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VALUE PROBLEM FOR 1D HYPERBOLIC EQUATION

WITH INTERIOR DEGENERACY
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Abstract. A 1-parameter initial boundary value problem (IBVP) for a linear homogeneous
degenerate wave equation (JODEA, 28(1), 1 вЂ“ 42) in a space-time rectangle is considered.
The origin of degeneracy is the power law coefficient function with respect to the spatial
distance to the symmetry line of the rectangle, the exponent being the only parameter of
the problem, ranging in (0,1) and (1,2) and producing the weak and strong degeneracy
respectively. In the case of weak degeneracy separation of variables is used in the rectangle
to obtain the unique bounded continuous solution to the IBVP, having the continuous
flux. In the case of strong degeneracy the IBVP splits into the two derived IBVPs posed
respectively in left and right half-rectangles and solved separately using separation of
variables. Continuous matching of the obtained left and right families of bounded solutions
to the IBVPs results in a linear integro-differential equation of convolution type. The
Laplace transformation is used to solve the equation and obtain a family of bounded
solutions to the IBVP, having the continuous flux and depending on one undetermined
function..

Key words: degenerate wave equation, separation of variables, linear integro-differential
equation of convolution type, Laplace transformation.

2010 Mathematics Subject Classification: 35L05, 35L35, 35L80.

1. Introduction and Setting of the Problem

The current study is a sequel to [2] and deals with the following 1-parame-
ter simplified initial boundary value problem (IBVP) for the degenerate wave
equation in the space-time rectangle [0, T ]× [−1,+1]



∂2u(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(−1,+1) ,

u(t,−1;α) = h2(t;α)

u(t,+1;α) = h1(t;α)

}
, t ∈ [0, T ] ,

∂u(0, x;α)

∂t
=
∗∗
u(x;α)

u(0, x;α) =
∗
u(x;α)

 , x ∈ [−1,+1] ,

(1.1)
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where known control functions h1(t;α), h2(t;α)∈C 1[0, T ]
⋂

C 2(0, T ] obey the com-
patibility conditions: h1(0;α)=

∗
u(+1;α), h ′1(0;α)=

∗∗
u(+1;α), h2(0;α)=

∗
u(−1;α),

and h ′2(0;α)=
∗∗
u(−1;α), and the 1-parameter family of coefficient functions is de-

fined as follows
a(x;α) = |x|α, x ∈ [−1,+1] , (1.2)

the parameter α∈(0, 2), and all the dependent and independent variables are non-
dimensional. Simplification of the IBVP (1.1) compared to that of [2] is in exten-
ding the power law for the coefficient function to the segment [−1,+1]. One should
refer to [2] to find out more details on the problem formulation.

The degenerate wave equation of the IBVP (1.1) has non-unique one-sided
solutions, obtained in [2] as the following power series

u1,j(t, x;α) =

∞∑
γ=0

U1,j,γ(t;α) |x|γθ,

u3,j(t, x;α) = U3,j(t;α) + |x|ν U3,j,0(t;α) ,

u5,j(t, x;α) = U5,j(t;α) + |x|ν
∞∑
γ=0

U5,j,γ(t;α) |x|γθ,

(1.3)

where ν = 1 − α, θ = 2 − α, the values {1, 3, 5} of the first subscript k refer to
the kind of the above solutions, and the values {1, 2} of the second subscript j
refer to the values x>0 and x<0 respectively. The coefficient functions of the so-
lutions u1,j(t, x;α) and u5,j(t, x;α) obey the following recurrence relations{

U ′′1,j,γ−1(t;α) = γθ [γθ − ν]U1,j,γ(t;α) ,

U ′′5,j,γ−1(t;α) = γθ [γθ + ν]U5,j,γ(t;α) ,
γ ∈ N .

and the function U5,j(t;α) is linear: U ′′5,j(t;α) = 0, whereas both coefficient func-
tions U3,j(t;α), U3,j,0(t;α) are linear: U ′′3,j(t;α) = 0, U ′′3,j,0(t) = 0. Note, that
the solution of the third kind is derived from the fifth one when U ′′5,j,0(t;α)=0.

The solution of the first kind is bounded for α ∈ (0, 2), whereas the solutions
of the third and fifth kind are bounded for α ∈ (0, 1] and unbounded for α ∈ (1, 2).
An other representation of the solutions of the first and fifth kinds, showing their
relation to the Bessel functions of the first kind and orders ∓%, reads as follows

u1,j(t, x;α) = |x|
ν
2

(
s−%

∞∑
γ=0

U1,j,γ(t;α) s2γ

)
,

u5,j(t, x;α) = U5,j(t;α) + |x|
ν
2

(
s+%

∞∑
γ=0

U5,j,γ(t;α) s2γ

)
,

(1.4)

where %θ = ν and the auxiliary variable s = |x|
θ
2 is used.
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The spatial derivatives of the solutions (1.3)

qk,j(t, x;α) =
∂uk,j
∂x

= sign (x)



|x|ν θ
∞∑
γ=1

γ U1,j,γ(t;α) |x|(γ−1)θ,

|x|−α ν U3,j,0(t;α) ,

|x|−α
∞∑
γ=0

[ν + γθ]U5,j,γ(t;α) |x|γθ

(1.5)

are bounded in the case of weak degeneracy (α∈(0, 1)) and unbounded in the case
of strong degeneracy (α ∈ (1, 2)) for the first kind, and always unbounded for
the third and fifth kinds. The fluxes of the solutions (1.3)

−fk,j(t, x;α) = a qk,j =



x θ
∞∑
γ=1

γ U1,j,γ(t;α) |x|(γ−1)θ,

sign (x) ν U3,j,0(t;α) ,

sign (x)
∞∑
γ=0

[ν + γθ]U5,j,γ(t;α) |x|γθ

(1.6)

are bounded, but have quite different nature at the interior degeneracy: the flux of
the first kind is vanishing at the degeneracy and, therefore, continuous; whereas
the two others have generally non-vanishing values of opposite signs. The odd-
behavior of the one-sided fluxes of the fifth kind prompts us the way of their
continuous matching.

In the current study we shall try to continuously match the one-sided solu-
tions (1.3) of the first and fifth kinds (therefore, the subscript k takes values {1, 5})
to find bounded solutions to the IBVP (1.1) using the method of separation of va-
riables (SV) and implying an analogy of the required solutions with a continuous
imaginary ‘string’. The current study is arranged as follows.

In Section 2 we: 1) give some preliminaries on SV in relation to the original
IBVP in the case of weak degeneracy and based on the one-sided solutions of
kinds 1, 5, both continuous and improving to have the continuous fluxes; 2) split
the original IBVP posed in the space-time rectangle [0, T ]× [−1,+1] and descri-
bing the behavior of the continuous ‘string’, into the derived IBVP2 posed in
the left space-time rectangle [0, T ] × [−1, 0]) and the IBVP1 posed in the right
space-time rectangle [0, T ] × [0,+1]), describing respectively the behaviour of
the left and the right parts of the ‘string’ separately in the case of strong de-
generacy; 3) formulate the conditions for continuous matching the bounded so-
lutions u1,j(t, x;α) to the IBVPj and expressing the integrity of the ‘string’ and
continuity of the flux; 4) apply the method of SV to find the unique bounded solu-
tions u(t, x;α) to the IBVP in the case of weak degeneracy, continuous and having
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the continuous flux; 5) apply the method of SV to find families of bounded solu-
tion u1,j(t, x;α) to the IBVPj in the case of strong degeneracy, having the continu-
ous flux and depending on undetermined functions hj+2(t;α)∈C 1[0, T ]

⋂
C 2(0, T ];

6) apply the continuity condition to the solutions u1,j(t, x;α) to derive a linear
integro-differential equation of convolution type with respect to the required func-
tions hj+2(t;α).

In Section 3 we solve the above integro-differential equation with respect to
the difference h3(t;α) − h4(t;α) and show that one of the two functions can be
chosen quite freely, that is, the bounded solutions to the IBVP of the resulting
family are continuous and have the continuous fluxes.

In Section 4 we summarize the results obtained and some observations on
the procedures applied.

In Section 2 we place some useful rules to calculate the coefficients of expansions
in the series of the eigenfunctions used in Section 2.

2. Method of Separation of Variables

2.1. Preliminaries to SV

Implementing SV to the IBVP (1.1) is essentially based on the following two
assertions.

Proposition 2.1. Let the following incomplete 1-parameter boundary value prob-
lems be given

[
a(x;α)Z ′j (x;α)

]′
+ λj(α)Zj(x;α) = 0 , 0 < |x| < 1 ,

Zj(∓1;α) = 0 ,
(2.1)

then: 1) the eigenvalues and the eigenfunctions of the problems of the two kinds(
λk,j,µ(α), Zk,j,µ(x;α)

)
≡
(
λk,µ(α), Zk,µ(x;α)

)
(marked with the first subscript

k ∈ {1, 5}) are defined as follows
λ1,µ(α) =

(
θ

2
s1,µ

)2

≡ σ2
1,µ , Z1,µ(x;α) = |x|

ν
2 J−%

(
s1,µ |x|

θ
2

)
,

λ5,µ(α) =

(
θ

2
s5,µ

)2

≡ σ2
5,µ , Z5,µ(x;α) = |x|

ν
2 J+%

(
s5,µ |x|

θ
2

)
,

(2.2)

where ν, θ, % are the α-dependent quantities

ν(α) = 1− α , θ(α) = 2− α , %(α) =
ν

θ
=

1− α
2− α

; (2.3)

J∓%(s) are the Bessel functions of the first kind and orders ∓% [7];
{
sk,µ

}∞
µ=1

are the unbounded monotonically increasing sequences of the zeros of functions



Solutions to a simplified IBVP for 1D degenerate wave equation 5

J∓%(s); 2) the eigenfunctions (2.2) of each kind are orthogonal in L2(−1, 0) and
L2(0,+1) respectively, that is

∓
ˆ ∓1

0
Zk,µ(x;α)Zk,γ(x;α) dx =

1

θ
J 2
∓%+1(sk,µ) δµ,γ ≡ ‖Zk,µ‖2δµ,γ , (2.4)

where µ, γ ∈ N , and δµ,γ is the Kronecker delta.

Proof. We start proving the first part of the proposition from representing the eigen-
functions (2.2) in such a generic formulation

Zk,µ(x;α) = |x|
ν
2 Z%(s) , s=sk,µ |x|

θ
2 , (2.5)

where the generic Bessel function Z%(s) stands for the Bessel functions J∓%(s) of
the first kind and satisfies the ordinary differential equation

s2 Z′′%(s) + s Z ′%(s) +
(
s2 − %2

)
Z%(s) = 0 .

Differentiating the generic eigenfunction (2.5) with respect to x yields to

Z ′k,µ(x;α) = sign (x)

[
ν

2
|x|

ν
2−1

Z%(s) +
θ

2
sk,µ |x|

ν
2 +

θ
2−1

Z ′%(s)

]
,

a(x;α)Z ′k,µ(x;α) = sign (x)

[
ν

2
|x|
−ν2 Z%(s) +

θ

2
sk,µ |x|

−ν2 +
θ
2 Z ′%(s)

]
,

[
a(x;α)Z ′k,µ(x;α)

]′
= |x|

−ν2−1
[
−
(
ν

2

)2

Z%(s) +

(
θ

2

)2(
s2 Z′′%(s) + s Z ′%(s)

)]

= −
(
θ

2
sk,µ

)2

|x|
ν
2 Z%(s) = −σ2

k,µ Zk,µ(x) ,

wherefrom we conclude, that the functions (2.2) indeed satisfy the differential
equation of the problems (2.1). This completes the proof of the first part of
the proposition.

To prove the second part of the proposition, we use:

1) the variable transformation s = x
θ
2 when calculating the integral

ˆ 1

0
Zk,µ(x;α)Zk,γ(x;α) dx =

2

θ

ˆ 1

0
s Z%

(
sk,µ s

)
Z%
(
sk,γ s

)
ds ;

2) the known value of the last integral [7]
ˆ 1

0
s Z%

(
sk,µ s

)
Z%
(
sk,γ s

)
ds =

1

2
Z 2
%+1(sk,µ) δµ,γ .

This completes the proof of the second part of the proposition.
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Proposition 2.2. Let the following composite 1-parameter boundary value prob-
lem be given

[
a(x;α)X ′(x;α)

]′
+ λ(α)X(x;α) = 0 , 0 < |x| < 1 ,

X(∓1;α) = 0 ,
[
X(x;α)

]∣∣
x=0−0

=
[
X(x;α)

]∣∣
x=0+0

,[
a(x;α)X ′(x;α)

]∣∣
x=0−0

=
[
a(x;α)X ′(x;α)

]∣∣
x=0+0

,

(2.6)

then: 1) in the case of weak degeneracy, the eigenvalues and the eigenfunctions
of the problem of the two kinds (marked with the first subscript k ∈ {1, 5}) are
defined as follows{

λ1,µ(α) = σ2
1,µ , X1,µ(x;α) = Z1,µ(x;α) ,

λ5,µ(α) = σ2
5,µ , X5,µ(x;α) = sign (x)Z5,µ(x;α) ,

(2.7)

where σ2
k,µ and Zk,µ(x;α) are given in (2.2) of Proposition 2.1; 2) the eigenfunc-

tions (2.7) of both kinds are orthogonal in L2(−1,+1), that is


ˆ +1

−1
Xk,µ(x;α)Xk,γ(x;α) dx = 2 ‖Zk,µ‖2δµ,γ ≡ ‖Xk,µ‖2δµ,γ ,

ˆ +1

−1
X1,µ(x;α)X5,γ(x;α) dx = 0 .

(2.8)

Proof. From Proposition 2.1 it follows that the functions Xk,µ(x;α) (2.7) satisfy
the differential equation of the boundary value problem, hence, we concentrate
our efforts on calculating the one-sided values of Xk,µ(x;α) and a(x;α)X ′k,µ(x;α)
at the interior degeneracy location. Substituting the known power series [7]

Z%(s) = J∓%(s) =
(s

2

)∓% ∞∑
γ=0

(−1)γ

γ! Γ(1 + γ ∓ %)

(s
2

)2γ
(2.9)

into (2.5) obtains the series representations for the quantities of interest
X1,µ(x;α) =

(s1,µ

2

)−% ∞∑
γ=0

(−1)γ |x|γθ

γ! Γ(1− %+ γ)

(s1,µ

2

)2γ

,

X5,µ(x;α) = sign (x) |x|ν
(s5,µ

2

)+% ∞∑
γ=0

(−1)γ |x|γθ

γ! Γ(1 + %+ γ)

(s5,µ

2

)2γ

,

(2.10)


a(x;α)X ′1,µ(x;α) =

(s1,µ

2

)−%
θ x

∞∑
γ=1

(−1)γγ |x|(γ−1)θ

γ! Γ(1− %+ γ)

(s1,µ

2

)2γ

,

a(x;α)X ′5,µ(x;α) =
(s5,µ

2

)+% ∞∑
γ=0

(−1)γ [ν + γθ] |x|γθ

γ! Γ(1 + %+ γ)

(s5,µ

2

)2γ

.

(2.11)
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The resulting series (2.10), (2.11) yield to the required values

X1,µ(0;α) =
(s1,µ

2

)−% 1

Γ(1− %)
, α ∈ (0, 2) ,

X5,µ(0;α) = 0 , α ∈ (0, 1) ,

sign (x) lim
x→0
|x|−ν X5,µ(x;α) =

(s5,µ

2

)+% 1

Γ(1 + %)
, α ∈ [1, 2) ,

(2.12)


[
a(x;α)X ′1,µ(x;α)

]∣∣
x=0

= 0 ,

[
a(x;α)X ′5,µ(x;α)

]∣∣
x=0

=
(s5,µ

2

)% ν

Γ(1 + %)
6= 0 ,

α ∈ (0, 2) , (2.13)

and this completes the proof of the first part of the proposition.
Orthogonality of the eigenfunctions of each kind directly follows from Propo-

sition 2.1, therefore, our concern is orthogonality of the eigenfunctions of the diffe-
rent kinds, that can be quite easily proved, indeed,

ˆ +1

−1
X1,µ(x;α)X5,γ(x;α) dx

=

ˆ 0

−1
X1,µ(x;α)X5,γ(x;α) dx +

ˆ +1

0
X1,µ(x;α)X5,γ(x;α) dx

= −
ˆ 0

−1
Z1,µ(x;α) Z5,γ(x;α) dx +

ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx

= −
ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx +

ˆ +1

0
Z1,µ(x;α) Z5,γ(x;α) dx = 0 .

This completes the proof of the second part of the proposition.

Before implementing the method of SV, we make some notes.
First, to build the eigenfunctions Z5,µ(x;α), we use the Bessel functions of

the first kind and order +%, rather than the proper Neumann functions [7],
to simplify our analysis of the IBVP. It means that the integer values of order −%

−% = −1− α
2− α

= m ∈ Z ⇔ α =
2m+ 1

m+ 1

can not be considered, i. e., the values of α = 1, 3
2 ,

5
3 ,

7
4 , etc., produced by the values

of m = 0, 1, 2, 3, etc.
Second, to guarantee uniform convergency of the expansions in series of the

eigen-functions Z1,µ(x;α), Xk,µ(x;α), based on the Bessel functions J∓%(s), we
have to impose the following restriction [6, 7] on the values of %

−1

2
6 % =

1− α
2− α

6 +
1

2
.
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Third, to solve the IBVP (1.1) in the case of weak degeneracy, we apply
the bounded eigenfunctions of Prop. 2.2.

Fourth, in the case of weak degeneracy we reduce solving the IBVP (1.1) to
the following two-step procedure: 1) solving the derived initial boundary value
problems

∂2u1(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u1(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(0,+1) ,

u1(t,+1;α) = h1(t) , t ∈ [0, T ] ,

∂u1(0, x;α)

∂t
=
∗∗
u(x)

u1(0, x;α) =
∗
u(x)

 , x ∈ [0,+1] ,

(2.14)



∂2u2(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u2(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(−1, 0) ,

u2(t,−1;α) = h2(t) , t ∈ [0, T ] ,

∂u2(0, x;α)

∂t
=
∗∗
u(x)

u2(0, x;α) =
∗
u(x)

 , x ∈ [−1, 0] ,

(2.15)

posed in the ‘right’ [0, T ] × [0,+1] and the ‘left’ [0, T ] × [−1, 0] space-time rec-
tangles and referred to as the IBVP1 and the IBVP2 respectively; 2) matching
the solutions u1(t, x;α) and u2(t, x;α) to the above initial boundary value prob-
lems

u(t, x;α) =

{
u2(t, x;α) , (t, x) ∈ [0, T ]× [−1, 0] ,

u1(t, x;α) , (t, x) ∈ [0, T ]× [0,+1] ,
(2.16)

by imposing the condition of continuity at the degeneracy segment [0, T ]×{0}

u2(t, 0;α) = u1(t, 0;α) , t ∈ [0, T ] . (2.17)

When applying the above procedure, we drop the subscript k, indicating
the first kind of the solutions (1.3), the only one bounded in the case of strong
degeneracy, therefore, the only remaining subscript is j.

2.2. Implementing SV to the IBVP

In the current section our concern is the bounded solution to the IBVP in
the case of weak degeneracy. The required solution is assumed to have the follo-
wing representation

u(t, x;α) = v(t, x;α) + w(t, x;α) , (2.18)
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where: a) the function v(t, x;α) is also required; b) the function w(t, x;α) is given
as follows

w(t, x;α) = φj=2(x;α)hj=2(t;α) + φj=1(x;α)hj=1(t;α) , (2.19)

c) the smooth blending functions φ1(x;α), φ2(x;α) satisfy the following boundary
and regularity conditions, respectively{

φ1(+1;α) = 1 , φ1(−1;α) = 0 ,

φ2(+1;α) = 0 , φ2(−1;α) = 1 ;
(2.20)

ψ1(x;α) ≡ ϕ ′1(x;α) =
[
a(x;α)φ ′1(x;α)

]′ ∈ C [−1,+1] ,

ψ2(x;α) ≡ ϕ ′2(x;α) =
[
a(x;α)φ ′2(x;α)

]′ ∈ C [−1,+1] .
(2.21)

Combining (2.18) – (2.20) yields to: a) the initial conditions for the required
function v(t, x;α)

v(0, x;α) = u(0, x;α) − w(0, x;α) ≡ ∗
v(x;α) ,

∂v(0, x;α)

∂t
=
∂u(0, x;α)

∂t
− ∂w(0, x;α)

∂t
≡ ∗∗v(x;α) ,

(2.22)

and b) reformulation of the IBVP into the following one with respect to v(t, x;α)

∂2v

∂t2
− ∂

∂x

(
a
∂v

∂x

)
= g , (t, x) ∈ (0, T ]×(−1,+1) ,

v(t,−1;α) = 0

v(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂v(0, x;α)

∂t
=
∗∗
v(x;α)

v(0, x;α) =
∗
v(x;α)

 , x ∈ [−1,+1] ,

(2.23)

where the right-hand side of the above degenerate wave equation reads

g(t, x;α) = −∂
2w(t, x;α)

∂t2
+

∂

∂x

(
a(x;α)

∂w(t, x;α)

∂x

)
. (2.24)

Then the initial functions (2.22) and the right-hand side (2.24) are expanded
into the series

∗
v(x;α) =

∞∑
µ=1

∗
v1,µ(α)X1,µ(x;α) +

∞∑
µ=1

∗
v5,µ(α)X5,µ(x;α) ,

∗∗
v(x;α) =

∞∑
µ=1

∗∗
v1,µ(α)X1,µ(x;α) +

∞∑
µ=1

∗∗
v5,µ(α)X5,µ(x;α) ,

(2.25)
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g(t, x;α) =
∞∑
µ=1

g1,µ(t;α)X1,µ(x;α) +
∞∑
µ=1

g5,µ(t;α)X5,µ(x;α) , (2.26)

where the functions Xk,µ(x;α) are defined in Prop. 2.2 and the coefficients are
calculated directly by integration

∗
vk,µ(α) =

1

‖Xk,µ‖2

ˆ +1

−1

∗
v(x;α)Xk,µ(x;α) dx ,

∗∗
vk,µ(α) =

1

‖Xk,µ‖2

ˆ +1

−1

∗∗
v(x;α)Xk,µ(x;α) dx ,

gk,µ(t;α) =
1

‖Xk,µ‖2

ˆ +1

−1
g(t, x;α)Xk,µ(x;α) dx .

(2.27)

Assuming that the ansatz for the required solution to the initial boundary
value problem (2.23) to be as follows

v(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x;α) +
∞∑
µ=1

O5,µ(t;α)X5,µ(x;α) , (2.28)

we obtain the Cauchy problems with respect to the desired coefficient functions
of the ansatz

O′′k,µ(t;α) + σ2
k,µOk,µ(t;α) = gk,µ(t;α) , t ∈ (0, T ] ,

O ′k,µ(0;α) =
∗∗
vk,µ(α)

Ok,µ(0;α) =
∗
vk,µ(α)

 .
(2.29)

The resulting expressions for the coefficients, after applying some trivial tri-
gonometric manipulations, can be presented in the convolution form as follows

Ok,µ(t;α) =
∗
vk,µ(α) cos

(
σk,µt

)
+ σ−1

k,µ
∗∗
vk,µ(α) sin

(
σk,µt

)
+ σ−1

k,µ

ˆ t

0
gk,µ(z;α) sin

[
σk,µ(t− z)

]
dz ,

or, shortly, asOk,µ(t;α) =
∗
vk,µ(α) cos

(
σk,µt

)
+ σ−1

k,µ
∗∗
vk,µ(α) sin

(
σk,µt

)
+ σ−1

k,µ gk,µ(t;α) sin
(
σk,µt

)
.

