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ON AN INITIAL BOUNDARY-VALUE PROBLEM
FOR 1D HYPERBOLIC EQUATION

WITH INTERIOR DEGENERACY: SERIES SOLUTIONS
WITH THE CONTINUOUSLY DIFFERENTIABLE FLUXES

Vladimir L. Borsch∗, Peter I. Kogut†, Günter. Leugering‡

Communicated by Prof. P. Kasyanov

Abstract. A 1-parameter initial boundary value problem for the linear homogeneous
degenerate wave equation utt(t, x;α)−(a(x;α)ux(t, x;α))x= 0 (JODEA, 27(2), 29 – 44),
where: 1) (t, x) ∈ [0, T ]× [−l,+l]; 2) the weight function a(x;α): a) a0

∣∣∣x
c

∣∣∣α, 06 |x|6 c;
b) a0, c6 |x|6 l; c) a0 is a constant reference value; and 3) the parameter α∈ (0,+∞);
is considered. Using a string analogy, the IBVP can be treated as an attempt to set an ini-
tially fixed ‘string’ in motion, the left end of the ‘string’ being fixed, whereas the right
end being forced to move.

It has been proved, using the methods of Frobenius and separation of variables, that:
1) there exist 6 series solutions u(t, x;α), (t, x)∈ [0, T ]×[−c,+c], of the degenerate wave
equation; 2) the only series solution, having continuous and continuously differentiable
flux f(a, u) = −aux, reads u(t, x;α) = Uα,0(t) + Uα,1(t)|x|θ + Uα,2(t)|x|2θ + . . ., where
a) θ = 2− α is a derived parameter; b) the coefficient functions obey the following linear
recurrence relations: U ′′α,µ−1(t)=µθ [(µ−1) θ + 1] c−αa0 Uα,µ(t), µ∈N.

It has been revealed that a nonlinear change of the independent variables (t, x)→ (τ, ξ)

transforms: 1) the degenerate wave equation to the wave equation υττ − υξξ = ξρ, or re-

written as the balance law πτ + ϕξ=ρ, where π=υτ , −ϕ(υ;α)=υξ + ξρ, ρ(υ;α)=
α

θ

υ

ξ2
,

having: a) no singularity in its principal part (due to inflation of the degeneracy), and
b) the only series solution of the form υ(τ, ξ;α)=Vα,0(τ) + Vα,1(τ) ξ2 + Vα,2(τ) ξ4 + . . .

(out of 5 existing and found similarly to those of the degenerate wave equation), leading to
the continuous and continuously differentiable regularized flux ϕ(̊υ;α) and the continuous
regularized source term ρ(̊υ;α), where υ̊(τ, ξ;α) =υ(τ, ξ;α) − υ(τ, 0;α); 2) the IBVP for
the degenerate wave equation to the IBVP for the transformed wave equation.

It has been shown, that if α∈(0, 2): 1) the above results are valid; 2) the state of being
fixed for the ‘string’ is not necessary for (t, x) ∈ [0, T ]× [−l, 0], that is a traveling wave
could pass the degeneracy and excite vibrations of the ‘string’ between its fixed end and
the point of degeneracy.

Key words: degenerate wave equation, series solutions, the Frobenius method, separa-
tion of variables, inflation of singularity, exact solutions, the Bessel functions, conservation
and balance laws, the flux, regularization of the flux.
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1. Introduction

1.1. Presentation of the problem

The current study is a continuation of that started and shortly reported in
our pilot publication [4] on the subject and dealing with the following spatially
1D degenerate wave equation

∂2u(t, x)

∂t2
− ∂

∂x

(
a(x;α)

∂u(t, x)

