai(ul)∂iv + ai(v)(∂iul − ∂iv)

)
+ µ(ul − v)2

]
ζθe−2µt dxdt > 0. (5.34)

In (5.34) we pass to the limit as l →∞, and by virtue of (5.14), (5.15), (5.25) –
(5.27) we infer

¨
Q
|u|2ζ(θ′/2− µθ)e−2µt dxdt−

¨
Q

[ k∑
i=1

χiu∂iζ − fuζ
]
θe−2µt dxdt

−
¨
Q

[ n∑
i=0

(
χi∂iv + ai(v)(∂iu− ∂iv)

)
+ µ(u− v)2

]
ζθe−2µt dxdt > 0. (5.35)
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In view of Lemma 1 it follows from (5.29) next equality

¨
Q

[ n∑
i=0

χi∂iu
]
ζθe−2µt dxdt =

¨
Q
|u|2ζ(θ′/2− µθ)e−2µt dxdt

−
¨
Q

[ k∑
i=1

χiu∂iζ − fuζ
]
θe−2µt dxdt. (5.36)

Assertions (5.35) and (5.36) imply

¨
Q

[ n∑
i=0

χi ∂iu
]
wθe−2µt dxdt−

¨
Q

[ n∑
i=0

(
χi∂iv + ai(v)(∂iu− ∂iv)

)
+ µ(u− v)2

]
ζθe−2µt dxdt > 0,

that is,
¨
Q

[ n∑
i=0

(χi − ai(v))(∂iu− ∂iv) + µ(u− v)2
]
ζθe−2µt dxdt > 0. (5.37)

In (5.37) we put v = u − λψϕ, where λ is an arbitrary number, and ψ ∈
W̃ 1
p(·),c(Ω), ϕ ∈ C1

c (0, T ) are arbitrary functions. So, taking into account the
arbitrariness of λ, we obtain the equality

¨
Q

[ n∑
i=0

(
χi − ai(u− λψϕ)

)
∂iψϕ+ λµ(ψϕ)2

]
ζθe−2µt dxdt = 0.

Here we tend λ to 0, using conditions (A1), (A2), and Lebesgue dominated
convergence theorem. Thus, taking into account the arbitrariness of ζ and θ,
we deduce
¨
Q

[ n∑
i=0

(
χi − ai(u)

)
∂iψ
]
ϕdxdt = 0, ψ ∈ W̃ 1

p(·),c(Ω), ϕ ∈ C1
c (0, T ). (5.38)

From (5.38) it follows (5.30).

Step 4 (the solution’s estimate). Estimate (3.19) is obtained from (5.8), (5.12) and
(5.13) by this way: 〈u〉m 6 〈u − um〉m + 〈um〉m = liml→∞〈ul − um〉m + 〈um〉m
6 C2e

(1−κ)m/2, where C2 :=
√
C1 + C5 =

√
C1(2 + e1/2 − e−κ/2)/(1− e−κ/2).

Now it is easy to see that the function u satisfies (3.16). Indeed, let R > 0
be an arbitrary number, and m be a natural number such that m− 1 < R 6 m.
Using (3.19), we get

〈u〉R 6 〈u〉m 6 C2e
(1−κ)m/2 = C2e

(1−κ)(m−R)/2e(1−κ)R/2

6 C2e
(1−κ)/2e−κR/2eR/2 = β(R)eR/2, R > 1,
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where β(R) := C2e
(1−κ)/2e−κR/2. Since β(R) → 0 as R → +∞, then we have

(3.16).
So, we have shown that u is a weak solution of problem (1.1) – (1.3) that

satisfies (3.16) and (3.19). Theorem 2 is proved.
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