(2.30)
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Finally, the representation (2.18) yields to the required unique bounded solu-
tion to the IBVP

u(t, x;α) =
∞∑
µ=1

O1,µ(t;α)X1,µ(x;α)

+
∞∑
µ=1

O5,µ(t;α)X5,µ(x;α)

+ φ2(x;α)h2(t;α) + φ1(x;α)h1(t;α) .

(2.31)

The above procedure can be readily interpreted in terms of decomposition of
the functions v(t, x;α), ∗v(x;α), ∗∗v(x;α), w(t, x;α), and g(t, x;α) into their even
and odd parts, for example

v(t, x;α) = ve(t, x;α) + vo(t, x;α) , x ∈ [−1,+1] , (2.32)

where both parts are defined as follows2 ve(t, x;α) = v(t,+x;α) + v(t,−x;α) ,

2 vo(t, x;α) = v(t,+x;α)− v(t,−x;α) ,

leading to decomposition of the initial boundary value problem (2.23) into the de-
rived problems

∂2ve
∂t2
− ∂

∂x

(
a
∂ve
∂x

)
= ge , (t, x) ∈ (0, T ]×(−1,+1) ,

ve(t,−1;α) = 0

ve(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂ve(0, x;α)

∂t
=
∗∗
ve(x;α)

ve(0, x;α) =
∗
ve(x;α)

 , x ∈ [−1,+1] ,



∂2vo
∂t2
− ∂

∂x

(
a
∂vo
∂x

)
= go , (t, x) ∈ (0, T ]×(−1,+1) ,

vo(t,−1;α) = 0

vo(t,+1;α) = 0

}
, t ∈ [0, T ] ,

∂vo(0, x;α)

∂t
=
∗∗
vo(x;α)

vo(0, x;α) =
∗
vo(x;α)

 , x ∈ [−1,+1] .
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Applying SV to the above problems yields to the bounded solutions in the form
of the following series

ve(t, x;α) =

∞∑
µ=1

Oe,µ(t;α)X1,µ(x;α) ,

vo(t, x;α) =

∞∑
µ=1

Oo,µ(t;α)X5,µ(x;α) ,

(2.33)

where the coefficient functions Oe,µ(t;α) and Oo,µ(t;α) are evidently the solu-
tions to respectively the same Cauchy problems (2.29). And eventually, using
the representations (2.33), (2.32) and (2.18), the same unique bounded solution
to the IBVP can be found again.

Calculating the flux of the obtained solution to the IBVP

−f(t, x;α) =
∞∑
µ=1

O1,µ(t;α)
[
a(x;α)X ′1,µ(x;α)

]

+
∞∑
µ=1

O5,µ(t;α)
[
a(x;α)X ′5,µ(x;α)

]
+ ψ2(x;α)h2(t;α) + ψ1(x;α)h1(t;α)

(2.34)

proves that the following condition holds

f(t, 0− 0;α) = f(t, 0 + 0;α) , t ∈ [0, T ] , (2.35)

due to: a) Prop. 2.2 and b) the regularity conditions (2.21) imposed on the blending
functions φ1(x;α) and φ2(x;α) (or, shortly, due to continuous differentiability of
the function w(t, x;α) (2.19)).

2.3. Implementing SV to the IBVP1 and the IBVP2

The required solutions to the IBVPj in the case of strong degeneracy are as-
sumed to have the following representation

uj(t, x;α) = vj(t, x;α) + wj(t, x;α) , (2.36)

where: a) the functions vj(t, x;α) are required; b) the functions wj(t, x;α) are
given as follows

wj(t, x;α) = φj(x;α)hj(t;α) + φj+2(x;α)hj+2(t;α) , (2.37)

c) the smooth blending functions φj(x;α), φj+2(x;α) satisfy the following boun-
dary and regularity conditions, respectively:{

φ1(+1;α) = 1 , φ1(0;α) = 0 ,

φ3(+1;α) = 0 , φ3(0;α) = 1 ,
(2.38)
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φ2(−1;α) = 1 , φ2(0;α) = 0 ,

φ4(−1;α) = 0 , φ4(0;α) = 1 ,
(2.39)

ψ1(x;α) ≡ ϕ ′1(x;α) =
[
a(x;α)φ ′1(x;α)

]′
ψ3(x;α) ≡ ϕ ′3(x;α) =

[
a(x;α)φ ′3(x;α)

]′ ∈ C [0,+1] , (2.40)

ψ2(x;α) ≡ ϕ ′2(x;α) =
[
a(x;α)φ ′2(x;α)

]′
ψ4(x;α) ≡ ϕ ′4(x;α) =

[
a(x;α)φ ′4(x;α)

]′ ∈ C [−1, 0] ; (2.41)

d) hj+2(t;α) are the required corrections to vj(t, x;α) at the degeneracy segment.
Assuming that hj+2(0;α) =

∗
v(0, x;α), h ′j+2(0;α) =

∗∗
v(0, x;α) and combining

(2.36) – (2.39) yields to: a) the initial conditions for vj(t, x;α)
vj(0, x;α) = uj(0, x;α) − wj(0, x;α) ≡ ∗

vj(x;α) ,

∂vj(0, x;α)

∂t
=
∂uj(0, x;α)

∂t
−
∂wj(0, x;α)

∂t
≡ ∗∗vj(x;α) ,

(2.42)

and b) reformulation of the IBVPj into the following auxiliary IBVPaj with respect
to the functions vj(t, x;α)

∂2v1

∂t2
− ∂

∂x

(
a
∂v1

∂x

)
= g1 , (t, x) ∈ (0, T ]×(0,+1) ,

v1(t,+1;α) = 0 , t ∈ [0, T ] ,

∂v1(0, x;α)

∂t
=
∗∗
v1(x;α)

v1(0, x;α) =
∗
v1(x;α)

 , x ∈ [0,+1] ,

(2.43)



∂2v2

∂t2
− ∂

∂x

(
a
∂v2

∂x

)
= g2 , (t, x) ∈ (0, T ]×(−1, 0) ,

v2(t,−1;α) = 0 , t ∈ [0, T ] ,

∂v2(0, x;α)

∂t
=
∗∗
v2(x;α)

v2(0, x;α) =
∗
v2(x;α)

 , x ∈ [−1, 0] ,

(2.44)

where the right-hand sides of the above degenerate wave equations

gj(t, x;α) = −
∂2wj(t, x;α)

∂t2
+

∂

∂x

(
a(x;α)

∂wj(t, x;α)

∂x

)
,

being expanded due to (2.37), read as followsgj(t, x;α) = −φj(x;α)h′′2(t;α) − φj+2(x;α)h′′j+2(t;α)

+ψj(x;α)h2(t;α) + ψj+2(x;α)hj+2(t;α) .
(2.45)
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Then the initial functions (2.42) and the right-hand sides (2.45) are expanded
into the series 

∗
vj(x;α) =

∞∑
µ=1

∗
vj,µ(α)Z1,µ(x;α) ,

∗∗
vj(x;α) =

∞∑
µ=1

∗∗
vj,µ(α)Z1,µ(x;α) ,

(2.46)

gj(t, x;α) =
∞∑
µ=1

gj,µ(t;α)Z1,µ(x;α) , (2.47)

where the coefficients are determined straightforwardly by integration. The expan-
ded forms of the coefficients in (2.47) are

gj,µ(t;α) = aj,µ(α)h′′j (t;α) + cj,µ(α)h′′j+2(t;α)

+ bj,µ(α)hj(t;α) + dj,µ(α)hj+2(t;α) ,
(2.48)

where 

a1,µ(α) = − 1

‖Z1,µ‖2

ˆ +1

0
φ1(x;α)Z1,µ(x;α) dx ,

b1,µ(α) = +
1

‖Z1,µ‖2

ˆ +1

0
ψ1(x;α)Z1,µ(x;α) dx ,

c1,µ(α) = − 1

‖Z1,µ‖2

ˆ +1

0
φ3(x;α)Z1,µ(x;α) dx ,

d1,µ(α) = +
1

‖Z1,µ‖2

ˆ +1

0
ψ3(x;α)Z1,µ(x;α) dx ,

(2.49)



a2,µ(α) = − 1

‖Z1,µ‖2

ˆ 0

−1
φ2(x;α)Z1,µ(x;α) dx ,

b2,µ(α) = +
1

‖Z1,µ‖2

ˆ 0

−1
ψ2(x;α)Z1,µ(x;α) dx ,

c2,µ(α) = − 1

‖Z1,µ‖2

ˆ 0

−1
φ4(x;α)Z1,µ(x;α) dx ,

d2,µ(α) = +
1

‖Z1,µ‖2

ˆ 0

−1
ψ4(x;α)Z1,µ(x;α) dx .

(2.50)

And now substituting the ansatz for the solutions

vj(t, x;α) =
∞∑
µ=1

Oj,µ(t;α)Z1,µ(x;α) (2.51)
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into the IBVPaj obtains the Cauchy problems for the coefficient functions
O′′j,µ(t;α) + σ2

1,µOj,µ(t;α) = gj,µ(t;α) , t ∈ (0, T ] ,

O ′j,µ(0;α) =
∗∗
vj,µ(α)

Oj,µ(0;α) =
∗
vj,µ(α)

 .
(2.52)

The resulting expressions for the coefficients can be readily presented in the con-
volution form as followsOj,µ(t;α) =

∗
vj,µ(α) cos

(
σ1,µt

)
+ σ−1

k,µ
∗∗
vj,µ(α) sin

(
σ1,µt

)
+ σ−1

1,µ gj,µ(t;α) sin
(
σ1,µt

)
.

(2.53)

Finally, the representation (2.36) obtains the required solutions to the IBVPj
u1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)Z1,µ(x;α)

+ φ1(x;α)h1(t;α) + φ3(x;α)h3(t;α) ,

(2.54)


u2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)Z1,µ(x;α)

+ φ2(x;α)h2(t;α) + φ4(x;α)h4(t;α) .

(2.55)

Calculating the fluxes of the obtained solutions uj(t, x;α)
−f1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)
[
a(x;α)Z ′1,µ(x;α)

]
+ ψ1(x;α)h1(t;α) + ψ3(x;α)h3(t;α) ,

(2.56)


−f2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)
[
a(x;α)Z ′1,µ(x;α)

]
+ ψ2(x;α)h2(t;α) + ψ4(x;α)h4(t;α) ,

(2.57)

proves that the following condition holds

f2(t, 0− 0;α) = f1(t, 0 + 0;α) = 0 , t ∈ [0, T ] , (2.58)

yet before matching the solutions, due to: a) Prop. 2.1 and b) the regularity condi-
tions (2.40) and (2.41) imposed on the blending functions φj(x;α) and φj+2(x;α)
(or, shortly, due to continuous differentiability of the functions wj(t, x;α) (2.37)).



16 V. L. Borsch, P. I. Kogut

2.4. Matching the Solutions to the IBVP1 and the IBVP2

To implement matching the obtained one-sided solutions u1(t, x;α) (2.54)
and u2(t, x;α) (2.55), we will follow the procedure:

1) substitute the above solutions into the matching condition (2.17), as follows

∞∑
µ=1

O2,µ(t;α)Z1,µ(0;α) + φ2(0;α)h2(t;α) + φ4(0;α)h4(t;α)

=
∞∑
µ=1

O1,µ(t;α)Z1,µ(0;α) + φ1(0;α)h1(t;α) + φ3(0;α)h3(t;α) ;

2) replace the values Z1,µ(0;α) with the pre-derived formula (2.12)

Z1,µ(0;α) =
(s1,µ

2

)−% 1

Γ(1− %)
=
θ+% σ−%1,µ

Γ(1− %)
≡ C% σ

−%
1,µ ;

3) account for the boundary conditions (2.38) and (2.39) imposed on the blen-
ding functions φj(x;α) and φj+2(x;α), to obtain the following linear integro-dif-
ferential equation of convolution type with respect to h3(t;α) and h4(t;α)

C%

∞∑
µ=1

σ−%1,µ O2,µ(t;α) + h4(t;α) = C%

∞∑
µ=1

σ−%1,µ O1,µ(t;α) + h3(t;α) .

The above representation of the matching condition (2.17) can be rewritten
in the expanded form

a2(t;α) ∗ h′′2(t;α) + b2(t;α) ∗ h2(t;α) +
ˇ

∗
v2(t;α) +

ˇ

∗∗
v2(t;α)

+ c2(t;α) ∗ h′′4(t;α) + d2(t;α) ∗ h4(t;α) + h4(t;α)

= a1(t;α) ∗ h′′1(t;α) + b1(t;α) ∗ h1(t;α) +
ˇ

∗
v1(t;α) +

ˇ

∗∗
v1(t;α)

+ c1(t;α) ∗ h′′3(t;α) + d1(t;α) ∗ h3(t;α) + h3(t;α)

(2.59)

where the coefficient functions are defined by the following series
ˇ

∗
vj(t;α) = C%

∞∑
µ=1

σ−%1,µ
∗
vj,µ(α) cos

(
σ1,µt

)
,

yj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ yj,µ(α) sin

(
σ1,µt

)
,

(2.60)

and one should substitute symbols ‘
ˇ

∗∗
v’, ‘a’, ‘b’, ‘c’, and ‘d’ instead of ‘y’ in (2.60).
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3. The Laplace Transformation

3.1. Finding the Images

To solve the integro-differential equation (2.59) of convolution type, we apply
the Laplace transformation [3], producing for a function f(t), t ∈ [0,∞), its trans-
form as follows

F (τ) = L [f(t)] :=

ˆ ∞
0

f(t) e−τt dt , τ = ξ + iη ∈ C , (3.1)

provided the original function f(t) satisfies the known sufficient conditions for
the image function F (τ) to exist.

When applying the Laplace transformation we use:
1) the convolution theorem

L [p(t) ∗ q(t)] = L [p(t)] · L [q(t)] = P (τ) ·Q(τ) , (3.2)

where the symbol ‘middle dot’ between the two images is used, where it is needed,
for reminding about the origin of their multiplication;

2) the transforms of the control functions hj(t;α) and their second derivatives,
accounting for the given initial conditions

L
[
hj (t;α)

]
= Hj(τ ;α) ,

L
[
h′′j (t;α)

]
= Hj(τ ;α) τ2 − hj(0;α) τ − h ′j(0;α) ,

3) the transforms of the required functions h3(t;α), h4(t;α) and their second
derivatives, accounting for the prescribed initial conditions

L
[
hj+2(t;α)

]
= Hj+2(τ ;α) ,

L
[
h′′j+2(t;α)

]
= Hj+2(τ ;α) τ2 − hj+2(0;α) τ − h ′j+2(0;α) ,

4) the transforms of the trigonometric sine and cosine functions
L
[
sin
(
σ1,µt

)]
=

σ1,µ

τ2 + σ 2
1,µ

≡ Sµ(τ ;α) ,

L
[
cos
(
σ1,µt

)]
=

τ

τ2 + σ 2
1,µ

≡ Cµ(τ ;α) ,

(3.3)

Then, the Laplace transformation applied to the equation (2.59) yields evidently
to its image as follows

[
1 +Q2(τ ;α)

]
·H4(τ ;α) + R2(τ ;α)

=
[
1 +Q1(τ ;α)

]
·H3(τ ;α) + R1(τ ;α) ,

(3.4)



18 V. L. Borsch, P. I. Kogut

where

Rj(τ ;α) = Pj(τ ;α) ·Hj(τ ;α) + Vj(τ ;α)−Kj(τ ;α)−Nj(τ ;α) , (3.5)


Pj(τ ;α) = Aj(τ ;α) τ2 +Bj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ
aj,µ(α) τ2 + bj,µ(α)

τ2 + σ 2
1,µ

,


Qj(τ ;α) = Cj(τ ;α) τ2 +Dj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ
cj,µ(α) τ2 + dj,µ(α)

τ2 + σ 2
1,µ

,


Vj(τ ;α) =

∗
Vj(τ ;α) +

∗∗
Vj(τ ;α)

= C%

∞∑
µ=1

σ−%%,µ

∗
vj,µ(α) τ +

∗∗
vj,µ(α)

τ2 + σ 2
1,µ

,


Kj(τ ;α) =

∗
Kj(τ ;α)hj(0;α) +

∗∗
Kj(τ ;α)h ′j(0;α)

= C%

∞∑
µ=1

σ−%%,µ aj,µ(α)
hj(0;α) τ + h ′j(0;α)

τ2 + σ 2
1,µ

,


Nj(τ ;α) =

∗
Nj(τ ;α)hj+2(0;α) +

∗∗
Nj(τ ;α)h ′j+2(0;α)

= C%

∞∑
µ=1

σ−%%,µ cj,µ(α)
hj+2(0;α) τ + h ′j+2(0;α)

τ2 + σ 2
1,µ

,

the functions Aj(τ ;α), Bj(τ ;α), Cj(τ ;α), Dj(τ ;α),
∗
Vj(τ ;α), and

∗∗
Vj(τ ;α) being

the images of the functions aj(t;α), bj(t;α), cj(t;α), dj(t;α),
ˇ

∗
vj(t;α), and

ˇ

∗∗
vj(t;α) .

Assuming that φ1,4(x;α) = φ1,3(−x;α) (see Section 2 at p. 24), we easily
conclude that: 1) the equality Q1(τ ;α) = Q2(τ ;α) holds; 2) the image (3.4) of
the matching condition (2.59) reduces to[

1 +Q1(τ ;α)
]
·∆H(τ ;α) = R2(τ ;α)−R1(τ ;α) , (3.6)

where ∆H(τ ;α) ≡ H3(τ ;α) − H4(τ ;α) , or after dividing both sides of (3.6) by
[1 +Q1(τ ;α)], to the formula

∆H(τ ;α) =
R2(τ ;α)−R1(τ ;α)

1 +Q1(τ ;α)
. (3.7)
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3.2. Finding the Original Functions

We start from estimating applicability of some known approaches to invert
the formula (3.7) and find the original function h(t;α) = h3(t;α)− h4(t;α).

a) We could expect that rewriting the formula (3.7) as follows

∆H(τ ;α) =
[
1 +Q1(τ ;α)

]−1
·
[
R2(τ ;α)−R1(τ ;α)

]
(3.8)

makes it possible to invoke the convolution theorem (3.2) and find the func-
tion h(t;α) provided both multipliers in (3.8) are the images.

To estimate this approach to be useful, we take into account that for any
original function f(t) its transform F (τ) is necessarily [3]: 1) analytic in the right
half of the τ -plane: < τ >ξ∗>0, where ξ∗ is some proper real value; 2) vanishing
when < τ→+∞.

Proposition 3.1. The functions R1(τ ;α), R2(τ ;α) (3.5) are transforms, whereas
the function [1 +Q1(τ ;α)]−1 is not a transform.

Proof. Let’s turn to the expressions (3.5). The functions Pj(τ ;α) are analytic in
the whole τ -plane except for the simple poles τ∓µ = ∓ iσ1,µ [5] and both do not
vanish when < τ → +∞. Nevertheless, both products Pj(τ ;α) · Hj(τ ;α) vanish
when < τ→+∞, since both multipliers Hj(τ ;α) are the transforms of the control
functions hj(t;α). From this we conclude that the above products are trans-
forms as well. Then, we notice that the functions

∗
Vj(τ ;α) and

∗∗
Vj(τ ;α),

∗
Kj(τ ;α)

and
∗∗
Kj(τ ;α),

∗
Nj(τ ;α) and

∗∗
Nj(τ ;α) are themselves the transforms, and this comp-

letes the proof of the first part of the proposition.
The function Q1(τ ;α) has the same properties as both functions Pj(τ ;α) have,

therefore the function [1 +Q1(τ ;α)]−1 is not a transform, and this completes
the proof of the second part of the proposition.

Although the first approach turnes out to be unsuccessful, nevertheless it
follows from Proposition 3.1 that the right-hand side of the formula (3.7) is indeed
the transform of the required function h(t;α).

b) The next approach is to invert the right-hand side of the formula (3.7)
directly. Indeed, let the Laplace transform F (τ) for an original function f(t)
be given, then applying the inverse Laplace transformation [3], known also as
the Bromwich integral, yields to the required original function

f(t) = L−1 [F (τ)] =
1

2πi

ˆ ξ∗ + i∞

ξ∗ − i∞
F (τ) e+tτ dτ , (3.9)

where < τ = ξ∗ is a vertical straight line lying to the right of all the singularities
of F (τ) (see Fig. 3.1, a).