∂x

)
= 0 , (1.1)

where t∈(0, T ), x∈(−l,+l) are the independent variables, a(·;α) : [−l,+l]→R+ is
a given 1-parameter weight function which is assumed to be continuous, piecewise
smooth and to vanish in the midpoint of the segment [−l,+l] following a power
law inside a subsegment [−c,+c] ⊂ [−l,+l]. For instance,

a(x;α) =


a0

(
|x|
c

)α
, 0 6

|x|
l
6
c

l
,

a0 ,
c

l
6
|x|
l
6 1 ,

where α∈(0,+∞) is a parameter, and a0 > 0 is a given constant.
Using the following non-dimensional variables and quantities

t =
l
¯
t√
a0

, x = l
¯
x , u = l

¯
u , a = a0 ¯

a , c = l
¯
c ,

the degenerate wave equation and the power law can be rewritten in a non-dimen-
sional forms. To simplify notation we drop hereafter the bars under the non-dimen-
sional variables and quantities. As a result, the non-dimensional degenerate wave
equation reads exactly as (1.1), whereas the non-dimensional power law reduces
to

a(x;α) =

{
a∗ |x|α, 0 6 |x| 6 c ,

1 , c 6 |x| 6 1 ,
(1.2)

where the derived quantity a∗ is such that a∗c
α= 1. Hereinafter, the space-time

segment [0, T ]×{x = 0}, where the degeneracy is located, is referred to as the de-
generacy segment.

Another form of the degenerate wave equation (1.1), used in the current study,
is known as a conservation law

∂p

∂t
+
∂f

∂x
= 0 , (1.3)

where f :=−aq is the flux, and p, q are auxiliary dependent variables

p :=
∂u

∂t
, q :=

∂u

∂x
.
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Our concern, as in [4], relates to the study of the following initial boundary
value problem



∂2u(t, x;α)

∂t2
=

∂

∂x

(
a(x;α)

∂u(t, x;α)

∂x

)
, (t, x) ∈ (0, T ]×(−1,+1) ,

u(t,−1;α) = 0 , t ∈ [0, T ] ,

u(t,+1;α) = h(t) , t ∈ [0, T ] ,

u(0, x;α) = 0 , x ∈ [−1,+1] ,

∂u(0, x;α)

∂t
= 0 , x ∈ [−1,+1) ,

(1.4)

where h(t) is a given control function.
For the sake of convenience, we interpret the function u(t, x) as the distribu-

ted over the segment [−1,+1] displacements of a ‘string’, though properties of
the weight function a(x;α) have little in common with those of weight functions
being admissible in ‘genuine’ wave equations for string vibrations. So, we deal with
a hyperbolic system subject to the action of a control h(t), imposed as the Dirichlet
boundary condition at the right end x = +1. In contrast to the widely studied
standard case, for instance, see [2, 3], we assume that the string has a defect or
a damage at the interior point x=0, where a(0;α)=0. Loosely speaking, the loss
of string elasticity at the interior point, which turns into a swivel, is accompanied
by the cease of resisting rotations and flexions.

The main question that we are going to discuss in this article is how the defect
at the interior point x=0 affects the solution of the system (1.4) and its properties.
The second point that should be clarified here is about the consistency of this
problem and properties of its solutions in a neighborhood of ’the damage point’
x= 0. It seems that such analysis for the indicated class of degenerate systems
can be important for applications, with respect, for instance, the cloaking prob-
lem [10] (building of devices that lead to invisibility properties from observation),
the evolution of damage in materials, optimization problems for elastic bodies
arising, e.g. in contact mechanics, coupled systems, composite materials, where
’life-cycle-optimization’ appears as a challenge.

The indicated type of degeneracy raises many new and open questions related
to the well-posedness of the hyperbolic equations in suitable functional spaces. It
should be emphasized here that boundary value problems for degenerate elliptic
and parabolic equations have received a lot of attention in the last years (see, for
instance, [5, 6, 16–18]). In the meantime, as for the control issue for degenerate
wave equations, we can mention only a few recent publications [2,3,11], where the
authors mainly deal with weakly or strongly degenerate wave equations for which
the degeneracy zone is located at a boundary point. This analysis shows that
because of the rate of ’degree of degeneracy’ in the diffusion coefficient a(x;α),
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especially when a(x;α) degenerations too severely, the new tools are necessary for
the analysis of the corresponding initial boundary value problems.