Practically, calculating the Bromwich integral is performed using the Cauchy
residue theorem [5], but this approach implies that the singularities of the integrand
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Fig. 3.1. All the singularities of the integrand of the Bromwich integral (3.9) lie in the half-plane
(gray color) to the right of the path of integration τ = ξ∗ + iη, ξ∗ = const, η ∈ (−∞,+∞)

(dark blue), or the Bromwich line (a); the oriented Bromwich countour ABCA (light red),
consists of the segment AB of the Bromwich line and the arc BCA of the circle of radius R
centered at the origin; to apply the Cauchy residue theorem, the integrand must vanish at BCA
when R→∞ and all the singularities of the integrand must lie inside ABCA (b)

are isolated and known (see Fig. 3.1, b). The functions Pj(τ ;α) and Q1(τ ;α)
have the same poles being removable singularities of the integrand and having
no impact on calculating the integral; whereas finding all zeros of the func-
tion [1 + Q1(τ ;α)] generally implies some proper approximation [4] of the latter
and results in a huge bulk of the computational work. Therefore, we do not reject
calculating the Bromwich integral at all, but postpone applying this approach for
a while.

c) To implement the third approach, we:
1) recombine the terms in the series (3.5)
Kj(τ ;α) = C%

( ∞∑
µ=1

σ−%1,µ aj,µ(α)Cµ(τ ;α)

)
hj(0;α)

+ C%

( ∞∑
µ=1

σ−%−1
1,µ aj,µ(α)Sµ(τ ;α)

)
h ′j(0;α) ,


Nj(τ ;α) = C%

( ∞∑
µ=1

σ−%1,µ cj,µ(α)Cµ(τ ;α)

)
hj+2(0;α)

+ C%

( ∞∑
µ=1

σ−%−1
1,µ cj,µ(α)Sµ(τ ;α)

)
h ′j+2(0;α) ,
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
Pj(τ ;α)−

Ψj(α)︷ ︸︸ ︷
C%

∞∑
µ=1

σ−%1,µ aj,µ(α) = −C%
∞∑
µ=1

σ−%+1
1,µ aj,µ(α)Sµ(τ ;α)

+C%

∞∑
µ=1

σ−%−1
1,µ bj,µ(α)Sµ(τ ;α) ,



Ω1(α)︷ ︸︸ ︷
C%

∞∑
µ=1

σ−%1,µ cj,µ(α)−Q1(τ ;α) = +C%

∞∑
µ=1

σ−%+1
1,µ cj,µ(α)Sµ(τ ;α)

−C%
∞∑
µ=1

σ−%−1
1,µ dj,µ(α)Sµ(τ ;α) ≡ Q̂1(τ ;α) ,

and easily find the respective original functions
pj(t;α) = −C%

∞∑
µ=1

σ−%+1
1,µ aj,µ(α) sin

(
σ1,µt

)

+C%

∞∑
µ=1

σ−%−1
1,µ bj,µ(α) sin

(
σ1,µt

)
+ Ψj(α) δ(t) ,

(3.10)


q̂1(t;α) = +C%

∞∑
µ=1

σ−%+1
1,µ cj,µ(α) sin

(
σ1,µt

)

−C%
∞∑
µ=1

σ−%−1
1,µ dj,µ(α) sin

(
σ1,µt

)
,

(3.11)



∗
kj(t;α) = C%

∞∑
µ=1

σ−%1,µ aj,µ(α) cos
(
σ1,µt

)
,

∗∗
kj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ aj,µ(α) sin

(
σ1,µt

)
,

(3.12)



∗
nj(t;α) = C%

∞∑
µ=1

σ−%1,µ cj,µ(α) cos
(
σ1,µt

)
,

∗∗
nj(t;α) = C%

∞∑
µ=1

σ−%−1
1,µ cj,µ(α) sin

(
σ1,µt

)
,

(3.13)

where δ(t) is the Dirac delta function;
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2) represent the denominator of the formula (3.7) as follows

1 +Q1(τ ;α) = 1 + Ω1(α)− Q̂1(τ ;α) ≡ Cα − Q̂1(τ ;α)

= Cα

(
1− C−1

α Q̂1(τ ;α)
)
≡ Cα

(
1− Q̄1(τ ;α)

)
;

3) rewrite the formula (3.7) as is usually done when solving integral equations
of convolution type

∆H(τ ;α) = C−1
α

(
1 +

Q̄1(τ ;α)

1− Q̄1(τ ;α)

)
·
[
R2(τ ;α)−R1(τ ;α)

]
; (3.14)

4) expand the ‘fractional’ term in (3.14) in the following power series

Q̄1(τ ;α)

1− Q̄1(τ ;α)
= Q̄1(τ ;α) +

∞∑
γ=2

[
Q̄1(τ ;α)

]·γ
, (3.15)

provided that |Q̄1(τ ;α)| < 1 in a proper right half-plane of the τ -plane [3];
5) invert the above power series in the form of the Neumann series [3]

L−1

[
Q̄1(τ ;α)

1− Q̄1(τ ;α)

]
= q̄1(t;α) +

∞∑
γ=2

[
q̄1(t;α)

]∗γ ≡ Φ(t;α) , (3.16)

or the sum of iterated kernels, where q̄1(t;α) = C−1
α q̂1(t;α) (3.11);

6) invert the terms in the brackets in (3.14)
rj(t;α) = pj(t;α) ∗ hj(t) +

∗
vj(t;α) +

∗∗
vj(t;α)

−
∗
kj(t;α)hj(0;α)− ∗

nj(t;α)hj+2(0;α)

−
∗∗
kj(t;α)h ′j(0;α)− ∗∗nj(t;α)h ′j+2(0;α) ;

(3.17)

7) finally, invert the formula (3.7) by invoking the convolution theorem (3.2){
Cα (h3(t;α)− h4(t;α)) = [r2(t;α)− r1(t;α)]

+ Φ(t;α) ∗ [r2(t;α)− r1(t;α)] .
(3.18)

4. Conclusions

1. In the current study we have applied the previously obtained [2] one-sided
solutions u1,j(t, x;α), u5,j(t, x;α) (1.3), (1.4) to the degenerate wave equation as
the building blocks of procedures for finding bounded solutions to the IBVP (1.1),
posed in the space-time rectangle [0, T ]×[−1,+1], in the cases of weak (α ∈ (0, 1))
and strong (α ∈ (1, 2)) degeneracy.
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2. In the case of weak degeneracy the bounded unique solution (2.31) to
the IBVP 

u(t, x;α) =

∞∑
µ=1

O1,µ(t;α)X1,µ(x;α)

+

∞∑
µ=1

O5,µ(t;α)X5,µ(x;α)

+ φ2(x;α)h2(t;α) + φ1(x;α)h1(t;α)

(4.1)

has been obtained in the space-time rectangle [0, T ]×[−1,+1], using the method
of SV based on the eigenfunctions X1,µ(x;α) and X5,µ(x;α), defined in Prop. 2.2
at p. 6. The solution (4.1) satisfies the following two continuity conditions{

u(t, 0− 0;α) = u(t, 0 + 0;α) ,

f(t, 0− 0;α) = f(t, 0 + 0;α) ,
t ∈ [0, T ] , (4.2)

at the degeneracy segment, where f(t, x;α) is the flux of the solution.
3. In the case of strong degeneracy a family of bounded non-unique solutions

to the IBVP have been obtained in the space-time rectangle [0, T ] × [−1,+1],
applying the following procedure:

a) two families of bounded solutions (2.54), (2.55)
u1(t, x;α) =

∞∑
µ=1

O1,µ(t;α)Z1,µ(x;α)

+ φ1(x;α)h1(t;α) + φ3(x;α)h3(t;α) ,

(4.3)


u2(t, x;α) =

∞∑
µ=1

O2,µ(t;α)Z1,µ(x;α)

+ φ2(x;α)h2(t;α) + φ4(x;α)h4(t;α) .

(4.4)

to the derived IBVP1 (2.14) and IBVP2 (2.15), posed in the ‘right’ [0, T ]× [0,+1]
and the ‘left’ [0, T ]× [−1, 0] space-time rectangles, are obtained, using the method
of SV based on the eigenfunctions Z1,µ(x;α), defined in Prop. 2.1 at p. 4;

b) the solutions of both families, depending on undetermined functions h3(t;α)
and h4(t;α) and satisfying the only continuity condition for their fluxes

f2(t, 0− 0;α) = f1(t, 0 + 0;α) , t ∈ [0, T ] , (4.5)

are then matched to implement the other continuity condition

u2(t, 0− 0;α) = u1(t, 0 + 0;α) , t ∈ [0, T ] , (4.6)

nevertheless, the resulting matched family still retains one undetermined function.
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Appendix. Calculating the Coefficients a, b, c, and d

In this section the method of calculating the coefficients (2.49), (2.50) is presen-
ted. We take for φk,j(x;α) and φk,j+2(x;α) the following power functions

{
φj(x;α) = |x|ωj ,

φj+2(x;α) = 1− |x|ωj+2 ,
(4.7)

where the undetermined exponents ωk,j and ωk,j+2 should be adjusted to the pa-
rameter α in a special way. To impose the proper constraint on the exponents,
we calculate the derived functions: 1) the ‘fluxes’ ϕ(x;α) = a(x;α)φ ′(x;α)

 ϕj(x;α) = + sign (x) ωj |x|
ωj−1+α,

ϕj+2(x;α) = − sign (x) ωj+2 |x|
ωj+2−1+α,

(4.8)

and 2) their derivatives ψ(x;α) = ϕ ′(x;α) =
[
a(x;α)φ ′(x;α)

] ′
 ψj(x;α) = +ωj

[
ωj − θ + 1

]
|x|ωj−θ,

ψj+2(x;α) = −ωj+2

[
ωj+2 − θ + 1

]
|x|ωj+2−θ,

(4.9)

and assume that they vanish at x = 0 smoothly, i. e., ψj(0;α) = ψj+2(0;α) = 0
and ψ ′j(0;α)= ψ ′j+2(0;α)=0, whence we immediately deduce that ωj−θ = 1+εj ,
ωj+2 − θ = 1 + εj+2, where εj , εj+2 > 0.

Taking ωj = ωj+2 = ω and substituting the functions φj(x;α), φj+2(x;α) (4.7)
in the coefficients (2.49), (2.50) yields to



aµ(α) = − 1

‖Z1,µ‖2
I2(α, ω) ,

bµ(α) = +
ϑ

‖Z1,µ‖2
I1(α, ω) ,

cµ(α) = − 1

‖Z1,µ‖2
I0(α) +

1

‖Z1,µ‖2
I2(α, ω) ,

dµ(α) = − ϑ

‖Z1,µ‖2
I1(α, ω) .

(4.10)

The definite integrals I0(α), I1(α, ω), I2(α, ω) in (4.10) can be calculated ana-
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lytically, applying the variable transformation s = s̊ x
θ
2 as follows

I0(α) =

ˆ 1

0
Z1,µ(x;α) dx =

=
2

θ

(
1

s̊

)o+1 ˆ s̊

0
so Z%(s) ds ≡

2

θ

(
1

s̊

)o+1

I ∗0 (α) ,

I1(α, ω) =

ˆ 1

0
xω−θ Z1,µ(x;α) dx =

ˆ 1

0
x
ε+1

x
ν
2 Z%(s) dx

=
2

θ

(
1

s̊

)υ+1 ˆ s̊

0
sυ Z%(s) ds ≡

2

θ

(
1

s̊

)υ+1

I ∗1 (α, ε) ,

I2(α, ω) =

ˆ 1

0
xωZ1,µ(x;α) dx =

ˆ 1

0
x
θ+ε+1

x
ν
2 Z%(s) dx

=
2

θ

(
1

s̊

)υ+3 ˆ s̊

0
sυ+2 Z%(s) ds ≡

2

θ

(
1

s̊

)υ+3

I ∗2 (α, ε) ,

(4.11)

where
o =

1

θ
, υ =

2ε+ 3

θ
, (4.12)

and to avoid confusion with zero, small letter ‘o’ is used only for the exponents, and
the notation s̊=s1,µ is used hereinafter to present calculations of the transformed
integrals I ∗0 (α), I ∗1 (α) and I ∗2 (α, ε) in a compact form.

We chose the analytical approach to calculate the integrals in (4.11), hence,
our concern is calculating the transformed integrals

I ∗0 (α) =

ˆ s̊

0
so Z%(s) ds ,

I ∗1 (α, ε) =

ˆ s̊

0
sυ Z%(s) ds ,

I ∗2 (α, ε) =

ˆ s̊

0
sυ+2 Z%(s) ds ,

(4.13)

using the following recurrence formula [7]

s%+1Z%(s) =
[
s%+1Z%+1(s)

]′
. (4.14)

The integral I ∗0 (α) is easily shown to be calculated exactly for any α. Indeed,
keeping in mind (4.14), we obtain that

I ∗0 (α) =

ˆ s̊

0
so Z%(s) ds =

ˆ s̊

0
s%+1 Z%(s) ds

=

ˆ s̊

0

[
s%+1 Z%+1(s)

]′
ds = s̊%+1 Z%+1(̊s) .

(4.15)
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To calculate the transformed integrals I ∗1 (α; ε), I ∗2 (α; ε) (4.13), we introduce
the following

Definition 4.1. The values of the parameter ε>0 in the exponents ω=θ+ 1 + ε
(4.7), (4.9), allowing for: 1) the function (4.9) to be continuously differentiable
and 2) the transformed integrals I ∗1 (α, ε), I ∗2 (α, ε) (4.13) to be calculated by parts
(this is referred to as integrability), are called proper.

Proposition 4.1. The proper values of the parameter ε are the positive values
produced by the formula

ε = −1 + k θ = −1 + k (2− α) , (4.16)

where k ∈ N .

Proof. First, we find the values of the exponent υ leading to integration by parts
using the following formula (4.14). Presenting the exponent of the integrand of I ∗2
as υ = υ−%−1+(%+ 1) = υ ′+(%+ 1) makes it clear that: 1) it is the term υ ′>0
that is responsible for integrability; 2) υ ′≡0 (mod 2) is the integrability condition.
Indeed, let:

a) υ ′ = 0, then the integral I ∗2 reads

I ∗2 (α, ε) =

ˆ s̊

0
sυ
′[
s%+1Z%(s)

]
ds =

ˆ s̊

0

[
s%+1Z%+1(s)

]′
ds = s̊%+1Z%+1(̊s) ;

b) υ ′ = 2, then integration by parts is performed successfully as well

I ∗2 (α, ε) =

ˆ s̊

0
sυ
′[
s%+1Z%(s)

]
ds =

ˆ s̊

0
s2
[
s%+1Z%+1(s)

]′
ds

= s̊%+3Z%+1(̊s)− 2

ˆ s̊

0
s%+2Z%+1(s) ds

= s̊%+3Z%+1(̊s)− 2

ˆ s̊

0

[
s%+2Z%+2(s)

]′
ds = s̊%+3Z%+1(̊s)− 2 s̊%+2J%+2(̊s) ;

c) υ ′ = 4, then integration is reduced to the previous case

I ∗2 (α, ε) =

ˆ s̊

0
s4
[
s%+1Z%+1(s)

]′
ds = s̊%+5Z%+1(̊s)− 4

ˆ s̊

0
s2
[
s%+3Z%+1(s)

]
ds

= s̊%+5Z%+1(̊s)− 4

ˆ s̊

0
s2
[
s%+3Z%+3(s)

]′
ds ,

. . . , etc. It is evident that no value of the exponent leading to integrability other
than those indicated above exists.

Second, considering the integral I ∗1 is performed exactly in the same way as
the integral I ∗2 .
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Third, we gather our observations on integrability as the following condition
imposed on υ ′: υ ′=2 k, k ∈ Z+, or reformulated for υ as follows

υ − %− 1 = 2 k , k ∈ Z+,

and substituting the expressions for υ (4.12) and % (2.3) in the above condition
we obtain

2ε+ 3

2− α
+

1− α
2− α

− 1 = 2
ε+ 1

2− α
= 2 k .

Resolving the above condition with respect to ε yields to (4.16). It is evident,
that zero value of k produces the value ε = −1 and must be neglected. Unfortuna-
tely, other values of k produce negative values of the parameter ε as well, indeed:
a) for k=1 we obtain ε=1− α; b) for k=2 it yields to ε=3− 2α, etc., therefore
(4.16) needs to be adjusted as the proposition says.

The 1-parameter family (4.2) of the admissible values of ε is shown in Fig. 4.2.
We show below, how the transformed integrals I ∗1 and I ∗2 (4.13) can be calcu-

lated exactly for non-unique proper values of the parameter ε, choosing the follo-
wing values of the parameter α: 1) 1

2 , 2) 1, and 3) 3
2 .

1) Let α= 1
2 , then θ= 3

2 , ν= 1
2 , %=−1

3 , and υ= 4
3 ε+ 2 (4.12), and applying

the property (4.14) yields to
I ∗1 =

ˆ s̊

0
s

4
3
ε+2 Z− 1

3

(s) ds = s̊
4
3
ε+2 Z 2

3

(̊s)− 4ε+ 4

3
Ī ∗1 ,

I ∗2 =

ˆ s̊

0
s

4
3
ε+4 Z− 1

3

(s) ds = s̊
4
3
ε+4 Z 2

3

(̊s)− 4ε+ 10

3

{
s̊

4
3
ε+3 Z 5

3

(̊s)− 4ε+ 4

3
Ī ∗2

}
,

where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s

4
3
ε− 2

3 s
5
3Z 2

3

(s) ds ,

Ī ∗2 =

ˆ s̊

0
s

4
3
ε− 2

3 s
8
3Z 5

3

(s) ds .

Assuming that ε = 1
2 , we easily find that
Ī ∗1 =

ˆ s̊

0
s

5
3Z 2

3

(s) ds = s̊
5
3Z 5

3

(̊s) ,

Ī ∗2 =

ˆ s̊

0
s

8
3Z 5

3

(s) ds = s̊
8
3Z 8

3

(̊s) ,

and complete the calculating of the integrals I ∗1 and I ∗2 as follows
I ∗1 = s̊

8
3 Z 2

3

(̊s)− 2 s̊
5
3 Z 5

3

(̊s) ,

I ∗2 = s̊
14
3 Z 2

3

(̊s)− 4 s̊
11
3 Z 5

3

(̊s) + 8 s̊
8
3Z 8

3

(̊s) ,
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Fig. 4.2. The proper values of ε vs α (4.16) for various values of the parameter k:
k = 1(1)10; 15, 20, 25, 50. Multiple proper values of ε for α= 0.5, 1.0, 1.5 are marked
with the white disks. The upper side of the 1-parameter family (4.16) is cut off along
the straight line ε = 5

then, assuming that ε = 2
Ī ∗1 =

ˆ s̊

0
s2s

5
3Z 2

3

(s) ds = s̊
11
3 Z 5

3

(̊s)− 2 s̊
8
3 Z 8

3

(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2s

8
3Z 5

3

(s) ds = s̊
14
3 Z 8

3

(̊s)− 2 s̊
11
3 J 11

3

(̊s) ,

and complete the calculation of the integrals I ∗1 and I ∗2 as follows
I ∗1 = s̊

8
3 J 2

3

(̊s)− 2 s̊
5
3 Z 5

3

(̊s) ,

I ∗2 = s̊
14
3 Z 2

3

(̊s)− 4 s̊
11
3 J 5

3

(̊s) + 8 s̊
8
3Z 8

3

(̊s) .

2) Let α = 1, then θ = 1, ν = 0, % = 0, and υ = 2ε + 3 (4.12), and applying
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the property (4.14) yields to
I ∗1 =

ˆ s̊

0
s2ε+2 [s Z0(s)] ds = s̊2ε+3 Z0(̊s)− (2ε+ 2) Ī ∗1 ,

I ∗2 =

ˆ s̊

0
s2ε+4 [s Z0(s)] ds = s̊2ε+5 Z0(̊s)− (2ε+ 4)

{
s̊2ε+4 Z2(̊s)− (2ε+ 2) Ī ∗2

}
,

where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s2ε
[
s2Z2(s)

]′
ds ,

Ī ∗2 =

ˆ s̊

0
s2ε
[
s3Z3(s)

]′
ds .

Assuming that ε = 1, we easily calculate both integrals Ī ∗1,2
Ī ∗1 =

ˆ s̊

0
s2
[
s2Z2(s)

]′
ds = s̊4Z2(̊s)− 2

ˆ s̊

0

[
s3Z3(s)

]′
ds = s̊4Z2(̊s)− 2 s̊3Z3(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2
[
s3J3(s)

]′
ds = s̊5Z3(̊s)− 2

ˆ s̊

0

[
s4Z4(s)

]′
ds = s̊5Z3(̊s)− 2 s̊4Z4(̊s) ,

and eventually find{
I ∗1 = s̊5Z0(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s) ,

I ∗2 = s̊7Z0(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) ,
(4.17)

whereas assuming that ε = 2, we find both integrals Ī ∗1,2 to equal
Ī ∗1 =

ˆ s̊

0
s4
[
s2Z2(s)

]′
ds = s̊6Z2(̊s)− 4 s̊5Z3(̊s) + 8 s̊4J4(̊s) ,

Ī ∗2 =

ˆ s̊

0
s4
[
s3Z3(s)

]′
ds = s̊7Z3(̊s)− 4 s̊6Z4(̊s) + 8 s̊5Z5(̊s) ,

yielding to{
I ∗1 = s̊7Z1(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) ,

I ∗2 = s̊9Z1(̊s)− 8 s̊8Z2(̊s) + 48 s̊7Z3(̊s)− 192 s̊6Z4(̊s) + 384 s̊5Z5(̊s) .
(4.18)

3) Let α= 3
2 , then θ= 1

2 , ν=−1
2 , %= 1, and υ= 4ε + 6 (4.12), and applying

the property (4.14) yields to

I ∗1 =

ˆ s̊

0
s4ε+4

[
s2Z1(s)

]
ds = s̊4ε+6 Z2(̊s)− (4ε+ 4)

{
s̊4ε+5 Z3(̊s)− (4ε+ 2) Ī ∗1

}
,

I ∗2 =

ˆ s̊

0
s4ε+6

[
s2Z1(s)

]
ds

= s̊4ε+8 Z2(̊s)− (4ε+ 6)
{
s̊4ε+7 Z3(̊s)− (4ε+ 4)

[̊
s4ε+6 Z4(̊s)− (4ε+ 2) Ī ∗2

]}
,



30 V. L. Borsch, P. I. Kogut

where the integrals Ī ∗1 and Ī ∗2 are
Ī ∗1 =

ˆ s̊

0
s4ε
[
s4Z4(s)

]′
ds ,

Ī ∗2 =

ˆ s̊

0
s4ε
[
s5Z5(s)

]′
ds .

Assumption ε = 1
2 gives

Ī ∗1 =

ˆ s̊

0
s2
[
s4Z4(s)

]′
ds = s̊6Z4(̊s)− 2 s̊5Z5(̊s) ,

Ī ∗2 =

ˆ s̊

0
s2
[
s5Z5(s)

]′
ds = s̊7Z5(̊s)− 2 s̊6Z6(̊s) , ,

that yields to{
I ∗1 = s̊8 Z2(̊s)− 6 s̊7Z3(̊s) + 24 s̊6Z4(̊s)− 48 s̊5Z5(̊s) ,

I ∗2 = s̊10Z2(̊s)− 8 s̊9Z3(̊s) + 48 s̊8Z4(̊s)− 192 s̊7Z5(̊s) + 384 s̊6Z6(̊s) ,

whereas assumption ε = 1 leads to
Ī ∗1 =

ˆ s̊

0
s4
[
s4J4(s)

]′
ds = s̊8J4(̊s)− 4 s̊7J5(̊s) + 8 s̊6J6(̊s) ,

Ī ∗2 =

ˆ s̊

0
s4
[
s5J5(s)

]′
ds = s̊9J5(̊s)− 4 s̊8J6(̊s) + 8 s̊7J7(̊s) ,

and eventually to{
I ∗1 = s̊5Z0(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s) ,

I ∗2 = s̊10Z2(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s) .

As an example, we choose the values α = 1 (% = 0, θ = 1) and ε = 1, then
substitute the formula (4.15) and the values (4.17) of I ∗1 , I

∗
2 into the expres-

sions (4.11) to obtain

I0 =
2

s̊2
[̊s Z1(̊s)] ,

I1 =
2

s̊6

[̊
s5Z1(̊s)− 4 s̊4Z2(̊s) + 8 s̊3Z3(̊s)

]
,

I2 =
2

s̊8

[̊
s7Z1(̊s)− 6 s̊6Z2(̊s) + 24 s̊5Z3(̊s)− 48 s̊4Z4(̊s)

]
,
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and eventually find the required coefficients (4.10)

aµ = − 2

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 6 s̊2J2(̊s) + 24 s̊J3(̊s)− 48 J4(̊s)

]
,

bµ = +
18

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 4 s̊2J2(̊s) + 8 s̊J3(̊s)

]
,

cµ = − 2

s̊4J2
1(̊s)

[̊
s3J1(̊s)

]
+

2

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 6 s̊2J2(̊s) + 24 s̊J3(̊s)− 48 J4(̊s)

]
,

dµ = − 18

s̊4J2
1(̊s)

[̊
s3J1(̊s)− 4 s̊2J2(̊s) + 8 s̊J3(̊s)

]
.
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MATHEMATICAL MODEL AND CONTROL DESIGN OF A
FUNCTIONALLY STABLE TECHNOLOGICAL PROCESS

VolodymyrV. Pichkur∗, ValentynV. Sobchuk†
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Abstract. The paper suggests an approach to modeling of industrial enterprises providing
production according to the set standard with admissible tolerances and requirements. The
mathematical model has the form of a discrete control system. We use the properties of
generalized inverse matrices to design the control. We present an algorithm of the control
of a production process providing release of production. This approach allows to simulate
the technological processes (including metallurgical, chemical, energy, etc.) and gives the
operating conditions under the constant influence of internal and external destabilizing
factors.

Key words: Functional stability, mathematical model of technological process, control
design, generalized invertion.
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1. Introduction

Nowadays the problem of improving the efficiency of the production enterprise
management is of constant interest to the researchers. The problem is related to
the improvement of the operations management and production planning system
at the enterprise level. The main purpose of organization of the planning processes
is to ensure thorough fulfillment of the production tasks together with maximal
utilization of the production resources. This allows timely fulfillment of the obliga-
tions to produce outputs by the time they are required at the next production
line, guarantees the optimal duration of the production cycle, and leads to the
reduction of work in progress and to the minimization of shortages.

It is advisable to use the methods of mathematical modeling and simulation
to create a technology of planning in production. Approaches to the mathematical
modeling of production processes in an enterprise as a whole and in its individual
production centers are underdeveloped. Therefore, it is necessary to create the
techniques which allow describing the production processes in the strict mathema-
tical terms. The authors suggest an approach which can be practically integrated
into wide classes of the information platforms for manufacturing enterprises: MRP
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II (Manufacturing Resource Planning), ERP (Enterprise Resource Planning), APS
(Advanced Planning & Scheduling Systems) and MES (Manufacturing Execution
Systems). Given the high level of the automation of production, the introduction
of effective tools in the form of production planning system class APS (Advanced
Planning & Scheduling Systems) in combination with MES - systems (Manufactu-
ring Execution Systems) provides high-precision production process planning in
real time [1, 2].

2. Mathematical Model of the Production Process Management
System of an Industrial Enterprise

Considering the problem of designing the control which ensures the execution
of the production process in accordance with the established standards the authors
have reviewed the mathematical model of the production control system of an
industrial enterprise. Having analyzed the problems of the automation of the
enterprise management systems the authors intend to suggest an algorithm for
the automation of the production process using the technique of genelized inver-
tion [2].

The production process of a modern enterprise consists of a set of measures
to produce finished, semi-finished or other products. One of the main tasks of
industrial development is the introduction of the new products, machine and
equipment designs, automation tools, the latest technologies, etc. Each product
industry has its own specifics depending on the type of production, purpose, size
and accuracy of the machines, level of production and technical equipment. In
general case, automation of the production is a stage of machine production,
characterized by the release of the human factor from the direct performance of
the management functions in the production processes and the delegation of these
functions to the information and computing systems [3]. Control is a purposeful
action on the object to ensure its operation in the optimal or specified mode
within acceptable tolerances.

Automation of the production processes does not exclude a person completely
from the value chain. Automation rather means the most rational distribution
of computing and production load at each production center. The proportions of
such distribution depends on the specific enterprise and the goals of automation.
The enterprise automation processes are subject to certain requirements, without
which they become inefficient and difficult to implement.

Firstly, a process management model is a must. At present, significant number
of the enterprises operate on the basis of a system-functional approach, which
preceded the process approach. The complexity of the transition to the process
management model depends on the scale and specifics of an enterprise.

Secondly, compliance of the current model of the enterprise processes with the
technical criteria used in their automation is a very important requirement.

Nowadays at modern enterprises it is impossible to organize a serial production
of the quality products without automation of the process of control over the
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parameters of production processes. We suggest a mathematical model for solving
the similar problems of the manufacturing plants, to ensure the stability of produc-
tion processes with real-time control of key production parameters. This model can
be integrated into an automated enterprise management system. The property of
functional stability of complex technical systems must be realized. It means that
the technological process must perform its main technological tasks as intended
under the influence of external and internal destabilizing factors [4].

The automation stage allows re-engineering of the processes. The purpose
of reengineering is to find and overcome the bottlenecks in the enterprise. It is
necessary to monitor the production potential, to identify the opportunities for
expansion of the production system of the enterprise, the resources that are not
used rationally, and so on. It is important to prepare the companies for the re-
engineering process. It is necessary to bring the structures of its processes in
the most efficient configuration and in the most efficient form. It is necessary to
ensure strict compliance with the requirements for the technological process at
each production center in accordance with the standards, with the deviations only
within the permissible tolerance standards.

In practice, the principal characteristics of integrated automated enterprise
management systems are widely implemented for this purpose. These systems
automate a wide range of the management functions, including the tasks of
strategic, production and financial planning, operational management of supply,
procurement, and inventory. In addition, they automate the tasks of design,
technological and technical preparation of production, etc.

Automation of the modern technological processes leads to the creation of
the complex dynamic models. The behavior of such models has a fractal struc-
ture [5]. Many processes are described by nonlinear dynamical systems of complex
structure that have global attractors [6–8]. At the same time problems of control
arise in such systems [9–13].

Producing usually consists of a number of stages, at each of which there are
certain requirements for the parameters and characteristics of the raw materials,
semifinished and finished products. Denote by x(i) the vector of parameters at i
-th stage, i = 1, 2, . . . N (2.1). At each stage there is an external influence u(i)
on the production process to obtain the desired parameters (work effect, energy
effect, chemical or other technological influences at each stage). It is clear that the
final quality of the product, as well as the intermediate quantity at each stage,
depends on the strict adherence to the technology and ensuring the endurance of
the necessary parameters at each previous step. We assume that this requirement
holds.

Also we denote by A(i) a matrix of dependence of product quality indicators at
i+1-st stage on the indicators at i-th stage, and by C(i) a matrix that determines
the structure of influence on the production process u(i). Then the mathematical
model of the technological process can be written as follows

x (t+ 1) = A (t)x (t) + C (t)u (t) , t = 0, 1, . . . , N − 1, (2.1)
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Fig. 2.1. Topology of linear technological production process

x(t) ∈ Rn, A(t) ∈ Rn×n, C(t) ∈ Rn×m, u(t) ∈ Rm.

Here we denote by Rn the n-dimensional Euclidean space with the Euclidean norm
‖·‖ in it, x = (x1, x2, . . . , xn)T is a state vector of system (2.1), u = (u1, . . . , um)T

is a control vector, A(t) is an n × n matrix, C (t) is an n × m matrix, t =
0, 1, . . . , N − 1. Let IN = {0, 1, . . . , N}, x(t, x0, u) be a solution of system (2.1),
t ∈ IN under the control u (t), t ∈ IN−1.

We admit that there is an accurately defined set of certain works and a number
of criteria in order to fulfill during realization of process. It means that we know
characteristics of the process at the initial stage, requirements for products at the
end of the process, and intermediate characteristics of products at control points
at stages of this process. At the same time, in the automation of such processes
in practice it is necessary to set control tasks describing the design conditions for
the control function u providing controlled purposeful execution of the process.
In addition, it is advisable to provide conditions for practical stability for these
processes [13–18].

3. Control Design

The main problem we analyze consists of finding the control function providing
execution of the process, so that the result of the process ensures ultimately
in x(N) products that meet all the quality characteristics required by current
standards for it.

The purpose of designing a control function u is to ensure that the process
is performed in such a way that we end up with a product that meets all the
characteristics required by the standards. If at the end of the process the product
has deviations from the specified standard parameters, then such deviations are
guaranteed to fall into the set of permissible tolerances, which are defined by
current standards for such products [2]. This means that there is a desired final
state xN ∈ Rn and a positive parameter ε > 0 such that

‖x (N)− xN‖ < ε.

Let us define a set of admissible controls. To do this, we consider space `(m)
2

of sequences of vectors from Rm such that if u ∈ `(m)
2 then

∑∞
t=0 ‖ u(t) ‖2< ∞,
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u (t) ∈ Rm, t = 0, 1, 2, . . . . `(m)
2 is a real Hilbert space with inner product

〈u, v〉`2 =

∞∑
t=0

〈u (t) , v(t)〉 , u, v ∈ `(m)
2

and norm

‖ u ‖`2=

√√√√ ∞∑
t=0

‖u(t)‖2 <∞.

We assume that a control function u is admissible if u ∈ `
(m)
2 and u(t) = 0,

t = N + 1, N + 2, . . . .
Denote Θ (t) = At−1At−2 . . . A1A0, Θ (t, s) = At−1At−2 . . . As, Θ (t, t) = E,

where E is the identity matrix, t, s ∈ IN . The problem is to find a control that
moves the system (2.1) from the initial state x(0) = x0 to the nearest point x(N)
to a given state xN [12]. This way we get the problem of minimization

I(u) = ‖x(N, x0, u)− xN‖ (3.1)

on the solutions of system (2.1) with the initial condition x(0) = x0. Here
x(N, x0, u) denotes the value of the solution of system (2.1) with the initial
condition x(0) = x0 for an admissible control u ∈ `

(m)
2 at the moment t = N .

Since

x(N, x0, u) = Θ (N)x0 +
N−1∑
k=0

Θ (N, k)C (k)u (k) ,

then the substitution of the last equality in (3.1) gives

I(u) = ‖x(N, x0, u)− xN‖ = ‖Θ (N)x0 +

N−1∑
k=0

Θ (N, k)C (k)u (k)− xN‖

= ‖
N−1∑
k=0

W (k)u (k)− c‖, (3.2)

where c = xN −Θ(N)x0,

W (t) = Θ (N, t)C(t), W T (t) = (w1(t) w2(t) . . . wn(t)) ,

wj(t) ∈ Rm, t ∈ IN−1, j = 1, 2, . . . , n are vectors describing the matrix W (t)
rows, t ∈ IN−1. At the same time, one can observe that

H = {w1 (·) , w2 (·) , . . . , wn (·)} ⊂ `(m)
2

and wj (t) = 0, t = N,N + 1, . . . , j = 1, 2, . . . , n.
We define a linear manifold L = Lin H. Since `(m)

2 is Hilbert space then `(m)
2

decomposes into a direct sum

`
(m)
2 = L⊕ L⊥,
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where L⊥ is an orthogonal complement to L. Any control u ∈ `
(m)
2 can be

represented as follows

u (t) = u0 (t) + v (t) , t= 0, 1, . . . . (3.3)

Here u0 ∈ L, v ∈ L⊥. Therefore

〈u0, v〉`2 = 0

for u0 ∈ L. Since u0 ∈ Lin H there exists a vector λ = (λ1, λ2, . . . , λn)T such that

u0 (t) = λ1w1 (t) + λ2w2 (t) + λnwn (t) = W T (t)λ ∈ Im(W T (t)).

Here Im(·) denotes an image of a linear operator. From (3.3) we have

u (t) = W T (t)λ+ v (t) , t= 0, 1, . . . . (3.4)

Observe that
∑N−1

k=0 W (k) v (k) = 0 since v ∈ L⊥. Substituting (3.4) in (3.2)
transforms problem (3.1) into

J (λ) = ‖
N−1∑
k=0

W (k)W T (k)λ− c‖ → min
λ∈Rn

, (3.5)

c = xN −Θ(N)x0. We see that v ∈ L⊥ does not affect the solution (3.1), it plays
the role of an invariant and it can be considered zero. Using the properties of
generalized inversion [19] we obtain the solution of problem (3.5)

λ̂ = Φ+(N)c+ z, (3.6)

where Φ(N) =
∑N−1

k=0 W (k)W T (k), Φ+(N) is a generalized inverse matrix to the
matrix Φ(N), z ∈ Ker(Φ(N)) is an arbitrary vector [19].

Since Ker(Φ(N)) = ZNRn, ZN = Z (Φ(N)) = E − Φ+(N)Φ(N) is the
projection operator onto Ker(Φ(N)), then (3.6) has the following representation

λ̂ = Φ+(N)c+ ZNp, (3.7)

where p ∈ Rn, c = xN − Θ(N)x0 [19]. Formula (3.7) describes the set of all
solutions of problem (3.4). Note that among the vectors that solve the problem
(3.5), the vector

λ̂ = Φ+(N)c

has the smallest norm. This follows from the properties of generalized inverse
matrices. Substituting (3.7) in (3.4) at v(t) = 0, t ∈ IN−1 gives

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) +W T (t)ZNp. (3.8)

p ∈ Rn, t ∈ IN−1. Formula (3.8) solves problem (3.1). If p = 0 then

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) , t ∈ IN−1.
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Substituting (3.8) in (3.5) we obtain

I(u) = J(λ̂) = ‖Φ(N)λ̂− c‖ = ‖Φ(N)Φ+(N)c+Φ(N)ZNp− c‖.

Since ZNp ∈ Ker(Φ (N) then Φ(N)ZNp = 0. Therefore

I(u) = ‖Φ(N)Φ+(N)c− c‖ = ‖(I − Φ(N)Φ+(N))c‖.

Since Y (Φ(N)) = Φ(N)Φ+(N) is a projector onto the image Im(Φ(N)) of
the matrix Φ(N), Z(ΦT (N)) = E − Φ(N)Φ+(N) is a projector onto the kernel
Ker

(
ΦT (N)

)
of the matrix ΦT (N) [19], then

I(u) = ‖Y (Φ(N))c− c‖ = ‖Z(ΦT (N))c‖. (3.9)

Formula (3.9) shows how accurately we can move system (2.1) from the point
x (0) = x0 to the state x (N) = xN . From (3.9) it follows, that I(u) = 0 if and
only if (Φ(N))c = c or Z(ΦT (N)) = 0. Thus the following statement is true.

Theorem 3.1. The control function

u (t) = W T (t) Φ+(N) (xN −Θ(N)x0) +W T (t)ZNp (3.10)

moves system (2.1) from the initial state x(0) = x0 to the nearest point x(N) to
a given state xN . Here p ∈ Rn, t ∈ IN−1, ZN = Z (Φ(N)) = E − Φ+ (N) Φ (N).
Moreover

‖x(N)− xN‖ = ‖Y (Φ(N))c− c‖ = ‖Z(ΦT (N))c‖
describes Euclidean distance from x (N) to xN , where c = xN − Θ(N)x0. If
Y (Φ(N))c = c so that c = xN − Θ(N)x0 belongs to the image Im(Φ(N)) of
the matrix Φ(N), then (3.10) moves system (2.1) from x(0) = x0 to the point
x (N) = xN .

Note that control function (3.10) solves the problem for arbitrary x0, xN if
and only if Z(ΦT (N)) = 0 or in equivalent form Φ(N)Φ+(N) = E. Since the
matrix Φ(N) is symmetric of n× n, this means that Φ+(N) = Φ−1(N).

Theorem 3.2. Among the control functions that moves system (2.1) from x (0) =
x0 to the nearest state x (N) to the point xN , the function

u∗ (t) = W T (t) Φ+(N) (xN −Θ(N)x0) , t ∈ IN−1 (3.11)

has the smallest norm in `(m)
2 .

Proof. From the proof of theorem (3.1) it follows that the admissible control u
moving system (2.1) from x (0) = x0 to the nearest point to xN x (N) satisfies
(3.3), where u0 = u∗ + z0 ∈ L, u∗ is determined by (3.11), z0(t) =W T (t)ZNp,
p ∈ Rn, t ∈ IN−1, v ∈ L⊥. Then

‖u‖2`2 = 〈u, u〉`2 = 〈u0 + v0, u0 + v0〉`2
= 〈u0, u0〉`2 + 〈v0, v0〉`2 + 2〈u0, v0〉`2 = 〈u0, u0〉`2 + 〈v0, v0〉`2
> 〈u0, u0〉`2 = 〈u∗ + z0, u∗ + z0〉`2 = 〈u∗, u∗〉`2 + 〈z0, z0〉`2 + 2〈u∗, z0〉`2 .
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Since ZNp ∈ KerΦ(N) we have Φ(N)ZNp = 0 and

〈u∗, z0〉`2 =

N−1∑
t=0

〈
W T (t) Φ+(N) (xN −Θ(N)x0) ,W T (t)ZNp

〉
=

〈
Φ+(N) (xN −Θ(N)x0) ,

N−1∑
t=0

W (t)W T (t)ZNp

〉
=
〈
Φ+(N) (xN −Θ(N)x0) ,Φ(N)ZNp

〉
= 0.

Finally, we obtain

‖u‖2`2 > 〈u∗, u∗〉`2 + 〈z0, z0〉`2 > 〈u∗, u∗〉`2 = ‖u∗‖2`2 .

The last inequality proves the theorem.

4. Algorithm of Control of Production Process

We offer an algorithm of control design of the production process, which
ensures the production according to a standard in compliance with the permissible
standards of tolerances at a production plant.

Step 1. Given the initial state x (0) = x0 and the final state x (N) = xN , the
parameter ε > 0 determining the set of possible deviations (tolerances) for
the product from the requirements of the standard, the matrices A(t), C(t),
t = 0, 1, . . . N − 1.

Step 2. Find the matrices

Θ(N) = AN−1AN−2 . . . A1A0, Θ (N, t) = AN−1AN−2 . . . At,

W (t) = Θ (N, t)C(t), t = 0, 1, . . . N − 1.

Step 3. Find the matrix Φ(N) =
∑N−1

k=0 W (k)W T (k).

Step 4. Find the generalized inverse matrix Φ+(N).

Step 5. Find the control function

u (t) = K (t) (xN −Θ(N)x0) ,

where K (t) = W T (t) Φ+(N) for all t = 0, 1, . . . N − 1.

Step 6. Find the matrix ZN = E − Φ+(N)Φ(N). If the condition

‖ZN (xN −Θ(N)x0)‖ < ε

is true then the control u (t) solves the problem with specified tolerances

‖x (N)− xN‖ < ε.

Otherwise the control u (t) ensuring the producing of products with given
tolerances does not exist. End of the algorithm description.
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5. Conclusion

In this paper we have analyzed the modern approaches to the automation of
production process management in the industrial enterprises, we have solved the
problem of designing of a control function that ensures the implementation of
the production process. As a result of the process, we get a finished product that
meets all the characteristics required by the current standards. We propose an
algorithm for automating the atomic process of production.

The research results are important for the design, modernization and integrati-
on of the enterprise information systems into one generalized enterprise information
system. This will ensure their high efficiency in operation. The lack of such
solutions in our country and abroad makes research results a priority.

We see the prospects for further research in the design and improvement of the
models and methods for constructing functionally stable technological processes
that are integrated into the information system of the enterprise. This approach
ensures the efficiency of the information infrastructure during the time required to
perform the technological processes and sustainable operation of the enterprise as
a whole. In doing so, we will take into account the specific needs of the enterprises
operating in the sectors with continuous production cycle, such as metallurgy,
energy, chemical industry and so on.
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Abstract. Computer simulation of the behavior of a thin elastic rectangular plate with
a circular hole and an annular inclusion made of functionally graded material has been
carried out. Using the finite element method, the influence of the geometric and mechanical
parameters of the inclusion on the concentration of stresses around the hole is investigated
and various laws of the change in the modulus of elasticity of a functionally graded
material are specified. A comparative analysis of the results has been carried out. The
recommendations for reducing stress concentration are given.
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concentration factor, finite element method.
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1. Introduction

Plates and shells with holes are quite often used in various fields of technology,
power engineering, construction, etc. The presence of holes leads to the appearance
of local (additional) stresses, which can be several times higher than the basic
stresses in an element that is not weakened by a concentrator. Under certain
conditions, this initiates destruction processes. That is why, in order to increase
the strength of the structure, it is necessary to look for ways to influence the
distribution of stresses in the body, in particular, on the value of the stress
concentration factor (SCF). One of these methods is the use of inclusions around
the holes, of various geometric shapes and mechanical properties [5, 6, 11].

Recently, in the manufacture of plate-shell structural elements of new technology,
in particular, aerospace, functionally graded materials (FGM) [16, 17] are used,
which are classified as materials with unique mechanical, technological and special
properties. A specific feature of FGM is a smooth change in mechanical properties
and chemical composition in a certain direction. The gradient structure of materials
provides an increase in the level of service properties of parts and structural
elements, taking into account the respective operating conditions. FGMs have
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high strength and a set of properties when working for impact, wear, fatigue,
they can withstand increased cyclic and alternating loads, etc.

Taking into account the presence of this kind of material inhomogeneity leads
to an increase in the complexity of the mathematical model of the problem.
Finding the exact solution of the obtained boundary value problem in an analytical
form is possible only in some individual cases of the load of bodies and under
certain conditions of their fixation [3,12,13,19–23]. Therefore, when studying the
stress-strain state (SSS) of structures made of FGM and with various inhomogeneities
(holes, inclusions, etc.), it is advisable to use numerical methods of mechanics,
which, unlike analytical ones, are quite universal and effective for solving a wide
class of problems. [2, 4, 6–11]. The most effective are grid methods: the finite
element method [27], the finite difference method, the method of local variations
and their projection-iterative implementation schemes [6–8], which accelerate the
convergence of the process of obtaining a solution to the problem and significantly
reduce the cost of computer computation time.

FGM mechanics has attracted great interest in the last two decades, and many
works have appeared on theoretical, numerical and experimental studies of FGM.
Thus, in [1], analytical solutions of mixed axisymmetric problems for functionally
graded media were obtained. In [25, 26], using an analytical method, the stress
distribution in a plate with an FGM with a circular hole was investigated. In [15],
the stress concentration in multi-wedge systems with functionally graded wedges
was estimated. In [14], using various isoparametrical finite elements, the SCF
was determined in the vicinity of a circular cut in an inhomogeneous plate under
uniaxial tension, in [18] the SCF was determined around a circular cut in an FGM
plate under biaxial tension and shear.

In this work, using the finite element method (FEM), a computer simulation
of the behavior of a thin elastic rectangular plate with a circular hole and an
annular inclusion under the action of a uniaxial tensile load was carried out for
various properties of the inclusion material and its dimensions.

2. Statement of the Problem

A thin elastic homogeneous isotropic plate is given with dimensions a×b and
thickness t with a centrally located circular hole of radius R and an annular
inclusion of radius R1 (Fig. 2.1). A uniform uniaxial tensile load p = const acts
on the plate, which does not lead to the appearance of plastic deformations.

It is believed that the inclusion is modeled by an insert, which is in the plane
of the plate and has the same thickness as it; conditions of rigid adhesion are
specified at the boundary of the inclusion with the plate.

FGM inclusions with arbitrary radial elastic properties are considered. In the
numerical examples, six model materials were selected with the same Poisson’s
ratio ν0 = 0.25, but with different inclusion elastic modulus Ei(r) (i = 1, 6). The
first three materials have the following laws of change in the modulus of elasticity
Ei(r) (i = 1, 3):
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Fig. 2.1. Plate geometry and loading diagram

E1(r) =

{
E0(1 + l), l ∈ [0; 0, 5]

E0(2− l), l ∈ [0, 5; 1]
; (2.1)

E2(r) =


E0(1 + 5

4 l), l ∈ [0; 0, 4]

1, 5E0, l ∈ [0, 4; 0, 6]

E0(21
4 −

5
4 l), l ∈ [0, 6; 1]

; (2.2)

E3(r) =


E0(1 + 5

3 l), l ∈ [0; 0, 3]

1, 5E0, l ∈ [0, 3; 0, 7]

E0(22
3 −

5
3 l), l ∈ [0, 7; 1]

, (2.3)

where E0 = 100GPa is the modulus of elasticity of the plate; 0 6 l 6 1 is the
normalized parametric distance in the radial direction from the center of the hole
along the width of the inclusion h = R1 − R : l = (r − R)/(R1 − R), r is the
distance from the center of the hole to an arbitrary point of inclusion; R and R1

are the radii of the hole and the annular inclusion, respectively.
Note that for the given materials of inclusions (2.1)–(2.3), the values of the

elastic modulus are in the range from 100 to 150 GPa. For three other model
materials, the laws of change in the modulus of elasticity Ei(r) (i = 4, 6) are
similar, but the values of the modulus of elasticity vary in the range from 100 to
200 GPa.
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In Fig. 2.2 we show a graphical representation of the laws of change in the
elastic modulus of an FGM inclusion. Lines 1-3 correspond to dependencies (2.1)–
(2.3).

Fig. 2.2. The laws of change in the elastic modulus of FGM inclusions

It is necessary to determine the SSS of a given plate for each of the specified
variants of inclusions to study the effect of the size and nature of the change in
the modulus of elasticity of the inclusion on the SSS of the plate in the zones of
local stress concentration and the effect on the value of the SCF; to carry out a
comparative analysis of the results for a plate without an inclusion with a plate
in the presence of an FGM-inclusion (Fig. 2.2).