In contrast to the above mentioned results, where the authors mainly deal with
the degenerate equation of the form (1.1) with the degeneracy at the boundaries
x=±1, we focus on the case where the ’damaged’ point is interior. From a physical
point of view, if we look at the wave equation (1.1) as at the equation of vibrating
string for which its the point x= 0 works like a swivel, then we should allow for
the possibility of big angles at the profile of the string around x=0. Needless to
say that in this case the mathematical substantiation of the wave equation for
vibrating string becomes nontrivial. On the other hand, the coefficient a(x;α)
in (1.1) can be interpreted as the stiffness of the string. The fact that this
coefficient vanishes at x = 0 means that the string is getting very weak at this
point. So, our core idea is to apply the methods of Frobenius and separation
of variables in order to obtain the exact representation for solutions of the original
degenerate wave equation in the form of 1-parameter power series. Such analysis
allows to find out what kind of compatibility conditions we should impose at the
’damaged’ point in order to pass from the original initial boundary value prob-
lem (1.4) to its equivalent version in the form of some transmission problem.
Therefore, the purpose of this paper is to provide a qualitative analysis of system
(1.4), obtain an exact representation for its solution, and find out how the degree
of degeneracy α in the principle coefficient a(x;α) affects the system (1.4) and its
solution.

1.2. The plan of the article

The article is organized as follows.
Section 2 is devoted to the well-posedness issues for the initial boundary value

problem (1.4) provided α ∈ (0, 2). Admitting only two types of degeneracy for
a(x;α), namely the so-called weak and strong degeneracy, we prove the existence
and uniqueness results for the weak and strong solutions to the problem. We also
discuss the transmission conditions at the damage point x = 0 and show that, in
general, in the framework of functional setting, the continuity of the weak and
strong solutions at the point of interior degeneracy and the smoothness of the
corresponding fluxes remain open questions.

In Section 3 we construct 1-parameter power series solutions of the original
degenerate wave equation in one-sided vicinities of the degeneracy segment. Then,
in Section 4, we study continuous matching of the obtained one-sided series solu-
tions. Finally, in Section 5 we obtain the exact solutions of the original degenerate
wave equation using the separation of variables. Among all continuous series so-
lutions obtained in Sections 4 and 5, we find those being required in some sense,
and possessing the so-called property Z.

Definition 1.1. We say that a solution to the initial boundary value problem (1.4)
possesses property Z if it vanishes in the left space-time rectangle [0, T ]×[−1, 0].
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Amore precise formulation of our concern in terms of Definition 1.1 is to divide
the required solutions to the problem (1.4) into those possessing and violating pro-
perty Z. Keeping in mind the string analogy, we are interested in choosing: 1) such
functions h(t), specifying a motion of the right end of the string, and eventually
the right part of the string (segment (0,+1]), and 2) such values of the parame-
ter α, specifying a sort of degeneration (in the midpoint of the segment [−1,+1]),
to make the left part of the string (segment [−1, 0)) vibrate.

In Section 6 we first introduce new independent variables, ‘inflating’ the de-
generacy, and then transform the original degenerate wave equation to a wave
equation (referred to as the transformed one), having no singularity in its principal
part. After, we reformulate the original initial boundary value problem for the trans-
formed wave equation. Then, in Sections 7 – 9, we apply the approaches used
in Sections 3 – 5, but for the transformed wave equation and the transformed
initial boundary value problem. As for continuous matching to be implemented
to the transformed wave equation, it is rewritten as a balance law.

1.3. Short announce of the main results

In the current study, solving the initial boundary value problem (1.4) for
the degenerate wave equation (1.1), supplemented with the power law (1.2) of de-
generacy a(x;α) ∼ |x|α, α ∈ (0,+∞), has been discussed as it concerns continuity
of power series solutions, treated where it is necessary, by analogy, as vibrations
of an initially fixed ‘string’.

1. We have introduced the definitions of required solutions to the degenerate
wave equation and the initial boundary value problem (1.4), both solutions having
the continuous and continuously differentiable flux.

2. We have introduced the definition of property Z for solutions to the initial
boundary value problem (1.4) to remain trivial between the fixed end of the ‘string’
and the point of degeneracy, for t>0.

3. We have succeeded in finding power series solutions using the methods
of: 1) Frobenius and 2) separation of variables, for the parameter of degeneracy
α∈(0,+∞).

4. We have proved that among the series solutions obtained, there is the only
one required, being a power series of the terms |x|µθ, θ = 2− α, µ ∈ Z+, for
the parameter of degeneracy α∈(0, 2).

u(t, x;α) = Uα,0(t) + Uα,1(t) |x|θ + Uα,2(t) |x|2θ + . . . ,

where the coefficient functions obey the following recurrence relations

U ′′α,µ−1(t) = µθ [(µ− 1) θ + 1] a∗Uα,µ(t) , µ ∈ N .

5. We have proved that property Z is not necessary for the only required
series solution. Physically, not possessing property Z means that a traveling wave
could pass the degeneracy and excite vibrations of the ‘string’ between its fixed
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end and the point of degeneracy (see a brief introductory discussion of physical
formulations of the initial boundary value problem (1.4) in Section 1 of [4]).

2. Functional setting and well-posedness issues

In this Section we are going to dwell at the well-posedness of the original initial-
boundary value problem (1.4) provided α∈ (0, 2). We will admit only two types
of degeneracy for a(x;α) (1.2), namely weak and strong degeneracy. By analogy
with [2], we say that the problem (1.4) is weakly degenerate (WDP) if α∈ (0, 1],
and it is strongly degenerate (SDP), if α∈ (1, 2). So, each type of degeneracy is
associated with the corresponding range of the exponent α.

Let us introduce some weighted Sobolev spaces naturally associated with the
system (1.4). We denote by H1

a(−1,+1) the space of all functions u∈L2(−1,+1)
such that {

u is locally absolutely continuous in [−1, 0)
⋃

(0,+1] ,

√
a ux ∈ L2(−1,+1).

(2.1)

It is easy to see that H1
a(−1,+1) is a Hilbert space with respect to the scalar

product

(u, v)H1
a(−1,+1) =

ˆ 1

−1
[uv + a uxvx] dx, ∀ u, v ∈ H1

a(−1,+1) ,

and associated norm

‖u‖H1
a(−1,+1) =

(ˆ 1

−1

[
u2 + a u2

x

]
dx

)1
2

, ∀ u ∈ H1
a(−1,+1) .

We also introduce the closed subspace H1
a,0(−1,+1) of H1

a(−1,+1) defined as

H1
a,0(−1,+1) =

{
u ∈ H1

a(−1,+1): u(−1) = 0 = u(+1)
}
.

Arguing as in [13, Theorem 3.1], it can be shown thatH1
a,0(−1,+1) is a Banach

space with respect to the norm

‖u‖H1
a,0(−1,+1) =

(ˆ 1

−1
a u2

x dx

)1
2

provided α ∈ (0, 2).
Starting with the weak degenerate case, we have the following result (we refer

to [14, Theorem 2.3] for the details).
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Theorem 2.1. Let a(x;α) : [−1,+1] → R be a weight function defined by (1.2)
with α∈(0, 1]. Then H1

a(−1, 1) ↪→L1(−1,+1) compactly, and H1
a(−1,+1) is con-

tinuously embedded into the class of absolutely continuous functions on [−1,+1],
so

lim
x↗0

u(x) = lim
x↘0

u(x), |u(0)| < +∞, ∀u ∈ H1
a(−1,+1). (2.2)

If, in addition, u belongs to the space

H2
a(−1,+1) :=

{
u ∈ H1

a(−1,+1) : aux ∈W 1,2(−1,+1)
}
, (2.3)

then the following transmission condition

lim
x↗0

a(x)ux(x) = lim
x↘0

a(x)ux(x) = L, with |L| < +∞, (2.4)

holds true.

Remark 2.1. It is worth to emphasize that if α ∈ (0, 1] and u ∈ H1
a(−1,+1) is an

arbitrary element, then u(x) is continuous at the damage point x = 0. However,
the situation changes drastically if we deal with the strong degeneration in (1.4).
Indeed, let us consider the following example. Let α = 7/4, c = 1, a∗ = 1 in (1.2),
and let

u(x) =

 |x|
− 1

4 − 1, if x ∈ (−1, 0),

|x|+
1
2 − 1, if x ∈ [0,+1).

Then, the function u : (−1,+1) → R has a discontinuity of the second kind
at x = 0, u ∈ H1

a,0(−1, 1), and

a(x;α)ux(x) =


1
4 |x|

1
2 , if x ∈ (−1, 0),

1
2 |x|

5
4 , if x ∈ [0,+1).