3. Mathematical Model of the Problem

The relationship of the theory of elasticity for the region of a plane-stressed
plate has the form [23,24]:

— equilibrium equations:
∂σ11

∂x
+
∂σ12

∂y
+R1 = 0,

∂σ21

∂x
+
∂σ22

∂y
+R2 = 0,

; (3.1)

or in matrix form
[∂]T {σ}+ {R} = 0,

where
{
R1

R2

}
is a vector of volumetric forces, [∂] =

 ∂/∂x
0
∂/∂y

0
∂/∂y
∂/∂x

 is the

differentiation matrix, {σ} =


σ11

σ22

σ12

 is the stress vector(σ12 = σ21);
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— geometric equations (in Cauchy form):

ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, γ12 =

∂u1

∂y
+
∂u2

∂x
(3.2)

or in matrix form
{ε} = [∂] {u} ,

where {u} =

{
u1(x, y)
u2(x, y)

}
is the displacement vector, {ε} =


ε11

ε22

γ12

 is the

deformation vector;
— physical equations:

ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, γ12 =

∂u1

∂y
+
∂u2

∂x
(3.3)

which with respect to stresses have the form:
σ11 =

E

1− ν2
ε11 +

Eν

1− ν2
ε22, σ12 = γ12

E

2(1 + ν)
,

σ22 =
Eν

1− ν2
ε11 +

E

1− ν2
ε22,

(3.4)

in the matrix form {σ} = [E] {ε}, where [E] is the elastic matrix, ν is the Poisson’s
ratio,

[E] =


E

1−ν2
Eν

1−ν2 0

Eν
1−ν2

E
1−ν2 0

0 0 E
2(1−ν)

 , {ε} =


∂u1
∂x

∂u2
∂y

∂u1
∂y + ∂u2

∂x

 (3.5)

The work of internal forces on possible displacements:

δU =
1

2

ˆ
Ω

(σ11δε11 + σ22δε22 + σ12δγ12) dΩ =
1

2

ˆ
Ω
{δε}T {σ} dΩ.

The work of external forces on possible displacements:

δA =

ˆ
L
{P}T {δu} dL,

where {P} =

{
px(x, y)

py(x, y)

}
is the external load vector.

In the case of a uniform uniaxial tensile load px(x, y) = p = const; py(x, y) =
= 0.

For FGM in formulas (3.3)–(3.5), we set E = E(x, y).
The functional of the total potential energy of deformation of a plate, which

is loaded in its plane, has the form:
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∏
=

1

2

ˆ
Ω
{δε}T {σ} dΩ−

ˆ
L
{P}T {δu} dL. (3.6)

4. Solution Method

The solution of the obtained variational problem was carried out using the
FEM [27]. The main idea of this method when analyzing the behavior of a
structure is as follows: a continuous medium (the structure as a whole) is modeled
by dividing it into subdomains (finite elements), in each of which the behavior of
the medium is described using a separate set of selected, so-called basis functions
representing stresses and move in the specified area. Within each finite element,
the selected continuous function is approximated by a polynomial of some degree.
As a result, the original variational problem is replaced by a discrete model, a
system of linear or nonlinear algebraic equations with unknown values of the
sought function at the nodes of the finite element mesh.

The calculations were carried out using triangular (six-node) Lagrangian finite
elements of the second degree (Fig. 4.3, a), while the unknown displacement
functions inside each finite element are approximated by a quadratic polynomial.
In the areas of stress concentration, an adaptive mesh with a refinement factor of
10 was used (Fig. 4.3, b).

Fig. 4.3. Breakdown of an area into finite elements: a) the type of the final element; b) a fragment
of an adaptive finite element mesh

5. Numerical Analysis

The calculations were carried out on a PC ARTLINE Gaming X75 (X75v16),
with an Intel Core i7-10700F processor with a clock rate of 2.9–4.8GHz, 32 GB of
RAM, an nVidia GeForce RTX 2060 SUPER video card, system bit width x64.
The number of finite elements is 1871, the number of nodes is 3885 The calculation
time on average is 4s.

Numerical studies were carried out for square plates of thickness t = 0.01m,
with sides a = b = 0.2m. The radius of the circular hole is R = a/20, the tensile
load is p = 10MPa.
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For the purpose of comparative analysis, a calculation was carried out for a
homogeneous plate with a circular hole without inclusion. Received SCF = 3.05;
the maximum values of the intensity of deformations in this case, which is in good
agreement with the results from [19].

As a result of the computational experiments using the FEM, the distribution
of the stress and strain intensities in the plate was obtained, the SCF was calculated
for uniaxial tension of the plate with inclusions from the FGM with the inclusion
width R and 2R.

When using FGM-inclusions 1, 2, 3 with the width of the inclusion h = R,
the SCF almost does not change. Calculations for these inclusions at h = 2R are
given in Table 1. Here, δ1 and δ2 are the deviation of SCF and the maximum

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,84 -6,9 1,93 -9,4

FGM inclusion 2 2,81 -7,9 1,89 -11,3

FGM inclusion 3 2,79 -8,5 1,85 -13,1

Table 1. Stress concentration factor and corresponding deformations in a plate with FGM-
inclusion at h = 2R

value of the intensity of deformation εmax
i from the corresponding value for the

plate without inclusion.
From Table. 1 it can be seen that in the case of an annular inclusion of width

2R from an FGM, the maximum deformations and SCF in a plate with a hole
are less than in a plate without inclusions. The smallest SCFs and strains were
obtained in the case of FGM inclusion 3.

In the presence of inclusions from FGM of width 2R, a redistribution of stresses
occurs along the section AB from the edge of the inclusion to its middle part. Thus,
the maximum stresses decrease, but the stresses increase along the width of the
inclusion in the section AB in the interval l ∈ [0, 1; 0, 7]. The nature of the stress
distribution is close to the parabolic pattern (Fig. 5.4).

The SCF and deformations under uniaxial tension of a plate with FGM
inclusions 4, 5, 6 with the width of the inclusion R and 2R are shown in Table 2
and Table 3 respectively.

In the case with the inclusion width h = R for all three variants of inclusions,
the SCF decreased by about 8%, and the maximum deformations by 13-17%
compared to the plate without inclusions. FGM-inclusion 6 turned out to be the
best from the point of view of reducing the concentration of SSS parameters (Fig.
5.5).
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Fig. 5.4. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = 2R

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,82 -7,5 1,85 -13,1

FGM inclusion 2 2,79 -7,5 1,80 -15,5

FGM inclusion 3 2,79 -8,5 1,76 -17,4

Table 2. Stress concentration factor and corresponding deformations in a plate with FGM-
inclusion at h = R

Fig. 5.5. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = R
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Analogical calculations were carried out for a plate with an inclusion width
equal to 2R. The results are shown in Table 3.

Problem SCF δ1, % εmax
i , 10−4 δ2, %

FGM inclusion 1 2,67 -12,8 1,76 -17,4

FGM inclusion 2 2,62 -14,4 1,70 -20,2

FGM inclusion 3 2,59 -15,4 1,64 -23,0

Table 3. Stress concentration factor and corresponding deformations in a plate with FGM
inclusion at h = 2R

Here, the SCF and the maximum deformations in the plate in the presence
of FGM inclusions also turn out to be less than in the case of a plate without
inclusions, and the stress across the width of the inclusion in the section AB
increases in the interval l ∈ [0, 1; 0, 7] (Fig. 5.6). The nature of stress distribution
in section AB for all three inclusions is similar. The best turns out to be FGM-
inclusion 6, which makes it possible to reduce the stress concentration by ∼ 15%,
and deformations by ∼ 23%.

Fig. 5.6. Distribution of relative stresses σy/p in a plate with an FGM-inclusion over the width
of the inclusion in the section AB at h = 2R

As an example (see Fig. 5.7), we show the distribution patterns of stress and
strain intensities in a plate with FGM-inclusion 1.
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Fig. 5.7. SSS components in a plate with FGM-inclusion 1 at h = 2R:
a) stress intensity; b) the intensity of stresses in the vicinity of the hole; c) the intensity of
deformations

6. Conclusions

As a result of the computer simulation and numerical study of the effect of
a change in the elastic modulus of an inclusion in the radial direction on the
distribution of stress and strain intensities in a thin homogeneous plate near a
circular hole, it has been established that in the presence of FGM inclusions with
certain mechanical properties, it becomes possible to influence not only the SCF
value in plate near local stress concentrators, but also on the stress distribution
over the width of the inclusion. In a comparative analysis of the results obtained
for a plate with an FGM inclusion and a plate without an inclusion, it was
shown that the use of FGM inclusions is effective. This makes it possible to
simultaneously reduce the concentration of SSS parameters (stresses and strains)
around the hole and increase the strength of the plate as a whole.

The nature of the stress distribution in the plate is influenced by both the
width of the FGM inclusion and the law of change in the modulus of elasticity:
the larger the width of the inclusion and the larger the region with the maximum
value of the elastic modulus of the inclusion, the greater the effect of the inclusion
on the value of SCF and the magnitude of maximum deformations. The influence
of the range of the change in the value of the elastic modulus is also established:
the greater it is, the greater the effect on the value of the SCF in the plate.
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1. Introduction

Following in some aspects the paper [5], we propose a new variational approach
to the spatial increasing resolution of multi spectral MODIS-like images via their
fusion with Lansat-like imagery at higher resolution. Our approach is based on the
variational model in Sobolev-Orlicz space with a non-standard growth condition
of the objective functional and on the assumption that, to a large extent, the
image topology in the each spectral channel is contained in the topographic map
of its spectral energy. We discuss the well foundedness of the above approach, the
consistency of the corresponding variational problem, and show that this problem
admits a unique solution. We also derive some optimality conditions and supply
our approach by results of numerical simulations with the real satellite images.
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2. Preliminaries

We begin with some notation. Let Ω ⊂ R2 be a bounded open set with a
Lipschitz boundary ∂Ω. Let I : Ω → Rm, with m > 3, be a multispectral image
containing the usual R, G, B channels IR, IG, IB, and arguably some others ones
like the infrared channel INIR, i.e.,

I(x) = [IR(x), IG(x), IB(x), . . . ]t ∈ Rm, ∀x ∈ Ω.

We say that YI : Ω → R is the panchromatic component of the multispectral
image I : Ω → Rm (or in other words YI is the spectral energy coming from the
RGB-channels) if the following representation

YI(x) = αRIR(x) + αGIG(x) + αBIB(x), ∀x ∈ Ω

holds for some weight coefficients αR, αG, αB > 0. In particular, if

αR = 0.299, αG = 0.587, αB = 0.114

then YI can be interpreted as the luma component of I and it represents the
perceptual brightness of the multispectral image I : Ω→ Rm.

For each λ ∈ R, we define the upper level set of the spectral energy YI as
follows

Xλ = {x ∈ Ω : YI(x) > λ} .

Then the spectral energy YI can be recovered from its level sets by the reconstruc-
tion formula

YI(x) = sup {λ : x ∈ Xλ} , ∀x ∈ Ω.

Hereinafter, we will refer to the family of connected components of the upper level
sets of YI as the topographic map of YI .

Let SH ⊂ Ω and SL ⊂ Ω be two sample grids on Ω such that

SH =

{
(xi, yj)

∣∣∣∣ x1 = xH , xi = x1 + ∆H,x(i− 1), i = 1, . . . , Nx,
y1 = yH , yj = y1 + ∆H,y(j − 1), j = 1, . . . , Ny,

}
,

SL =

{
(xi, yj)

∣∣∣∣ x1 = xL, xi = x1 + ∆L,x(i− 1), i = 1, . . . ,Mx,
y1 = yL, yj = y1 + ∆L,y(j − 1), j = 1, . . . ,My,

}
,

where Nx >> Mx and Ny >> My.
Let H : Ω → R3 be a given multispectral (Landsat-like) image which is

sampled at the grid of high resolution SH . We suppose that, in practice, this
image can be identified with an 3-D array

H =


 HR(xi, yj)
HG(xi, yj)
HB(xi, yj)

 , i = 1, . . . , Nx, j = 1, . . . , Ny

 .
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Let L : Ω→ R4 be a given multispectral (MODIS-like) image which is sampled
at the grid of low resolution SL, and it has 4 spectral channels R, G, B, and NIR.
So, we can indentify this image with an 4-D array

L =




LR(xi, yj)
LG(xi, yj)
LB(xi, yj)
LNIR(xi, yj)

 , i = 1, . . . ,Mx, j = 1, . . . ,My

 .

The problem, we are going to consider, can be formally stated as follows:
Using only the data H : SH → R3 and L : SL → R4, we have to increase the
resolution of the four-band image L : SL → R4 via its fusion with the three-band
image H : SH → R3 at higher resolution such that the following properties for
the retrieved high resolution multispectral image I : SH → R4 would be satisfied:

(i) The image I : Ω → R4 we are going to retrieve, should be of bounded
variation, I ∈ BV (Ω;R4).

(ii) The topographic maps for each spectral channel at higher resolution must
have a similar structure to the topographic map of the spectral energy YH
coming from the RGB-channels of H : SH → R3.

(iii) The spectral energies YI and YH should be as close as possible with respect
to the L2(Ω)-norm.

(iv) The sampled values of I : Ω→ R4 on the grid of low resolution SL should be
as close as possible in L2-metric to the multispectral imagery L : SL → R4.

(v) The NIR-channel INIR for the retrieved high resolution multispectral image
I : Ω → R4 should be in the same regression relationship with IR, IG, IB
channels as LNIR with LR, LG, LB, that is, if

LNIR(xi, yj) = γRLR(xi, yj)+γGLG(xi, yj)+γBLB(xi, yj), ∀ (xi, yj) ∈ SL

is a linear regression model which is fitted using the least squares approach,
then

INIR(xi, yj) = γRIR(xi, yj) + γGIG(xi, yj) + γBIB(xi, yj), ∀ (xi, yj) ∈ SH

with the same regression coefficients γR, γG, γB ∈ R.
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3. Auxiliaries

3.1. BV -Space

By BV (Ω) we denote the space of all functions u ∈ L1(Ω) for which their
distributional derivatives are representable by finite Borel measures in Ω, i.e.ˆ

Ω
u
∂φ

∂xi
dx = −

ˆ
Ω
φdDiu, ∀φ ∈ C∞0 (Ω), i = 1, 2

for some R2-valued measure Du = (D1u,D2u) ∈ M2(Ω). It can be shown that
BV (Ω), endowed with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω)

is a Banach space, where

|Du|(Ω) :=

ˆ
Ω
d|Du|

= sup
{ˆ

Ω
udivϕdx : ϕ ∈ C1

0 (Ω;R2), |ϕ(x)| 6 1 for x ∈ Ω
}

(3.1)

stands for the total variation of u in Ω. It is clear that |Du|(Ω) =
´

Ω |∇u| dx if u
is continuously differentiable in Ω.

The following embedding results for BV -function plays a crucial role for
qualitative analysis of variational problems that we study in this paper.

Proposition 3.1. [4, p.378] Let Ω be an open bounded Lipschitz subset of R2.
Then the embedding BV (Ω;RM ) ↪→ L2(Ω;RM ) is continuous and the embeddings
BV (Ω;RM ) ↪→ Lp(Ω;RM ) are compact for all p such that 1 6 p < 2. Moreover,
there exists a constant Cem > 0 which depends only on Ω and p such that for all
u in BV (Ω;RM ),(ˆ

Ω
|u|p dx

)1/p

6 Cem‖u‖BV (Ω;RM ), ∀ p ∈ [1, 2].

According to the Radon-Nikodym theorem, if u ∈ BV (Ω) then there exists
∇u ∈ L1(Ω;R2) and a measure Dsu singular with respect to the 2-dimensional
Lebesgue measure L2 Ω restricted to Ω, such that Du = ∇uL2 Ω +Dsu.

We recall that if u ∈ BV (Ω), then almost all its level sets {x ∈ Ω : u(x) > λ}
are sets of finite perimeter. Hence, at almost all points of almost all level sets of
u ∈ BV (Ω) we may define a normal vector θ(x). This vector field of normals θ(x)
can be also defined as the Radon-Nikodym derivative of the measure Du with
respect to |Du|, i.e., it formally satisfies the following relations

(θ,Du) = |Du| and |θ| 6 1 a.e. in Ω.

In the sequel, we will refer to the vector field θ as the vector field of unit normals
to the topographic map of a function u. Further information on BV -functions and
their properties can be found in [1, 4].
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Remark 3.1. In practice, at the discrete level, θ(x, y) can be defined by the rule
θ(xi, yj) =

Du(xi,yj)
|Du(xi,yj)| when Du(xi, yj) 6= 0, and θ = 0 when Du(xi, yj) = 0.

However, as was mentioned in [5], a better choice for θ(x, y) would be to compute
it as ξ(t) = DU(t,·)

|DU(t,·)| for some small value of t > 0, where U(t, x, y) is a solution
of the following initial-boundary value problem with 1D-Laplace operator in the
right hand side

∂U

∂t
= div

(
DU

|DU |

)
, t ∈ (0,+∞), (x, y) ∈ Ω, (3.2)

U(0, x, y) = u(x, y), (x, y) ∈ Ω, (3.3)
∂U(0, x, y)

∂ν
= 0, t ∈ (0,+∞), (x, y) ∈ ∂Ω. (3.4)

As a result, for any t > 0, there can be found a vector field

ξ ∈ L∞(Ω;R2) with ‖ξ(t)‖L∞(Ω;R2) 6 1

such that

(ξ(t), U(t, ·)) = |DU(t, ·)| in Ω, ξ(t) · ν = 0 on ∂Ω, (3.5)

and Ut(t, x, y) = div ξ(t, x, y) in the sense of distributions on Ω for a.a. t > 0.
We notice that following this procedure, for small value of t > 0, we do not

distort the geometry of the function u(x, y) in an essential way. Moreover, it can
be shown that this regularization of the vector field θ(x, y) = DU(x,y)

|DU(x,y)| satisfies
condition div θ ∈ L2(Ω).

3.2. On Orlicz Spaces

Let p(·) be a measurable exponent function on Ω such that

1 6 α 6 p(x) 6 β <∞ a.e. in Ω, (3.6)

where α and β are given constants. Let p′(·) = p(·)
p(·)−1 be the corresponding

conjugate exponent. It is clear that

1 6
β

β − 1︸ ︷︷ ︸
β′

6 p′(x) 6
α

α− 1︸ ︷︷ ︸
α′

a.e. in Ω, (3.7)

where β′ and α′ stand for the conjugates of constant exponents. Denote by Lp(·)(Ω)
the set of all measurable functions f(x) on Ω such that

´
Ω |f(x)|p(x) dx <∞. Then

Lp(·)(Ω) is a reflexive separable Banach space with respect to the Luxemburg norm
(see [7, 8] for the details)

‖f‖Lp(·)(Ω) = inf
{
λ > 0 : ρp(λ

−1f) 6 1
}
, (3.8)
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where ρp(f) :=
´

Ω |f(x)|p(x) dx.
It is well-known that Lp(·)(Ω) is reflexive provided α > 1, and its dual is

Lp
′(·)(Ω), that is, any continuous functional F = F (f) on Lp(·)(Ω) has the form

(see [21, Lemma 13.2])

F (f) =

ˆ
Ω
fg dx, with g ∈ Lp′(·)(Ω).

As for the infimum in (3.8), we have the following result.

Proposition 3.2. The infimum in (3.8) is attained if ρp(f) > 0. Moreover,

if λ∗ := ‖f‖Lp(·)(Ω) > 0, then ρp(λ
−1
∗ f) = 1. (3.9)

Taking this result and condition 1 6 α 6 p(x) 6 β into account, we see that

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx 6

ˆ
Ω

∣∣∣∣f(x)

λ∗

∣∣∣∣p(x)

dx 6
1

λα∗

ˆ
Ω
|f(x)|p(x) dx,

1

λβ∗

ˆ
Ω
|f(x)|p(x) dx 6 1 6

1

λα∗

ˆ
Ω
|f(x)|p(x) dx.

provided λ∗ > 1. And we arrive at the reverse inequality if 0 < λ∗ < 1. Hence,
(see [7, 8, 20] for the details)

‖f‖α
Lp(·)(Ω)

6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖β

Lp(·)(Ω)
, if ‖f‖Lp(·)(Ω) > 1,

‖f‖β
Lp(·)(Ω)

6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖α

Lp(·)(Ω)
, if ‖f‖Lp(·)(Ω) < 1,

(3.10)

and, therefore,

‖f‖α
Lp(·)(Ω)

− 1 6
ˆ

Ω
|f(x)|p(x) dx 6 ‖f‖β

Lp(·)(Ω)
+ 1, ∀ f ∈ Lp(·)(Ω), (3.11)

‖f‖Lp(·)(Ω) =

ˆ
Ω
|f(x)|p(x) dx, if ‖f‖Lp(·)(Ω) = 1. (3.12)

The following estimates are well-known (see, for instance, [7, 8, 20]): if f ∈
Lp(·)(Ω) then

‖f‖Lα(Ω) 6 (1 + |Ω|)1/α ‖f‖Lp(·)(Ω), (3.13)

‖f‖Lp(·)(Ω) 6 (1 + |Ω|)1/β′ ‖f‖Lβ(Ω), β′ =
β

β − 1
, ∀ f ∈ Lβ(Ω). (3.14)

Let
{
fk ∈ Lp(·)(Ω)

}
k∈N be a given sequence, where the exponent p ∈ C(Ω)

satisfies property (3.6). We say that the sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N is bounded

if (see [15, Section 6.2])

lim sup
k→∞

ˆ
Ω
|fk(x)|p(x) dx < +∞. (3.15)
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Definition 3.1. A bounded sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N is weakly convergent in

the Orlicz space Lp(·)(Ω) to a function f ∈ Lp(·)(Ω), if

lim
k→∞

ˆ
Ω
fkϕdx =

ˆ
Ω
fϕ dx, ∀ϕ ∈ C∞0 (R2). (3.16)

For our further analysis, we make use of the following lower semicontinuity
property of the Lp(·)-norm with respect to the weak convergence in Lp(·)(Ω) (we
refer to [21, Lemma 13.3] for details).

Proposition 3.3. If a bounded sequence
{
fk ∈ Lp(·)(Ω)

}
k∈N converges weakly

in Lα(Ω) to f , where α > 1 is defined in (3.6), then f ∈ Lp(·)(Ω), fk ⇀ f in
Lp(·)(Ω), and

lim inf
k→∞

ˆ
Ω
|fk(x)|p(x) dx >

ˆ
Ω
|f(x)|p(x) dx. (3.17)

Remark 3.2. Arguing in a similar manner as in [21, Lemma 13.3] and using the
estimate

lim inf
k→∞

ˆ
Ω

1

pk(x)
|fk(x)|pk(x) dx >

ˆ
Ω
f(x)ϕ(x) dx−

ˆ
Ω

1

p′k(x)
|ϕ(x)|p′(x) dx,

which is valid for any smooth function ϕ, it is easy to show that the lower
semicontinuity property (3.17) can be generalized as follows

lim inf
k→∞

ˆ
Ω

1

p(x)
|fk(x)|p(x) dx >

ˆ
Ω

1

p(x)
|f(x)|p(x) dx. (3.18)

We need the following result that leads to the analog of the Hölder inequality
in Lebesgue spaces with variable exponents (for the details we refer to [7, 8]).

Proposition 3.4. If f ∈ Lp(·)(Ω)N and g ∈ Lp′(·)(Ω)N , then (f, g) ∈ L1(Ω) and
ˆ

Ω
(f, g) dx 6 2‖f‖Lp(·)(Ω)N ‖g‖Lp′(·)(Ω)N . (3.19)

3.3. Sobolev Spaces with Variable Exponent

We recall here the well-known facts concerning the Sobolev spaces with variable
exponent. Let p(·) be a measurable exponent function on Ω such that 1 < α 6
p(x) 6 β <∞ a.e. in Ω, where α and β are given constants. We associate with it
the so-called Sobolev-Orlicz space

W 1,p(·)(Ω) :=

{
y ∈W 1,1(Ω) :

ˆ
Ω

[
|y(x)|p(x) + |∇y(x)|p(x)

]
dx < +∞

}
(3.20)

and equip it with the norm ‖y‖
W

1,p(·)
0 (Ω)

= ‖y‖Lp(·)(Ω) + ‖∇y‖Lp(·)(Ω;R2).



On Satellite Data Fusion 61

It is well-known that, in general, unlike classical Sobolev spaces, smooth
functions are not necessarily dense in W = W

1,p(·)
0 (Ω). Hence, with the given

variable exponent p = p(x) (1 < α 6 p 6 β) there can be associated another
Sobolev space with variable exponent,

H = H1,p(·)(Ω) as the closure of the set C∞(Ω) in W 1,p(·)(Ω)-norm.

Since the identity W = H is not always valid, it makes sense to say that an
exponent p(x) is regular if C∞(Ω) is dense in W 1,p(·)(Ω).

The following result reveals an important property ensuring the regularity of
exponent p(x).

Proposition B.1. Assume that there exists δ ∈ (0, 1] such that p ∈ C0,δ(Ω).
Then the set C∞(Ω) is dense in W 1,p(·)(Ω), and, therefore, W = H.

Proof. Let p ∈ C0,δ(Ω) be a given exponent. Since

lim
t→0
|t|δ log(|t|) = 0 with an arbitrary δ ∈ (0, 1], (3.21)

it follows from the Hölder continuity of p(·) that

|p(x)− p(y)| 6 C|x− y|δ 6

[
sup
x,y∈Ω

‖x− y|δ log(|x− y|−1)

]
ω(|x− y|), ∀x, y ∈ Ω,

(3.22)
where ω(t) = C/ log(|t|−1), and C > 0 is some positive constant.

Then property (3.21) implies that p(·) is a log-Hölder continuous function. So,
to deduce the density of C∞(Ω) in W 1,p(·)(Ω) it is enough to refer to Theorem
13.10 in [21].

4. Main Assumptions

Let H : SH → R3 and L : SL → R4 be given digital images. Hereinafter, we
assume that their continuous counterparts H : Ω→ R3 and L : Ω→ R4 are such
that

YH ∈ BV (Ω) and YL ∈ L2(Ω), (4.1)

where YH and YL stand for the spectral energies of theH and L images, respectively.
Before proceed further, we associate with the spectral energy YH the so-called

texturity characteristic p : Ω→ R following the rule

p(x) := F(YH(x)) = 1 + g (|(∇Gσ ∗ YH) (x)|) , ∀x ∈ Ω, (4.2)

where g:[0,∞)→ (0,∞) is the edge-stopping function which we take it in the form
of the Cauchy law g(t) = 1

1+(t/a)2
with an appropriate a > 0, (∇Gσ ∗ YH) (x)

determines the convolution of function YH with the two-dimensional Gaussian
filter kernel Gσ,

Gσ(x) =
1

2πσ2
e−
|x|2

2σ2 , x ∈ R2, (4.3)

(∇Gσ ∗ YH) (x) :=

ˆ
Ω
∇Gσ(x− y)YH(y) dy, ∀x ∈ Ω. (4.4)
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Here, the parameter σ>0 determines the spatial size of the image details which
are removed by this 2D filter.

Since the magnitude g (|(∇Gσ ∗ YH) (x)|) is close to one at those points, where
the spectral energy YH is slowly varying, and this value is close to zero at the
edges of YH , it follows that the function p(x) can be interpreted as a texturity
characteristic of the panchromatic image YH .

The following result plays a crucial role in the sequel.

Lemma 4.1. Let YH ∈ L1(Ω) be a given spectral energy. Let

p = 1 + g (|(∇Gσ ∗ YH)|)

be the corresponding texturity characteristic. Then

p ∈ C0,1(Ω), (4.5)
α := 1 + δ 6 p(x) 6 β := 2, ∀x ∈ Ω, (4.6)

where δ =
a2

a2 + ‖Gσ‖2C1(Ω−Ω)
‖YH‖2L1(Ω)

.

Proof. By smoothness of the Gaussian filter kernel Gσ, we have

|(∇Gσ ∗ YH) (x)| 6
ˆ

Ω
|∇Gσ(x− y)|YH(y) dy 6 ‖Gσ‖C1(Ω−Ω)‖YH‖L1(Ω),

p(x) = 1 +
a2

a2 + (|(∇Gσ ∗ YH) (x)|)2

> 1 +
a2

a2 + ‖Gσ‖2C1(Ω−Ω)
‖YH‖2L1(Ω)

, ∀x ∈ Ω.

From this the existence of a positive value δ ∈ (0, 1) such that estimate (4.6) holds
true follows. Combining this fact with maxx∈Ω |p(x)| 6 β := 2, we arrive at the
announced estimate (4.6).

As for the property (4.5), we make use of the estimate

|p(x)− p(y)| 6 a2

∣∣∣∣∣∣ |(∇Gσ ∗ YH) (x)|2 − |(∇Gσ ∗ YH) (y)|2(
a2 + |(∇Gσ ∗ YH) (x)|2

)(
a2 + |(∇Gσ ∗ YH) (y)|2

)
∣∣∣∣∣∣

6
2‖Gσ‖C1(Ω−Ω)‖YH‖L1(Ω)

a2
||(∇Gσ ∗ YH) (x)| − |(∇Gσ ∗ YH) (y)||

6
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|

a2

ˆ
Ω
|∇Gσ(x− z)−∇Gσ(y − z)| dz, ∀x, y ∈ Ω, (4.7)

with γ1 = maxx∈Ω |YH(x)|. Then, by smoothness of the function ∇Gσ(·), we
deduce: there exists a positive constant CG > 0 such that

|p(x)− p(y)| 6
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|CG

a2
|x− y|, ∀x, y ∈ Ω.
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Setting C :=
2‖Gσ‖C1(Ω−Ω)γ

2
1 |Ω|CG

a2
, we finally see that

p(·) ∈ S =

{
h ∈ C0,1(Ω)

∣∣∣∣∣ |h(x)− h(y)| 6 C|x− y|, ∀x, y,∈ Ω,

1 < α 6 h(·) 6 β in Ω.

}
(4.8)

The algorithm that we propose to realize for the spatial interpolation of
MODIS-like multi-band color images to the Landsat-like imagery at high resolution,
is essentially grounded on the following key assumptions.

Assumption 1. The MODIS image L : SL → R4 and the Landsat image H :
SH → R3 are rigidly co-registered.

This means that there exists an affine transformation F : R2 → R2 of the
form

F(x) = Bx+ a, ∀x ∈ R2, (4.9)

where

a =

[
a1

a2

]
and =

[
b11 b12

b21 b22

]
such that the MODIS-like image after the affine transformation L

(
F−1(·)

)
: SL →

R4 and Landsat-like image H : SH → R3, after the bilinear resampling to the grid
of low resolution SL, could be successfully matched.

In practice, the co-registration procedure can be realized using, for instance,
the open-source LSReg v2.0.2 software [16, 19] that has been used in a number
of recent studies [9, 17], or the rigid co-registration approach that was recently
developed by the EOS Company [11,12]. However, in both cases, in order to find
an appropriate affine transformation, we propose to apply the above mentioned
procedure not to the original images, but rather to their spectral energies

YL(xi, yj) = αRLR(xi, yj) + αGLG(xi, yj) + αBLB(xi, yj), ∀ (xi, yj) ∈ SL

and

YH(xi, yj) = αRHR(xi, yj) + αGHG(xi, yj) + αBHB(xi, yj), ∀ (xi, yj) ∈ SH ,
(4.10)

where the last one should be previously resampled to the grid of low resolution
SL.

Assumption 2. The low resolution pixels in the image L : SL → R4 are formed
from the high resolution pixels of I : SH → R4 by a low pass filtering (the
se-called subsampling procedure).
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As a consequence of this Assumption, we can suppose that there exists an
impulse response K such that

L(xi, yj) = [K ∗ I] (xi, yj), ∀ i = 1, . . . ,Mx, ∀ j = 1, . . . ,My. (4.11)

where [K ∗ I] stands for the convolution operator. In particular, ifK = [kp,q]p,q=1,...,K

is a squared matrix, then

[K ∗ I] (xi, yj) =
K∑
p=1

K∑
q=1

kp,qI(xi−p+1, yj−q+1)

provided I(x, y) = 0 if (x, y) 6∈ Ω. For practical implementation, we usually set

kp,q =
1

K2
, ∀ p, q = 1, . . . ,K

with an appropriate choice of K ∈ N.

Assumption 3. The spectral energy YI of the retrieved high resolution multispectral
image I : Ω→ R4 is an element of the Sobolev space with variable exponent
W 1,p(·)(Ω), where p(·) is defined in (4.2), and

YI(x) = αRIR(x) + αGIG(x) + αBIB(x), ∀x ∈ Ω

with αR = 0.299, αG = 0.587, and αB = 0.114.

Assumption 4. The topographic maps for each spectral channels IR, IG, IB,
and INIR of the retrieved image I : Ω→ R4 have a similar structure to the
topographic map of the spectral energy YH of the Landsat image H : Ω→
R3.

As follows from this Assumption, all spectral channels of the retrieved image
should share the geometry of the panchromatic image YH in Ω. It means that,
due to the property YH ∈ BV (Ω), for almost all points of almost all level sets of
YH we can define a normal vector θ(x), i.e., it formally satisfies (θ, YH) = |∇YH |
and |θ| 6 1 a.e. in Ω (see Remark 3.1 for the details). So, if θ ∈ L∞(Ω,R2) is
a vector field with indicated properties, it follows that θ(x) has the direction of
the normal to the level lines of YH . Therefore, the counterclockwise rotation of
angle π/2, denoted by θ⊥, represents the tangent vector to the level lines of YH .
In this case, if the spectral channels of I : Ω → R4 share the geometry of the
panchromatic image YH , we have(

θ⊥,∇Ii
)
R2

= 0, i ∈ {R,G,B,NIR} in Ω.

5. Statement of the Spatial Interpolation Problem

The problem of spatial interpolation of the MODIS-like image L : SL → R4

to the resolution of three-band Landsat-like image H : SH → R3 consists in the
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restoration of the four-band image I : Ω→ R4 such that properties (i)–(v) would
be satisfied. To do so, we propose at the first stage to compute the high resolution
images IR, IG, IB : Ω→ R as a solution of the following constrained minimization
problem

inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB) , (5.1)

where Ξ denotes the set of admissible images, and J (IR, IG, IB) stands for the
energy functional. Here, we define the set Ξ as follows: (IR, IG, IB) ∈ Ξ if and
only if

(A) (IR, IG, IB) ∈W 1,p(·)(Ω;R3), where p(·) stands for the texturity characteristic
of the spectral energy YH ∈ BV (Ω);

(B) the following pointwise inequalities

0 6IR(x, y) 6 max
(xi,yj)∈SL

LR(xi, yj) a.e. in Ω, (5.2)

0 6IG(x, y) 6 max
(xi,yj)∈SL

LG(xi, yj) a.e. in Ω, (5.3)

0 6IB(x, y) 6 max
(xi,yj)∈SL

LB(xi, yj) a.e. in Ω. (5.4)

hold true.

As for the energy functional J : Ξ→ R, we construct it in the form

J = J0 + γJ1 + λJ2 + µJ3, (5.5)

where

J0 (IR, IG, IB) =

ˆ
Ω

1

p(x)
|∇IR(x)|p(x) dx+

ˆ
Ω

1

p(x)
|∇IG(x)|p(x) dx

+

ˆ
Ω

1

p(x)
|∇IB(x)|p(x) dx (5.6)

J1 (IR, IG, IB) =

ˆ
Ω

∣∣∣ (θ⊥,∇IR) ∣∣∣α dx+

ˆ
Ω

∣∣∣ (θ⊥,∇IG) ∣∣∣α dx
+

ˆ
Ω

∣∣∣ (θ⊥,∇IB) ∣∣∣α dx, (5.7)

J2 (IR, IG, IB) =

ˆ
Ω

[αRIR + αGIG + αBIB − YH ]2 dx, (5.8)

J3 (IR, IG, IB) =

Mx∑
i=1

My∑
j=1

([K ∗ IR] (xi, yj)− LR(xi, yj))
2

+

Mx∑
i=1

My∑
j=1

([K ∗ IG] (xi, yj)− LG(xi, yj))
2

+

Mx∑
i=1

My∑
j=1

([K ∗ IB] (xi, yj)− LB(xi, yj))
2 , (5.9)
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and
θ(x, y) =

DU(t, x, y)

|DU(t, x, y)|
for small values of t > 0. (5.10)

Here, the exponent α > 0 is defined by (4.6), and U(t, x, y) is the solution of the
parabolic problem (3.2)–(3.4) with the initial condition

U(0, x, y) = YH(x, y) = αRHR(x, y) + αGHG(x, y) + αBHB(x, y), ∀ (x, y) ∈ Ω.

The main motivation for such choice of the energy functional is rather clear.
As follows from (5.9), each term in J3 (IR, IG, IB) represents an L2-distortion
between a particular spectral channel in the MODIS image L : SL → R4 and the
corresponding channel of the retrieved image I : SH → R4 which is resampled to
the grid of low resolution SL. So, the J3-term should be minimal and it is mainly
motivated by Assumption 2.

As for the term J2 (IR, IG, IB), it reflects the fact that the spectral energy
YI = αRIR + αGIG + αBIB of the retrieved image should be as close as possible
to the spectral energy of the Landsat image H : SH → R3. We interpret this
closedness in the sense of L2-norm.

Now about the term J1 (IR, IG, IB). As was mentioned before, the main goal,
we are going to follows in the spatial interpolation problem, is to preserve the
following property: the geometry of each spectral channels in the retrieved image
should be as close as possible to the geometry of the spectral energy of the Landsat
image H : SH → R3. Formally, it means that the following relations have to be
satisfied(

θ⊥,∇IR
)
R2

= 0,
(
θ⊥,∇IG

)
R2

= 0,
(
θ⊥,∇IB

)
R2

= 0 a.e. in Ω.

Hence, the magnitude
ˆ

Ω

[∣∣∣ (θ⊥,∇IR) ∣∣∣α +
∣∣∣ (θ⊥,∇IG) ∣∣∣α +

∣∣∣ (θ⊥,∇IB) ∣∣∣α] dx
must be small enough, where θ = θ(x, y) stands for the vector field of unit normals
to the topographic map of the spectral energy YH = αRHR + αGHG + αBHB.

The first term J0 (IR, IG, IB) is the regularization. Since p(x) ≈ 1 in places
in Ω where edges or discontinuities are present in the spectral energy YH of the
image H, and p(x) ≈ 2 in places where YH(x) is smooth or contains homogeneous
features, the main benefit of the model (5.1) is the manner in which it accommo-
dates the local image information. The places where the gradient is sufficiently
large (i.e. likely edges), we deal with the so-called TV-based diffusion [18], whereas
the places where the gradient is close to zero (i.e. homogeneous regions), the model
becomes isotropic. Specifically, the type of anisotropy at these ambiguous regions
varies according to the strength of the gradient. This enables the model to have a
much lower dependence on the approximation schemes for the variable exponent
p(x) and other thresholds.
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We are now in a position to define what we mean by the solution of spatial
interpolation problem that was stated in Section 2. Taking into account the
properties (i)–(v) that we imposed and the structure of the energy functional
J : Ξ → R, we say that a four-band image I0 =

[
I0
R, I

0
G, I

0
B, I

0
NIR

]t
: SH → R4

is the result of fusion of MODIS-like multi spectral image L : SL → R4 with the
Landsat-like color image H : SH → R3 at higher resolution if:

• the triplet
(
I0
R, I

0
G, I

0
B

)
is a solution of constrained minimization problem

(5.1), i.e.,(
I0
R, I

0
G, I

0
B

)
∈ Ξ and J

(
I0
R, I

0
G, I

0
B

)
= inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB)

• The spectral channel I0
NIR : Ω→ R is defined as follows

I0
NIR(x, y) = γRI

0
R(x, y) + γGI

0
G(x, y) + γBI

0
B((x, y), ∀ (x, y) ∈ Ω,

where γR
γG
γB

 =

ˆ
Ω

 L2
R LRLG LRLB

LRLG L2
R LGLB

LRLB LGLB L2
B

 dx

−1 ˆ
Ω

 LNIRLR
LNIRLG
LNIRLB

 dx.
(5.11)

Here, the last equality is a formal representation of the solution to the following
linear regression problem

ˆ
Ω

[γRLR + γGLG + γBLB − LNIR]2 dx
γR,γG,γB−→ inf .

Remark 5.1. As an alternative way to define the NIR spectral channel I0
NIR,

we can propose the following one: define I0
NIR as a solution of the constrained

minimization problem
Z
(
I0
NIR

)
= inf

I∈ΞNIR
Z (I) ,

where

Z (I) =

ˆ
Ω

1

p(x)
|∇I(x)|p(x) dx+ γ

ˆ
Ω

∣∣∣ (θ⊥,∇I) ∣∣∣α dx
+ λ

ˆ
Ω

[
γRI

0
R + γGI

0
G + γBI

0
B − I

]2
dx,

ΞNIR =

{
I ∈W 1,p(·)(Ω) : 0 6 I(x, y) 6 max

(xi,yj)∈SL
LNIR(xi, yj) a.e. in Ω

}
,

and the weight coefficients γR, γG, γB are defined by (5.11).
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Remark 5.2. Another variant for the setting of the spatial interpolation problem
is to consider, instead of the energy term J1 in (5.5), the following functional (this
approach was firstly proposed in [5])

J1 (IR, IG, IB) =

(ˆ
Ω
|∇IR| dx+

ˆ
Ω
IR div θ dx

)
+

(ˆ
Ω
|∇IG| dx+

ˆ
Ω
IG div θ dx

)
+

(ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx

)
.

The main motivation for such choice of the functional J1 is rather clear. Since
the geometry of each spectral channel in the retrieved image should be as close as
possible to the geometry of the spectral energy of the Landsat imageH : SH → R3,
it means that the following relations have to be satisfied

|∇IR| = (θ,∇IR) , |∇IG| = (θ,∇IG) , |∇IB| = (θ,∇IB) , a.e. in Ω.

Hence, the magnitudeˆ
Ω

[(|∇IR| − (θ,∇IR)) + (|∇IG| − (θ,∇IG)) + (|∇IB| − (θ,∇IB))] dx

must be small enough, where θ = θ(x, y) stands for the vector field of unit normals
to the topographic map of the spectral energy YH = αRHR +αGHG +αBHB. By
default, we assume that this field is zero along the boundary ∂Ω. Then, making
use of the Green’s formula, we deduce:ˆ

Ω
(|∇IR| − θ · ∇IR) dx =

ˆ
Ω
|∇IR| dx+

ˆ
Ω
IR div θ dx,

ˆ
Ω

(|∇IG| − θ · ∇IG) dx =

ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx,

ˆ
Ω

(|∇IB| − θ · ∇IB) dx =

ˆ
Ω
|∇IB| dx+

ˆ
Ω
IB div θ dx.

6. Existence Result and Optimality Conditions

6.1. On Existence and Uniqueness of Retrieved Image at High
Resolution

We begin this section with the following existence result.

Theorem 6.1. Let H : SH → R3 and L : SL → R4 be given images such that
their spectral energies satisfy conditions (4.1). Then, under Assumptions 1–4,
there exists a unique triplet (IR, IG, IB) ∈ Ξ ⊂ BV (Ω;R3) such that (IR, IG, IB)
is a minimizer to constrained minimization problem (5.1).
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Proof. First of all, we notice that minimization problem (5.1) is consistent, more-
over, J (IR, IG, IB) < +∞ for each feasible triplet (IR, IG, IB) ∈ Ξ. Indeed, in
view of the pointwise estimates (5.2)–(5.4), we have IR, IG, IB ∈ L2(Ω). Hence,

J2 (IR, IG, IB) < +∞.

It remains to notice that the inclusion I ∈W 1,p(·)(Ω;R4) and the estimatesˆ
Ω

∣∣∣ (θ⊥,∇IA) ∣∣∣α dx 6 ‖θ‖αL∞(Ω;R2)‖∇IA‖
α
Lα(Ω;R2)

by (3.13)–(3.15)
6 (1 + |Ω|) ‖θ‖αL∞(Ω;R2)‖∇IA‖Lp(·)(Ω;R2)

6 (1 + |Ω|) ‖θ‖αL∞(Ω;R2)‖IA‖W 1,p(·)(Ω;R2), A ∈ {R,G,B}

imply J1 (IR, IG, IB) < +∞. As a result, consistency of the problem (5.1) immedia-
tely follows from (5.5)–(5.9) and definition of the set Ξ.

Let
{

(IkR, I
k
G, I

k
B)
}
k∈N ⊂ Ξ be a minimizing sequence to the problem (5.1). i.e.,

lim
k→∞

J (IkR, I
k
G, I

k
B) = inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB) .

Then there exists a constant Ĉ > 0 such that

sup
k∈N
J (IkR, I

k
G, I

k
B) 6 Ĉ.

From this and (5.5), we deduce thatˆ
Ω

1

p(x)

[
|∇IR(x)|p(x) + |∇IG(x)|p(x) + |∇IB(x)|p(x)

]
dx 6 Ĉ, (6.1)

ˆ
Ω

[
αRI

k
R + αGI

k
G + αBI

k
B − YH

]2
dx 6 Ĉ. (6.2)

Since α := 1 + δ 6 p(x) 6 β := 2 for all x ∈ Ω, it follows from (6.1) and (3.11)
that

sup
k∈N

[
‖∇IR‖αLp(·)(Ω;R2)

+ ‖∇IG‖αLp(·)(Ω;R2)
+ ‖∇IB‖αLp(·)(Ω;R2)

]
6 α

(
Ĉ + 3

)
.

(6.3)
On th other hand, utilizing estimate (6.2) and non-negativity of IkR, I

k
G, I

k
B, and

YH , we obtain ˆ
Ω

[
αRI

k
R + αGI

k
G + αBI

k
B

]2
dx 6 2Ĉ + 2

ˆ
Ω
Y 2
H dx.

Hence,

(1 + |Ω|)−1 sup
k∈N
‖IkR‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkR‖2L2(Ω) 6 2α−2

R

[
Ĉ + ‖YH‖2L2(Ω)

]
,

(1 + |Ω|)−1 sup
k∈N
‖IkG‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkG‖2L2(Ω) 6 2α−2

G

[
Ĉ + ‖YH‖2L2(Ω)

]
,

(1 + |Ω|)−1 sup
k∈N
‖IkB‖2Lp(·)(Ω)

by (3.14)
6 sup

k∈N
‖IkB‖2L2(Ω) 6 2α−2

B

[
Ĉ + ‖YH‖2L2(Ω)

]
.

(6.4)
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As a result, it follows from (6.3) and (6.4) that

sup
k∈N
‖IkR‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkR‖Lp(·)(Ω) + ‖∇IkR‖Lp(·)(Ω;R2)

]
6 QR,

sup
k∈N
‖IkG‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkG‖Lp(·)(Ω) + ‖∇IkG‖Lp(·)(Ω;R2)

]
6 QG,

sup
k∈N
‖IkB‖W 1,p(·)(Ω) = sup

k∈N

[
‖IkB‖Lp(·)(Ω) + ‖∇IkB‖Lp(·)(Ω;R2)

]
6 QB

withQA =
[
2 (1 + |Ω|)α−2

A

(
Ĉ + ‖YH‖2L2(Ω)

)]1/2
+
[
α
(
Ĉ + 3

)]1/α
,A ∈ {R,G,B}.