So, instead of the transmission condition (2.4), we have

lim
x↗0

a(x)ux(x) = lim
x↘0

a(x)ux(x) = 0. (2.5)

In fact, in the case of strong degeneration, the transmission conditions at the
damage point x = 0 can be specified as follows (see [14, Theorem 2.4]).

Theorem 2.2. If α ∈ (1, 2) then for any element u ∈H1
a(−1,+1) the following

assertions hold true:

lim
x↗0

√
a(x)u(x) = 0 = lim

x↘0

√
a(x)u(x), (2.6)

lim
x↗0

a(x)ux(x) = lim
x↘0

a(x)ux(x) = 0 provided u ∈ H2
a(−1,+1), (2.7)

lim
x↗0

a(x)ϕx(x)u(x) = 0 = lim
x↘0

a(x)ϕx(x)u(x), ∀ ϕ ∈ H2
a(−1,+1). (2.8)
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In order to proceed further, we recall the main results of semi-group theory
concerning weak and strong of solutions for differential operator equation. With
that in mind, we introduce the Hilbert space Ha := H1

a,0(−1,+1) × L2(−1,+1)
and endow it with the scalar product〈[

u

v

]
,

[
ũ

ṽ

]〉
Ha

=

ˆ 1

−1
v(x) ṽ(x) dx+

ˆ 1

−1
a(x)ux(x) ũx(x) dx.

We also define the unbounded operator A : D(A) ⊂ Ha→Ha, associated with
the problem (1.4), as follows

A
[
u

v

]
=

[
v

(aux)x

]
, (2.9)

and

Case (WDP):

[u
v

]
∈ D(A) if


u ∈ H2

a(−1,+1), v ∈ H1
a,0(−1,+1),

lim
x↗0

u(x) = lim
x↘0

u(x),

lim
x↗0

a(x)ux(x) = lim
x↘0

a(x)ux(x),

u(−1) = u(+1) = 0;

 (2.10)

Case (SDP):

[u
v

]
∈ D(A) if


u ∈ H2

a(−1,+1), v ∈ H1
a,0(−1,+1),

lim
x↗0

aϕxu = 0 = lim
x↘0

aϕxu, ∀ϕ ∈ H2
a(−1,+1),

lim
x↗0

a(x)ux(x) = 0 = lim
x↘0

a(x)ux(x),

u(−1) = u(+1) = 0.


(2.11)

Arguing as in [8, Section II.2], it can be shown that, in both cases, D(A) is a
dense subset of Ha.

Lemma 2.1. A : D(A) ⊂ Ha → Ha is the generator of a contraction semi-group
in Ha.

Proof. It is well-known that if H is a Hilbert space and B : D(B) ⊂ H → H is
a densely defined linear operator such that both B and B∗ are dissipative, i. e.,

〈Bu, u〉H 6 0 and 〈u,B∗u〉H 6 0 ∀ u ∈ D(B),

then B generates a strongly continuous semi-group of contraction operators [15,
p. 686]. Let us show that A

[u
v

]
∈Ha for all

[u
v

]
∈D(A), and this operator satisfies

the above mentioned properties.
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Since the inclusion A
[u
v

]
∈Ha is obvious for each

[u
v

]
∈ D(A), it remains to

check the properties〈
A
[u
v

]
,
[u
v

]〉
Ha
6 0, and

〈[u
v

]
, (A)∗

[u
v

]〉
Ha
6 0 ∀

[u
v

]
∈ D(A). (2.12)

We do it for the case (SDP), because the case (WDP) can be considered in a
similar manner. Then the first inequality in (2.12) immediately follows from the
definition of the set D(A), transmission conditions (2.8), and the relations〈
A
[u
v

]
,
[u
v

]〉
Ha

=

〈[
v

(aux)x

]
,
[u
v

]〉
Ha

=

ˆ 1

−1
(aux)x v dx+

ˆ 1

−1
avxux dx

= lim
x↗0

[ˆ x

−1
(aus)s v ds+

ˆ x

−1
avsus ds

]
+ lim
x↘0

[ˆ 1

x
(aus)s v ds+

ˆ 1

x
avsus ds

]
=

[
lim
x↗0

a(x)ux(x)v(x)

]
−
[

lim
x↘0

a(x)ux(x)v(x)