Thus, the sequence
{

(IkR, I
k
G, I

k
B)
}
k∈N ⊂ Ξ is bounded in W 1,p(·)(Ω;R3). The-

refore, in view of Proposition 3.3, there exists a subsequence of{
(IkR, I

k
G, I

k
B)
}
k∈N
⊂ Ξ,

still denoted by the same index, and functions (I0
R, I

0
G, I

0
B) ∈ W 1,p(·)(Ω;R3) such

that

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in W 1,p(·)(Ω;R3), (6.5)

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in W 1,α(Ω;R3), (6.6)

(IkR, I
k
G, I

k
B)→ (I0

R, I
0
G, I

0
B) strongly in Lα(Ω;R3), (6.7)

and
ˆ

Ω

1

p(x)
|∇I0

R|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkR|p(x) dx, (6.8)

ˆ
Ω

1

p(x)
|∇I0

G|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkG|p(x) dx, (6.9)

ˆ
Ω

1

p(x)
|∇I0

B|p(x) dx 6 lim inf
k→∞

ˆ
Ω

1

p(x)
|∇IkB|p(x) dx. (6.10)

Moreover, passing to a subsequence if necessary and taking into account the
inequalities (5.2)–(5.4) and (3.13), we have:

(IkR(x, y), IkG(x), IkB(x))→ (I0
R(x), I0

G(x), I0
B(x)) for a.e. x ∈ Ω, (6.11)

(IkR, I
k
G, I

k
B) ⇀ (I0

R, I
0
G, I

0
B) weakly in L2(Ω;R3), (6.12)(

θ⊥,∇IkA
)
⇀
(
θ⊥,∇I0

A

)
weakly in Lα(Ω) for A ∈ {R,G,B}. (6.13)

Hence, without loss of generality, we can suppose that the limit triplet (I0
R, I

0
G, I

0
B)

satisfies the pointwise restrictions (5.2)–(5.4), and, as a consequence, we deduce:
(I0
R, I

0
G, I

0
B) ∈ Ξ is a feasible solution to the problem (5.1).
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Let us show that (I0
R, I

0
G, I

0
B) ∈ Ξ is a minimizer to the problem (5.1). Indeed,

utilizing convergence properties (6.5)–(6.12), we get

lim inf
k→∞

J0(IkR, I
k
G, I

k
B)

by (6.8)–(6.10)
> J0(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J1(IkR, I
k
G, I

k
B)

by (6.13)
> J1(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J2(IkR, I
k
G, I

k
B)

by (6.12)
> J2(I0

R, I
0
G, I

0
B),

lim inf
k→∞

J3(IkR, I
k
G, I

k
B)

by (6.11),(6.12)
> J3(I0

R, I
0
G, I

0
B).

Hence, lim infk→∞ J (IkR, I
k
G, I

k
B) > J (I0

R, I
0
G, I

0
B), and, therefore,

inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB) = lim
k→∞

J (IkR, I
k
G, I

k
B) = lim inf

k→∞
J (IkR, I

k
G, I

k
B)

> J (I0
R, I

0
G, I

0
B) > inf

(IR,IG,IB)∈Ξ
J (IR, IG, IB) .

Thus, (I0
R, I

0
G, I

0
B) is a minimiser to the problem (5.1).

It remains to show that (I0
R, I

0
G, I

0
B) is a unique minimizer for this problem.

Indeed, let us assume the converse. Let (I0
R, I

0
G, I

0
B) ∈ Ξ and (I∗R, I

∗
G, I

∗
B) ∈ Ξ

be two minimizers for the problem (5.1). Then by the strict convexity of norm
‖ · ‖L2(Ω) and convexity of the set of feasible solutions Ξ, we have

J
(
I0
R + I∗R

2
,
I0
G + I∗G

2
,
I0
B + I∗B

2

)
<

1

2
J (I0

R, I
0
G, I

0
B) +

1

2
J (I∗R, I

∗
G, I

∗
B)

= inf
(IR,IG,IB)∈Ξ

J (IR, IG, IB)

which brings us into a conflict with the initial assumptions. Thus, (I0
R, I

0
G, I

0
B) is

a unique minimizer to the problem (5.1). The proof is complete.

For further convenience, we rewrite the energy functional J : Ξ → R in the
integral form. To this end, we set: let δ(i,j) be the Dirac’s delta on the point
(i.j) ∈ Ω. Let ΠL =

∑
(i,j)∈SL δ(i,j) be the Dirac’s comb on Ω defined by the grid

SL. Then we may write J3 in integral terms

J3 (IR, IG, IB) =
∑

A∈{R,G.B}

ˆ
Ω

ΠL ([K ∗ IA] (x)− LA(x))2 dx, (6.14)

where LA, A ∈ {R,G.B} denotes an arbitrary extension of LA(i, j) as continuous
functions from SL to Ω. Since the terms above are multiplied by ΠL, the integral
terms in (6.14) do not depend on the particular extensions of LA, A ∈ {R,G.B}.
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6.2. Optimality Conditions

In order to derive some optimality conditions to the problem (5.1) and charac-
terize its solution (I0

R, I
0
G, I

0
B), we check that the functional J : Ξ→ R is Gâteaux

differentiable. To this end, we note that

|∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t

→
(
|∇I0

A(x)|p(x)−2∇I0
A(x),∇hA(x)

)
as t→ 0

almost everywhere in Ω for all A ∈ {R,G.B} and h = (hR, hG, hB) ∈W 1,p(·)(Ω)3.
Indeed, by convexity, we have |ξ|p − |η|p 6 2p

(
|ξ|p−1 + |η|p−1

)
|ξ − η|. Then

∣∣∣∣∣ |∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t

∣∣∣∣∣
6 2

(
|∇I0

A(x) + t∇hA(x)|p(x)−1 + |∇I0
A(x)|p(x)−1

)
|∇hA(x)|

6 const
(
|∇I0

A(x)|p(x)−1 + |∇hA(x)|p(x)−1
)
|∇hA(x)|. (6.15)

Taking into account that

‖|∇I0
A(x)|p(·)−1‖Lp′(·)(Ω;R2)

by (3.11) and (3.7)
6

(ˆ
Ω
|∇I0

A(x)|p(x) dx+ 1

) 1
2

by (3.11)
6

(
‖∇I0

A|2Lp(·)(Ω;R2)
+ 2
) 1

2
,

ˆ
Ω
|∇I0

A(x)|p(x)−1|∇hA(x)| dx
by (3.19)

6 2‖|∇I0
A(x)|p(x)−1‖Lp′(·)(Ω)‖hA(x)|‖Lp(·)(Ω),

and
´

Ω |∇hA(x)|p(x) dx
by (3.11)

6 ‖∇hA‖2Lp(·)(Ω)
+ 1, we see that the right hand side

of inequality (6.15) is an L1(Ω) function. Therefore,

ˆ
Ω

|∇I0
A(x) + t∇hA(x)|p(x) − |∇I0

A(x)|p(x)

p(x)t
dx

→
ˆ

Ω

(
|∇I0

A(x)|p(x)−2∇I0
A(x),∇hA(x)

)
dx as t→ 0

by the Lebesgue dominated convergence theorem for each h = (hR, hG, hB) ∈
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W 1,p(·)(Ω;R3) and A ∈ {R,G.B}. Thus,

lim
t→0

J0

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J0

(
I0
R, I

0
G, I

0
B

)
t

=

ˆ
Ω

(
|∇I0

R(x)|p(x)−2∇I0
R(x),∇hR(x)

)
dx

+

ˆ
Ω

(
|∇I0

G(x)|p(x)−2∇I0
G(x),∇hG(x)

)
dx

+

ˆ
Ω

(
|∇I0

B(x)|p(x)−2∇I0
B(x),∇hB(x)

)
dx. (6.16)

Arguing in a similar manner, it can be shown that (see [2, Section A 14] for
the details)

lim
t→0

J1

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J1

(
I0
R, I

0
G, I

0
B

)
t

= α

ˆ
Ω

∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2 (
θ⊥,∇I0

R

)(
θ⊥,∇hR

)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2 (
θ⊥,∇I0

G

)(
θ⊥,∇hG

)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2 (
θ⊥,∇I0

B

)(
θ⊥,∇hB

)
dx. (6.17)

Setting

Λ = θ⊥
(
θ⊥
)t

=

[
θ⊥1 θ

⊥
1 θ⊥1 θ

⊥
2

θ⊥2 θ
⊥
1 θ⊥2 θ

⊥
2

]
,

the Gâteaux differential of J1 can be rewritten as follows

lim
t→0

J1

(
I0
R + thR, I

0
G + thG, I

0
B + thB

)
− J1

(
I0
R, I

0
G, I

0
B

)
t

= α

ˆ
Ω

∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2 (
Λ∇I0

R,∇hR
)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2 (
Λ∇I0

G,∇hG
)
dx

+ α

ˆ
Ω

∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2 (
Λ∇I0

B,∇hB
)
dx. (6.18)

As for the rest terms in the cost functional J : Ξ→ R, we have the following
representation for their Gâteaux derivatives (for the proof and its substantiation
we refer to [13, Section 3]).

Proposition 6.1. Let H : SH → R3 and L : SL → R4 be given images such
that their spectral energies satisfy conditions (4.1) Then the functionals J2,J3 :
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L2(Ω;R3)→ R are convex and Gâteaux differentiable in L2(Ω;R3) with

J ′2(I0)[h] = 2
∑

A∈{R,G.B}

ˆ
Ω
αA
(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
hA dx, (6.19)

J ′3(I0)[h] = 2
∑

A∈{R,G.B}

ˆ
Ω

ΠL

([
K ∗ I0

A

]
− LA

)
[K ∗ hA] dx

= 2
∑

A∈{R,G.B}

ˆ
Ω

ΠL

[
K∗ ∗

([
K ∗ I0

A

]
− LA

)]
hA dx, (6.20)

for all h = (hR, hG, hB) ∈ L2(Ω;R3).

We are now in a position to derive an optimality system for a unique minimizer
(I0
R, I

0
G, I

0
B) ∈ Ξ ⊂ BV (Ω;R3) to constrained minimization problem (5.1). Following

the standard technique which is based on the use of the Lagrange principle [10]
and utilizing Proposition 4.4, we arrive at the following result.

Theorem 6.2. Let (I0
R, I

0
G, I

0
B) ∈ Ξ be a minimizer of constrained minimization

problem (5.1). Then the following relations hold true

−div
(
|∇I0

A(x)|p(x)−2∇I0
A(x)

)
− γα div

(∣∣∣(θ⊥,∇I0
A

)∣∣∣α−2
Λ∇I0

A

)
+2λαA

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
+2µΠL

[
K∗ ∗

([
K ∗ I0

A

]
− LA

)]
= 0 a.e. in Ω, (6.21)

0 6 I0
A 6 max

(xi,yj)∈SL
LA(xi, yj) a.e. in Ω, (6.22)(

∇I0
A, ν

)
= 0 on ∂Ω, (6.23)

for A ∈ {R,G,B}.
Remark 6.1. In practical implementation, it is reasonable to define an optimal
triplet (I0

R, I
0
G, I

0
B) using a ’gradient descent’ strategy. Following the standard

procedure, we can start from some initial RGB-components (I∗R, I
∗
G, I

∗
B) and then

to solve the following initial value problem for the system of quasi-linear parabolic
equations with 2D elliptic operators in their principle part and Nuemann boundary
conditions
∂I0

R

∂t
−div

(
|∇I0

R(x)|p(x)−2∇I0
R(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
R

)∣∣∣α−2
Λ∇I0

R

)
− 2λαR

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

R

]
− LR

)]
,

∂I0
G

∂t
−div

(
|∇I0

G(x)|p(x)−2∇I0
G(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
G

)∣∣∣α−2
Λ∇I0

G

)
− 2λαG

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

G

]
− LG

)]
,

∂I0
B

∂t
−div

(
|∇I0

B(x)|p(x)−2∇I0
B(x)

)
= γα div

(∣∣∣(θ⊥,∇I0
B

)∣∣∣α−2
Λ∇I0

B

)
− 2λαB

(
αRI

0
R + αGI

0
G + αBI

0
B − YH

)
− 2µΠL

[
K∗ ∗

([
K ∗ I0

B

]
− LB

)]
,
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∇I0

R, ν
)

= 0,
(
∇I0

G, ν
)

= 0,
(
∇I0

B, ν
)

= 0 on ∂Ω,

0 6 I0
A 6 max

(xi,yj)∈SL
LA(xi, yj) a.e. in Ω ∀A ∈ {R,G,B},

I0
R(0, x) = I∗R, I

0
G(0, x) = I∗G, I

0
B(0, x) = I∗B, ∀x ∈ Ω,

where we propose to take the triplet (I∗R, I
∗
G, I

∗
B) as a result bicubic interpolation

of the MODIS-like image L : SL → R4 onto the entire domain Ω.

7. Numerical Experiments

Fig. 7.1. The MODIS image with resolution 350m/pixel

In order to illustrate the proposed algorithm for the spatial increasing resolution
problem of MODIS-like multi-spectral images via their fusion with Lansat-like
imagery at higher resolution. As input data we have used a MODIS image of
some region with resolution 350m/pixel (see Fig. 7.1). This region represents a
typical agricultural area with medium sides fields of various shapes.

We also have the image of the same territory with resolution 25m/pixel that
was made by Lansat satellite at higher resolution. Figure 7.2 shows the spectral
channels of this image.

Figure 7.3 displays the reconstructed images corresponding to the data given
by Figures 7.1 and 7.2. In order to validate the obtained result, we have provided
the following calculations.

• Closednees of the means ρ2 = |Mean I −MeanL| = 0;

• Closedness of the variances ρ3 = 100 |Var I−VarL|
VarL ≈ 6%;

• ERGAS metric

ERGAS = 100
h

l

√√√√1

3

3∑
k=1

(
RMSE(k)

µ0(k)

)2

= 2.24,

where h/l is the ratio between the size of the high spatial resolution image
pixel and the size of the pixel in the MODIS-like image.
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Fig. 7.2. The Lansat image with resolution 25m/pixel

It is worth to notice that in view of the suggestions of Prof. L. Wald, if the
ERGAS value is less than 3, the spectral quality of an image is satisfactory.
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Abstract. Well-posed boundary value problems are constructed for calculating rotation
shells of with a stiffness variable along the meridian in two directions, and also with
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Algorithms for the numerical integration of systems of differential equations with variable
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1. Introduction

Shell structures are widely used in the creation of structures for modern
mechanical engineering, in the oil and gas, chemical and other industries. At the
same time, the requirements for ensuring the strength reliability while reducing
the weight indicators lead to the need to build more and more reliable models
and methods for calculating shell structures with non-homogeneous parameters
(in particular, with variable stiffness) [4, 6–8,10,13–15,17].

In the problems of determining the optimal distribution of material [9] or
calculating the durability of shells taking into account the degradation of their
surface in an aggressive environment [16], the stiffness parameters change at each
step of successive approximations. This leads to the necessity of restructuring the
grid at each step of the corresponding iterative computational (search) algorithm
using the known finite element analysis packages [1, 5].
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An effective approach to the study of the behavior of such structural elements
with irregular parameters remains the direct solution of boundary value problems
for systems of differential equations describing their state, where the components
of the stress-strain state are unknown. In this case, the parameters of non-homoge-
neity (change in the thickness of the shell wall) are taken into account quite simply,
since they turn out to be components of the coefficients of these systems and the
computational costs when using this approach are mainly associated only with
the need to solve the corresponding boundary value problems [3, 12,15].

This paper presents general information about the exact mathematical models
of shells with rigidity, in two directions, as well as with a two-sided change in the
shell wall thickness with respect to the reference surface.

2. Basic Relations

The basic equations of the moment theory of shells are obtained under the
assumption that shells of revolution (with an arbitrary meridian shape in the
general case) and circular (annular) plates are homogeneous, isotropic, thin and
elastic. The validity of Kirchhoff’s hypotheses is accepted, as well as the smallness
of deformations and angles of rotation in comparison with unity. The shell wall
thickness is generally considered arbitrary h = h (s, ϕ).

Deformation of the middle surface ε1, ε2, γ12 the angles of rotation of the
normal to the surface ϑ1, ϑ2 and the parameters of the change in curvature χ1, χ2,
χ12 are associated with the displacements u, v, w (Fig. 1) by the dependencies [3]:

ε1 =
∂u

∂s
+

w

R1
; ε2 =

∂v

r∂ϕ
+

cos θ

r
u+

sin θ

r
w;

ϑ1 =
u

R1
− ∂w

∂s
; ϑ2 =

sin θ

r
v − ∂w

r∂ϕ
;

γ12 = r
∂

∂s

(v
r

)
+

∂u

r∂ϕ
; (2.1)

χ1 = − ∂

∂s

(
∂w

∂s
− u

R1

)
=
∂ϑ1

∂s
;

χ2 =
∂ϑ2

r∂ϕ
+

cos θ

r
ϑ1 =

sin θ

r2

∂v

∂ϕ
− 1

r2

∂2w

∂ϕ2
+

cos θ

r
ϑ1;

χ12 =
1

r

∂ϑ1

∂ϕ
− cos θ

r
ϑ2 +

sin θ

r

∂v

∂s
,

where θ(s) is the angle between the normal to the median surface and the shell
rotation axis; r(s) is the radius of the parallel circle.
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Fig. 2.1. Efforts and displacements in the shell

Elastic ratios are taken in the usual form

N1 =
Eh

1− µ2
(ε1 + µε2); M1 = D(χ1 + µχ2);

N2 =
Eh

1− µ2
(ε2 + µε1); M2 = D(χ2 + µχ1); (2.2)

S =
Eh

2(1 + µ)
γ12; M = D(1− µ)χ12,

where D = Eh3/(12(1 − µ2)) is the cylindrical stiffness; R1, R2 are thr radii
of curvature of the surface; E,µ are the modulus of elastic and Poisson’s ratio,
respectively. As a result, the equations of forces and moments can be written as
follows:

∂

∂s
(rN1) +

∂

∂ϕ

(
S +

M

R1

)
− cos θ ·N2 +

r

R1
Q1 + rq1 = 0;

∂N2

∂ϕ
+

∂

∂s

[
r

(
S +

M

R2

)]
+ cos θ

(
S +

M

R1

)
+ sin θ ·Q2 + rq2 = 0;

∂

∂s
(rQ1) +

∂Q2

∂ϕ
− r

R1
N1 − sin θ ·N2 + rq3 = 0; (2.3)

1

r

[
∂

∂s
(rM) +

∂M2

∂ϕ
+ cos θ ·M

]
−Q2 = 0;

1

r

[
∂M

∂ϕ
+

∂

∂s
(rM1)− cos θ ·M2

]
−Q1 = 0,

Here, for the force factors, the generally accepted designations are introduced [3]:
N1, N2, S,M1,M2,M,Q1, Q2, Р° q1, q2, q3 are the meridional, circumferential and
normal components of the intensity of the external load, respectively.

As the main variables with respect to which the system is written, four
quantities u, v, w, ϑ1 are selected, which characterize the displacements and the
four force factors N1, S∗, Q∗1, M1 corresponding to them, where S∗ = S + 2M

R2
;

Q∗1 = Q1 + 1
r
∂M
∂ϕ are reduced efforts. After appropriate transformations, the

equations of the moment theory for homogeneous isotropic elastic thin-walled
shells of variable thickness under asymmetric loading can be, as is known [3, 12],
reduced to a system of eight partial differential equations, which can be written
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in the form:
∂u

∂s
= −µcos θ

r
u−

(
µ

sin θ

r
+

1

R1

)
w +

1

Kr
(N1r)− µ

1

r

∂v

∂ϕ
;

∂v

∂s
=

cos θ

r
v +

2

K (1− µ)

1

r
(S∗r)−

(
1

r
+

4D

KR2

sin θ

r2

)
∂u

∂ϕ

+
4D

KR2

cos θ

r2

∂w

∂ϕ
+

4D

KR2

∂ϑ1

r∂ϕ
;

∂w

∂s
=

u

R1
− ϑ1;

∂ϑ1

∂s
= −µcos θ

r
ϑ1 +

1

Dr
(M1r)− µ

sin θ

r2

∂v

∂ϕ
+ µ

1

r2

∂2w

∂ϕ2
;

∂ (N1r)

∂s
= K

(
1− µ2

) cos2θ

r
u−K

(
1− µ2

) cos θ sin θ

r
w + µ

cos θ

r
(N1r)

− 1

R1
(Q∗1r) +

2 (1− µ)

R2

sin θ

r2

∂D
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∂u
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+K
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) cos θ

r
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sin θ
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(
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.

3. Shells with Stiffness, Variable in two Directions

To solve system (2.4) in the case h = h (s, ϕ), it is proposed to use the method
of straight lines [2,4,7,12], the essence of which is to replace the derivatives in the
direction of the circumferential coordinate by difference relations, which allows
one to obtain a set of one-dimensional boundary value problems along each i-
th meridian (i = 1,m), which are subsequently solved by the sweep method
with orthogonalization according to S.K. Godunov [11] along the nodal points j
(j = 1, n).

Assuming that the shell state parameters are sufficiently smooth in the circum-
ferential direction, the partial derivatives with respect to the variable ϕ = ϕi ,
(i = 1, 2, ...,m) equations (2.4) are replaced by finite differences of the fourth order
of accuracy [2]:

y′ = (yi−2 − 8yi−1 + 8yi+1 − yi+2) / (12∆) ;

y′′ = (−yi−2 + 16yi−1 − 30yi + 16yi+1 − yi+2) /
(
12∆2

)
; (3.1)

y′′′ = (yi−3 − 8yi−2 + 13yi−1 − 13yi+1 + 8yi+2 − yi+3) /
(
8∆3

)
;

y′
v

= (−yi−3 + 12yi−2 − 39yi−1 + 56yi − 39yi+1 + 12yi+2 − yi+3) /
(
6∆4

)
,

where ∆ = ∆ϕi is the step of the difference grid in the circumferential direction
with the approximation error O

(
∆4
)
.

It should be noted that, depending on the method of replacing derivatives
with finite differences, different systems of the method of lines are possible, which
may differ in the accuracy of the approximating relations for the corresponding
derivatives.
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After replacing the derivatives with respect to the coordinate ϕ in the system
of equations (2.4) and reducing similar terms for the components of the stress-
strain state vector Y = (u, v, w, ϑ1, N1r, S

∗
1r, Q

∗
1r, M1r)

T for each i-th strip
(i = 1, 2, ...,m), we can obtain a boundary value problem for a system of ordinary
differential equations.