]
= 0, (2.13)

which hold true for all
[u
v

]
∈ D(A). Taking into account the equality

〈
A
[
u

v

]
,

[
ũ

ṽ

]〉
Ha

=

〈[
u

v

]
,A∗

[
ũ

ṽ

]〉
Ha
,

[
u

v

]
,

[
ũ

ṽ

]
∈ D(A),

we see that〈
A
[
u

v

]
,

[
ũ

ṽ

]〉
Ha

=

〈[
v

(aux)x

]
,

[
ũ

ṽ

]〉
Ha

=

ˆ 1

−1
(aux)x ṽ dx+

ˆ 1

−1
avxũx dx

= lim
x↗0

[ˆ x

−1
(aus)s ṽ ds+

ˆ x

−1
avsũs ds

]
+ lim
x↘0

[ˆ 1

x
(aus)s ṽ ds+

ˆ 1

x
avsũs ds

]
= lim

x↗0

[
−
ˆ x

−1
ausṽs ds−

ˆ x

−1
v (aũs)s ds

]
+ lim
x↘0

[
−
ˆ 1

x
ausṽs ds−

ˆ 1

x
v (aũs)s ds

]
+

[
lim
x↗0

a(x)ux(x) ṽ(x)− lim
x↘0

a(x)ux(x) ṽ(x)

]
+

[
lim
x↗0

a(x) ũx(x) v(x)− lim
x↘0

a(x) ũx(x) v(x)

]
= −
ˆ 1

−1
(aũx)x v dx−

ˆ 1

−1
aṽxux dx =

〈[
u

v

]
,

[
−ṽ

− (aũx)x

]〉
Ha
.
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Hence, A∗
[
ũ

ṽ

]
=

[
−ṽ

− (aũx)x

]
, and arguing as in (2.13), we see that A∗ is a dissi-

pative operator as well. Thus, A : D(A) ⊂ Ha→Ha generates a strongly conti-
nuous semi-group of contraction operators.

We denote this semi-group by eAt. Then for any U0 =

[
u0

v0

]
∈ Ha, the repre-

sentation U(t) = eAt U0 gives the so-called mild solution of the Cauchy problem
dU(t)

dt
= AU(t), t > 0,

U(0) = U0 .

(2.14)

When U0 ∈ D(A), the solution U(t) = eAtU0 is strong in the sense that

U(·) ∈ C1 ([0,∞);Ha)
⋂
C ([0,∞);D(A))

and equation (2.14) holds everywhere in (0,∞).
In view of the above consideration, we adopt the following concept.

Definition 2.1. We say that, for a given control h(t), a function u = u(t, x;α)
is the weak solution to the problem (1.4) if

u ∈ C1([0,∞);L2(−1,+1))
⋂
C([0,∞);H1

a,0(−1,+1)), (2.15)

u(t, x;α) = y(t, x;α) +G(t, x), (2.16)

and U(t) :=

[
y(t)

v(t)

]
is the mild solution of the problem


dU(t)

dt
= AU(t) + F (t), t > 0,

U(0) =

[
−G(0, ·)
−Gt(0, ·)

]
,

(2.17)

where

F (t) =

[
0

(aGx)x −Gtt

]
, (2.18)

and G ∈W 2,2(0, T ;H2
a(−1,+1))

⋂
C2(0, T ;L2(−1,+1)), ∀T > 0, is an arbitrary

function such that

G(t,−1) = 0, G(t, 1) = h(t), G(0, x) ∈ H1
a,0(−1,+1),

and Gt(0, x) ∈ L2(−1,+1) for a.a. t > 0 and x ∈ [−1,+1].
(2.19)
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Definition 2.2. We say that a function u = u(t, x;α) is the strong solution to
the problem (1.4) if each relation in (1.4) is satisfied for all t ∈ [0,∞) and a.a.
x ∈ [−1,+1],

u ∈ C2([0,∞);L2(−1,+1))
⋂
C1([0,∞);H1

a,0(−1,+1)) ∩ C([0,∞);H2
a(−1,+1)),

the representation (2.16) holds with a function G that, in addition to (2.19),
satisfies

G(0, x) ∈ H2
a(−1,+1), Gt(0, x) ∈ H1

a,0(−1,+1) for t > 0 and x ∈ [−1,+1],
(2.20)

and the function y such that U(t) :=

[
y(t)

v(t)

]
is the strong solution of the problem

(2.17). If, in addition, all relations in (1.4) are satisfied for for all t ∈ [0,∞) and
x ∈ [−1,+1], then u = u(t, x;α) is the classical solution of the original initial-
boundary value problem (1.4).