Further (in order to avoid cumbersome presentation) such a system for the
case of a cylindrical shell is given (sin θ = 1, cos θ = 0, R1 =∞, R2 = R):

dui
ds

= −µ1

r
wi +

1

Kir
(N1r)i − µ

1

r

1

12∆
(vi−2 − 8vi−1 + 8vi+1 − vi+2) ;

dvi
ds

=
2

Ki (1− µ)

1

r
(S1
∗r)i

−
(

1

r
+

4Di

Kir3

)
1

12∆
(ui−2 − 8ui−1 + 8ui+1 − ui+2)

+
4Di

Kir2

1

12∆
(ϑ1i−2 − 8ϑ1i−1 + 8ϑ1i+1 − ϑ1i+2) ;

dwi
ds

= −ϑ1i;

dϑ1i

ds
= −µ 1

r2

30

12∆2
wi +

1

Dir
(M1r)i

−µ 1

r2

1

12∆
(vi−2 − 8vi−1 + 8vi+1 − vi+2)

+µ
1

r2

1

12∆2
(−wi−2 + 16wi−1 + 16wi+1 − wi+2) ;

d(N1r)i
ds

= −2Di (1− µ)

r3

30

12∆2
ui −

2Di (1− µ)

r2

30

12∆2
ϑ1i

+
2 (1− µ)

r3

(
∂D

∂ϕ

)
i

1

12∆
(ui−2 − 8ui−1 + 8ui+1 − ui+2)

−2 (1− µ)

r2

(
∂D

∂ϕ

)
i

1

12∆
(ϑ1i−2 − 8ϑ1i−1 + 8ϑ1i+1 − ϑ1i+2)

−1

r

1

12∆
(S∗1)i−2 (3.2)

+
2Di (1− µ)

r3

1

12∆2
(−ui−2 + 16ui−1 + 16ui+1 − ui+2)

−2Di (1− µ)

r2

1

12∆2
(−ϑ1i−2 + 16ϑ1i−1 + 16ϑ1i+1 − ϑ1i+2)− rq1i;

∂(S1
∗r)i

∂s
= −

(
∂K

∂ϕ

)
i

(
1− µ2

) 1

r
w −

(
1− µ2

)(1

r

(
∂K

∂ϕ

)
i

+
1

r3

(
∂D

∂ϕ

)
i

)
× 1

12∆
(vi−2 − 8vi−1 + 8vi+1 − vi+2)

−Ki

(
1− µ2

) 1

r

1

12∆
(wi−2 − 8wi−1 + 8wi+1 − wi+2)
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−µ1

r

1

12∆

(
(N1r)i−2 − 8(N1r)i−1 + 8(N1r)i+1 − (N1r)i+2

)
−µ 1

r2

1

12∆

(
(M1r)i−2 − 8(M1r)i−1 + 8(M1r)i+1 − (M1r)i+2

)
−
(
1− µ2

)(
Ki

1

r
−Di

1

r3

)
1

12∆2

× (−vi−2 + 16vi−1 − 30vi + 16vi+1 − vi+2)

+
1

r3

(
1− µ2

)(∂D
∂ϕ

)
i

1

12∆2

× (−wi−2 + 16wi−1 − 30wi + 16wi+1 − wi+2) +

+
(
1− µ2

)
Di

1

r3

1

8∆3

× (wi−3 − 8wi−2 + 16wi−1 − 13wi+1 + 8wi+2 − wi+3)− rq2i;

d(Q∗1r)i
ds

=

(
∂D

∂ϕ

)
i

(
1− µ2

) 2

r3

30

12∆2
vi +

(
1− µ2

)
×
(
Ki

1

r
+

(
∂2D

∂ϕ2

)
i

1

r3

1

12∆2
+Di

1

r3

56

6∆4

)
wi + µ

1

r
(N1r)i

+
µ

r2

30

12∆
(M1r)i −

(
1− µ2

) 1

r

((
∂2D

∂ϕ2

)
i

1

r2
−Ki

)
× 1

12∆
(vi−2 − 8vi−1 + 8vi+1 − vi+2)

−
(
∂D

∂ϕ

)
i

(
1− µ2

) 2

r3

1

12∆2
(−vi−2 + 16vi−1 + 16vi+1 − vi+2)

−
(
∂2D

∂ϕ2

)
i

(
1− µ2

) 1

r3

1

12∆2
(−wi−2 + 16wi−1 + 16wi+1 − wi+2)

− µ
r2

1

12∆

(
(M1r)i−2 + 16(M1r)i−1 + 16(M1r)i+1 − (M1r)i+2

)
−Di

(
1− µ2

) 1

r3

1

8∆3

× (vi−3 − 8vi−2 + 13vi−1 − 13vi+1 + 8vi+2 − vi+3)

+

(
∂D

∂ϕ

)
i

(
1− µ2

) 2

r3

1

8∆3

× (wi−3 − 8wi−2 + 13wi−1 − 13wi+1 + 8wi+2 − wi+3)

+Di

(
1− µ2

) 1

r3

1

6∆4

× (−wi−3 + 12wi−2 − 39wi−1 − 39wi+1 + 12wi+2 − wi+3)− rq3i;

d (M1r)

ds
= −2D (1− µ)

1

r2

30

12∆2
ui + 2D (1− µ)

1

r

30

12∆2
ϑ1i + (Q∗1r)

+2 (1− µ)

(
∂D

∂ϕ

)
i

1

r2

1

12∆
(ui−2 − 8ui−1 + 8ui+1 − ui+2)
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−2 (1− µ)

(
∂D

∂ϕ

)
i

1

r

1

12∆
(ϑ1i−2 − 8ϑ1i−1 + 8ϑ1i+1 − ϑ1i+2)

+2D (1− µ)
1

r2

1

12∆2
(−ui−2 + 16ui−1 + 16ui+1 − ui+2)

−2D (1− µ)
1

r

1

12∆2
(−ϑ1i−2 + 16ϑ1i−1 + 16ϑ1i+1 − ϑ1i+2) .

Here,

∆ = ∆ϕi; ∆ϕi = 2π/m; ϕi = ∆ϕi (i− 1) ;(
∂K

∂ϕ

)
i

=
Ki−2 − 8Ki−1 + 8Ki+1 −Ki+2

12∆
;(

∂D

∂ϕ

)
i

=
Di−2 − 8Di−1 + 8Di+1 −Di+2

12∆
;(

∂2D

∂ϕ2

)
i

=
−Di−2 + 16Di−1 − 30Di + 16Di+1 −Di+2

12∆2
.

As for the fulfillment of the boundary conditions, for the case of an open shell
at the ends of the variation interval ϕ, one-sided differences are used, where for the
straight lines 0 and m, the values of the parameters specified in accordance with
the conditions for fixing the contour are taken into account. For a closed cylindrical
shell, when the derivatives in the circumferential direction are replaced by their
finite-difference expressions, only the central differences are used. The boundary
conditions at the meridional edges of the shell (s = 0, s = L where L is the shell
length) are taken into account when solving boundary value problems along the
meridian s = si, (i = 1, 2, ..., n), using the sweep method with orthogonalization
according to S.K. Godunov [11].

4. Rotational Shells with a Stiffness Variable Along Meridian

In the case h = h (s) of separating variables, the Fourier method is used. At the
same time, the problem of solving the system of partial differential equations (2.4)
by expanding the components of the stress-strain state and load into trigonometric
series in the circular coordinate [3,10,12,15], reduces, in the general case, to solving
systems of t+1 ordinary differential equations for finding harmonics of expansions
of the sought functions in Fourier series.

The decomposition of the load, displacements and forces acting in the shell
into Fourier series [3, 15] along the circumferential coordinate ϕ is carried out in
the form

f =
∞∑
k=0

f ck cos kϕ+
∞∑
k=1

f tk sin kϕ; ψ =
∞∑
k=1

ψck sin kϕ−
∞∑
k=0

ψtk cos kϕ (4.1)

where f , in the generally accepted notation [3], stands for the functions u, w,
ε 1, ε 2, ϑ1, χ1, χ2, N1, N2, Q1,M1,M2, q1, q3, whereas ψ can be substituted by
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functions v, γ12, ϑ2, χ12, S,Q2,M, q2, f
c
k , f

t
k, ψ

c
k, ψ

t
k, and f

c
k , f

t
k , ψck, ψ

t
k are the

coefficients of their expansions in trigonometric series.
With this choice of functions, the expansion coefficients with the superscript

t, which correspond to the skew-symmetric deformation of the shell with respect
to the zero meridian, are determined by exactly the same system of equations as
the coefficients with the index c, which correspond to the symmetric deformation.
Therefore, the results of further transformations for these coefficients coincide,
which allows them to be carried out only for functions with the index c, omitting
this sign.

In this case, the displacements and forces that correspond to the k-th term of
the expansion are determined by the formulas [3]

u = uk(s) cos kϕ; v = vk(s) sin kϕ; w = wk(s) cos kϕ;

ϑ1 = ϑ1k(s) cos kϕ; ϑ2 = ϑ2k(s) sin kϕ; N1 = N1k(s) cos kϕ; (4.2)
S∗ = S∗k(s) sin kϕ; Q∗1 = Q∗1k(s) cos kϕ; N2 = N2k(s) cos kϕ;

M1 = M1k(s) cos kϕ; M2 = M2k(s) cos kϕ; M = Mk(s) sin kϕ.

The use of the Fourier method (and this is possible only in the case when
the shell wall thickness changes only in the meridional direction h = h(s), and
remains constant in the circumferential direction) makes it possible to reduce the
adopted system of equations of state of the shell in partial derivatives to a system
of ordinary differential equations with respect to the coefficients expansions in
trigonometric series of the main variables of the stress-strain state, which are the
coefficients of the expansion of displacements and force factors. In this case, it is
convenient to take for the main unknowns their product by the radius r of the
parallel circle N1kr(s), S

∗
kr(s), Q

∗
1kr(s), M1kr(s)) :

duk
ds

= −µcos θ

r
uk − µ

k

r
vk −

(
1

R1
+ µ

sin θ

r

)
wk +

1− µ2

Ehr
(N1kr);

dvk
ds

=
k

r
uk +

cos θ

r
vk +

2(1 + µ)

Ehr
(S∗kr);

dwk
ds

=
1

R1
uk − ϑ1k;

dϑ1k

ds
= −µ k

r2
sin θvk − µ

k2

r2
wk − µ

cos θ

r
ϑ1k +

12(1− µ2)

Eh3r
(M1kr);

d(N1kr)

ds
= −Eh

r

[
cos2θ +

k2h2sin2θ

6(1 + µ)r2

]
uk + k

Eh

r
cos θνk

+
Eh

r
sin θ cos θ

[
1− k2h2

6(1 + µ)r2

]
wk −

k2Eh3

6(1 + µ)r2
sin θ · ϑ1k

+
µ

r
cos θ(N1kr)−

k

r
(S∗kr)−

1

R1
(Q∗1kr)− q1kr;
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d (S∗kr)

ds
=

Eh

r
k cos θuk +

Eh

r
k2vk +

Eh

r
k sin θ

(
1 +

k2h2

12r2

)
wk (4.3)

+
Eh3

12r2
k sin θ cos θ · ϑ1k + µ

k

r
(N1kr)−

cos θ

r
(S∗kr)

+µ
k

r2
sin θ (M1kr)− q2kr;

d (Q∗1kr)

ds
=

Eh

r
sin θ cos θ

[
1− k2h2

6(1 + µ)r2

]
uk +

Eh

r
k sin θ

(
1 +

k2h2

12r2

)
vk

+
Eh

r

[
sin2θ +

k4h2

12r2
+
k2h2cos2θ

6(1 + µ)r2

]
wk

+
3 + µ

1 + µ
· Eh

3

12r2
k2 cos θ · ϑ1k +

(
1

R1
+ µ

sin θ

r

)
(N1kr)

+µ
k2

r2
(M1kr)− q3kr;

d (M1k · r)
ds

= − k2Eh3

6(1 + µ)r2
sin θ · uk +

Eh3

12r2
k sin θ cos θ · vk

+
3 + µ

1 + µ

Eh3

12r2
k2 cos θ · wk +

Eh3

12r

(
cos2θ +

12k2

1 + µ

)
ϑ1k

+(Q∗1kr) + µ
cos θ

r
(M1k · r) .

The expansion coefficients of displacements and forces for each harmonic
number k, which are not the main variables, using the relations of the theory
of elasticity and the dependences between displacements and deformations, are
expressed in terms of the main variables as follows:

ϑ2k =

(
sin θ

r
vk +

k

r
wk

)
sin kϕ;

N2k =

[
µN1k + Eh

(
k

r
vk +

cos θ

r
uk +

sin θ

r
wk

)]
cos kϕ; (4.4)

M2k =

[
µM1k +

Eh3

12

(
cos θ

r
ϑ1k +

k

r2
sin θvk +

k2

r2
wk

)]
cos kϕ;

Mk = D

(
−k
r
ϑ1k −

k cos θ

r2
wk +

k sin θ

r2
uk

)
sin kϕ.

The inconvenience of the system of equations (4.3) is that the forces and
displacements are related to the local coordinate system associated with the
normal and tangent to the shell meridian. Therefore, the coefficients of the system
have discontinuities when the shell meridian consists of several sections with
corner points between them. In this case, it turns out to be necessary to draw up
compatibility equations for different areas.
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These difficulties, in accordance with [3], can be circumvented by passing
to global coordinates. For this, forces and displacements are projected onto the
normal to the shell’s symmetry axis and onto the axis itself. In this case, instead
of displacements u, w, displacements ξ, ζ are introduced, and instead of forces
N1, Q

∗
1, X, Z forces are introduced as follows:

ξ = u cos θ + w sin θ; ζ = u sin θ − w cos θ; (4.5)
X = N1 cos θ +Q∗1 sin θ; Z = N1 sin θ −Q∗1 cos θ.

The same dependencies are also related to the coefficients of the expansion in
the Fourier series of the corresponding functions. Substitution of uk, wk, N1k, Q

∗
1k

and their derivatives through ξk, ζk, Xk, Zk into system (4.3) brings it to the
form:

dξk
ds

= −µcos θ

r
ξk − µ

k cos θ

r
vk − sin θ · ϑ1k +

1− µ2

Eh

cos2θ

r
(Xkr)

+
1− µ2

Eh

sin θ cos θ

r
(Zkr);

dζk
ds

= −µsin θ

r
ξk − µ

k sin θ

r
vk + cos θ · ϑ1k

+
1− µ2

Eh

sin θ · cos θ

r
(Xkr) +

1− µ2

Eh

sin2θ

r
(Zkr);

dvk
ds

= k
cos θ

r
ξk + k

sin θ

r
ζk +

cos θ

r
vk +

2(1 + µ)

Ehr
(S∗k · r);

dϑ1k

ds
= −µk2 sin θ

r2
ξk + µk2 cos θ

r2
ζk − µk

sin θ

r2
vk − µ

cos θ

r
ϑ1k

+
12(1− µ2)

Eh3r
(M1k · r);

d (Xk · r)
ds

=
Eh

r

(
1 +

h2k4

12r2
sin2θ

)
ξk −

Eh3

12
· k

4 sin θ · cos θ

r3
ζk

+
Ehk

r

(
1 +

h2k2

12r2
sin2θ

)
vk +

Eh3k2

12
· sin θ · cos θ

r2
ϑ1k

+µ
cos θ

r
(Xk · r) + µ

sin θ

r
(Zk · r)− k

cos θ

r
(S∗k · r)

+µk2 sin θ

r2
(M1k · r)− rqxk;

d (Zk · r)
ds

= −k4Eh
3

12
· sin θ · cos θ

r3
ξk +

Eh3

12r3

(
2k2

1 + µ
+ k4cos2θ

)
ζk (4.6)

−Eh
3k3

12
· sin θ · cos θ

r3
vk −

Eh3k2

12
· 2 + (1 + µ)cos2θ

(1 + µ)r2
ϑ1k

−k sin θ

r
(S∗k · r)− µk2 cos θ

r2
(M1k · r)− rqzk;
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d (S∗k · r)
ds

=
Ehk

r

(
1 +

h2k2

12r2
sin2θ

)
ξk −

Eh3k3

12
· sin θ · cos θ

r3
ζk

+
Ehk2

r
vk +

Eh3k

12r2
· sin θ · cos θ · ϑ1k + µk

cos θ

r
(Xkr)

+µ
k sin θ

r
(Zk · r)−

cos θ

r
(Sk · r) + µ

k sin θ

r2
(M1k · r)− rq2k;

d (M1k · r)
ds

=
Eh3k2

12
· sin θ · cos θ

r2
ξk −

Eh3k2

12

2 + (1 + µ)cos2θ

(1 + µ)r2
ζk

+
Eh3k

12
· sin θ · cos θ

r2
vk +

Eh3

12r

(
cos2θ +

2k2

1 + µ

)
ϑ1k

+ sin θ(Xkr)− cos θ(Zkr)− µ
cos θ

r
(M1k · r)

where the following designations are introduced for the radial and axial loading
components

qxk = q1k cos θ + q3k sin θ; qzk = q1k sin θ − q3k cos θ. (4.7)

Since the coefficients of the resulting system of equations do not contain the
curvature 1/R1 of the meridian, they remain continuous even for a shell whose
curvature is subject to discontinuity. As a consequence, the main unknowns,
referred to a fixed coordinate system, remain continuous for an arbitrary shape of
the meridian, including for combined shell, which makes it possible not to compose
the docking equations for such cases. As for the force unknowns Xkr, Zkr, S

∗
kr,

M1kr, they experience discontinuity of a predetermined magnitude only where
concentrated forces are applied to the shells at a specific parallel of the load.

The specified forces and displacements at the ends of the shell are the boundary
conditions for the resulting system, which are also decomposed into the correspon-
ding trigonometric series along the circumferential coordinate.

5. Shells with Two-Sided Relative to the Reference Surface
Change in Wall Thickness

Let us consider the case of the shell wall thickness δ(s) variable along the
meridian under axisymmetric loading. In this case, both the external and internal
components of the shell wall thickness with respect to the reference surface are
independent functions of the meridional coordinate s. Let us denote by H(s) and
h(s) the distances along the normal direction from the reference surface to the
outer and inner surfaces of the shell, respectively, and h∗ (s) the distance from
the middle surface to the reduced surface (Fig. 5.2), so that

H(s)− h∗(s) =
δ(s)

2
; h(s) + h∗(s) =

δ(s)

2
; (5.1)

h∗(s) =
(H(s)− h(s))

2
.
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Fig. 5.2. Position of the reference surface (dashed line) relative to the middle surface (dash-dotted
line)

It is also assumed that the error associated with the mismatch of the normal
to the middle surface and the reference surface can be neglected for thin-walled
shells.

Taking into account that the deformations ε1, ε2 and parameters of changing
the curvatures χ1, χ2 of the reference surface are expressed through the deforma-
tions of the middle surface as follows ε1 = ε1cp − h∗χ1, ε2 = ε2cp − h∗χ2 (Fig.
5.2), the relationship between stresses and deformations on the reference surface
in accordance with Hooke’s law will have the form

σ1 =
E

1− µ2
((ε1 + µε2) + z (χ1 + µχ2)) ; (5.2)

σ2 =
E

1− µ2
((ε2 + µε1) + z (χ2 + µχ1)) .

Note that expressions (5.2) at z = h∗ coincide with the well-known [3] expressions
for calculating the stresses on the middle surface.

Internal forces and moments relative to the reference surface, taking into
account the known dependencies

N1 =

ˆ H

−h
σ1dz; N2 =

ˆ H

−h
σ2dz; (5.3)

M1 =

ˆ H

−h
σ1zdz; M2 =

ˆ H

−h
σ2zdz,

and relations (5.2) after introducing the notation

K1 =
E(H + h)

(1− µ2)
; K2 =

E(H2 − h2)

2(1− µ2)
; D =

E

1− µ2

H3 + h3

3
(5.4)
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will be next:

N1 = K1 (ε1 + µε2) +K2 (χ1 + µχ2) ;

N2 = K1 (ε2 + µε1) +K2 (χ2 + µχ1) ;
(5.5)

M1 = K2 (ε1 + µε2) +D (χ1 + µχ2) ;

M2 = K2 (ε2 + µε1) +D (χ2 + µχ1) .
(5.6)

Considering that N1 sin θ−Q1 cos θ = F (s); N1 cos θ+Q1 sin θ = N , (Fig. 2.1)
we represent the efforts N1and Q1 in the form

N1 =
F (s)

2πr
sin θ +N cos θ; Q1 = −F (s)

2πr
cos θ +N sin θ, (5.7)

where N is the spacer force; F (s) = P0 +

ˆ sn

s0

(qn cos θ − q1 sin θ) 2πrds is total

axial loading; P0 is axial load; qn, q1 is distributed normal and meridian loads,
respectively.

We take as the main variables the radial displacement ξ, the angle of rotation
of the normal ϑ, the axial displacement ζ, as well as the spacer force Nr and
moment M1r multiplied by the radius of the parallel circle.

Eliminating from (5.5) taking into account

ε2 =
ξ

r
; χ1 =

dϑ

ds
; χ2 =

cos θ

r
ϑ;

1

R1
=
dθ

ds
;

1

R2
=

sin θ

r
. (5.8)

we obtain
N2 = µN1 +K1(1− µ2)

ξ

r
+K2(1− µ2)

cos θ

r
ϑ. (5.9)

Similarly, relations (5.6) yield the expression for M2

M2 = µM1 +K2(1− µ2)
ξ

r
+D(1− µ2)

cos θ

r
ϑ. (5.10)

From equation (5.5), taking into account (5.7), (5.8), we obtain

ε1 =
1

K1

(
F (s)

2πr
sin θ +N cos θ

)
− µξ

r
− K2

K1

(
dϑ

ds
+ µ

cos θ

r
ϑ

)
. (5.11)

Substituting further (5.7), (5.8), (5.11) into (5.6), we obtain

M1 =
K2

K1

(
cos θ

r
Nr +

sin θ

r

F (s)

2π

)
+

(
D − K2

2

K1

)(
dϑ

ds
+ µ

cos θ

r
ϑ

)
,

from which one of the equations of the system of state follows

dϑ

ds
= −µcos θ

r
ϑ−

(
K2

DK1 −K2
2

)
cos θ

r
Nr + (5.12)

+

(
K1

DK1 −K2
2

)
M1r

r
−
(

K2

DK1 −K2
2

)
sin θ

r

F (s)

2π
.
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Next, we take into account the equilibrium equations (2.3), which for the
axisymmetric case can be represented in the form

1

r

d

ds
(Q1r)−

N1

R1
− N2

R2
+ qn = 0; (5.13)

1

r

d

ds
(N1r)−N2

cos θ

r
+
Q1

R1
+ q1 = 0; (5.14)

1

r

d

ds
(M1r)−M2

cos θ

r
−Q1 = 0. (5.15)

Substitution of the found expressions (5.5), (5.7)–(5.9) into equation (5.13)
gives one more equation of the system

dξ

dS
= −µcos θ

r
ξ − ϑ sin θ +

D

DK1 −K2
2

cos2θ

r
Nr

+
K2

DK1 −K2
2

sin θ

r
M1r +

D

DK1 −K2
2

sin θ cos θ

r

F (s)

2π
. (5.16)

The following equation is obtained from (5.14) after substituting into it the
values of the variables from (5.7)–(5.9), taking into account that

d

ds

(
F (s)

2π

)
= (qn cos θ − q1 sin θ)2πr;

d (Nr)

ds
= K1(1− µ2)

ξ

r
+K2(1− µ2)

cos θ

r
ϑ (5.17)

+µ
cos θ

r
(Nr) + µ

sin θ

r

F (s)

2π
− qrr

where qr = q1 cos θ + qn sin θ.
Substituting into (5.15) the expression for and from (5.6), (5.7), we obtain

d (M1r)

dr
= K2

(
1− µ2

) cos θ

r
ξ +D

(
1− µ2

) cos2θ

r
ϑ

+ sin θ (Nr) + µ
cos θ

r
(M1r)− cos θ

F (s)

2π
. (5.18)

To determine the axial displacement, the expression for (5.11) is substituted
into the equation of continuity of deformations, which will have the form

dζ

ds
= −µsin θ

r
ξ + ϑ cos θ +

D

DK1 −K2
2

sin θ cos θ

r
(Nr)

− K2

DK1 −K2
2

sin θ

r
(M1r) +

D

DK1 −K2
2

sin2θ

r

F (s)

2π
. (5.19)

Thus, the obtained equations (5.14) , (5.12), (5.17) – (5.19) form a system of
differential equations with variable coefficients, which describes the stress-strain
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state of shells of revolution with a two-sided, relative to the reference surface,
change along the meridian wall thickness.

For the particular case, when the reference surface coincides with the median,
that is h∗(s) = 0, it follows that H(s) = h(s). Then (5.4) will have the form
K1 = Eδ/

(
1− µ2

)
, K2 = 0, D = Eδ3/

(
12
(
1− µ2

))
, where δ (s) = H (s) + h (s)

is the shell thickness, and the system of the obtained equations coincides with the
well-known system of equations given in [3].

The boundary conditions are the conditions for fixing the ends of the shell.
For the numerical solution of the obtained boundary value problem for a system
of ordinary differential equations with variable (due to a change in the shell wall
thickness) coefficients under the given boundary conditions, a sufficiently effective
and repeatedly tested in the problems of mechanics of thin-walled structures [3,
12,15] are used the sweep method of S. K. Godunov [11].

Conclusion.

The article presents correct mathematical models describing the state of asym-
metrically loaded shells of revolution with variable wall thickness in the meridian
and circumferential directions, only along the meridian, as well as with a two-sided
change in the wall thickness relative to the reference surface. For all considered
cases, boundary value problems for systems of ordinary differential equations with
variable coefficients are constructed, the numerical solution of which is carried out
by the sweep method.
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