Our further intention is to examine the well-posedness of the problem (1.4) in
the weak and strong degenerate cases.

Theorem 2.3. Let a(x;α) : [−1,+1] → R be a weight function defined by (1.2)
with α ∈ (0, 2). Assume that for a given control h(t) there exists function G =
= G(t, x) satisfying properties (2.19). Then initial boundary value problem(1.4)
admits a unique weak solution u = u(t, x;α) for which representation (2.16) holds.

Proof. Let G ∈W 2,2(0, T ;H2
a(−1,+1))

⋂
C2(0, T ;L2(−1,+1)) be a function with

properties (2.19). Then (aGx)x − Gtt ∈ C([0, T ];L2(−1,+1)) and U(0) ∈ Ha.
Hence, by the Duhamel principle, we deduce that there exists a unique mild
solution of the problem (2.17) and it can be represented as follows[

y(t)

v(t)

]
= eAtU(0) +

ˆ t

0
eA(t−s)F (s) dx ∀ t ∈ [0, T ]. (2.21)

As immediately follows from (2.16), the function u(t, x) satisfies both initial and
boundary conditions in (1.4), and its functional properties (2.15) easily follow from
the semi-group properties of eAt and (2.21). Thus, u(t, x;α) is a weak solution to
the problem (1.4) in the sense of Definition 2.1.

As for uniqueness of the weak solution, it is a direct consequence of represen-
tation (2.16) and formula (2.21).

Arguing in a similar manner, it can be established the following result.

Theorem 2.4. Let a(x;α) : [−1,+1] → R be a weight function defined by (1.2)
with α ∈ (0, 2). Assume that for a given control h(t) there exists function G =
= G(t, x) satisfying properties (2.19)–(2.20). Then initial boundary value prob-
lem(1.4) admits a unique strong solution.
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To prove this assertion, it is enough to notice that due to the properties (2.19)–
(2.20), the function G(t, x) is sufficiently smooth and the vector of initial data
U(0) belongs to the set D(A) both in the weak and strong degenerate cases.
Remark 2.2. In view of the transmission conditions (see Theorem 2.2), it is still
unknown whether the strong solution to the problem (1.4) preserves its continuity
at the damage point x = 0 in the case of strong degeneration. The second point
that should be clarified, is about existence of a classical solution to the prob-
lem (1.4) for different range of parameter α > 0 provided h ∈ C([0, T ]). To the
best knowledge of authors, this question remains arguably open for nowadays.

For our further analysis, in order to specify the notion of solution to the prob-
lem (1.4) possessing the continuously differentiable flux for a wide range of para-
meter α, we adopt the following concept.

Definition 2.3. A function u(t, x;α) is called a solution with the continuously
differentiable flux (or, shortly the required solution) to the initial boundary value
problem (1.4) if it: 1) is continuous in the space-time rectangle [0, T ] × [−1,+1]
and is twice continuously differentiable in the variables t and x inside the space-
time rectangle, except for the degeneracy segment; 2) has the one-sided derivative
in the variable x, bounded or integrable, and the flux, continuously differentiable
in the variable x, both on the degeneracy segment; 3) satisfies the degenerate
wave equation inside the space-time rectangle; and 4) satisfies the initial and
the boundary conditions of the problem.

3. Series solutions of the original wave equation

In this Section we construct power series solutions u∓(t, x;α) of the original
degenerate wave equation in one-sided vicinities [0, T ]×(−ε, 0) and [0, T ]×(0,+ε),
ε6 c, of the degeneracy segment. These solutions are further referred to as one-
sided and constitute a pair for the ε -band⊆ c -band (with the degeneracy segment
removed or not removed). To construct such pairs, we introduce the set of rational
numbers

Qo :=

{
m

n
: m ∈ Z , n ∈ N , m 6= 0 , n > 1 , n ≡ 1 (mod 2)

}
, (3.1)

wherem,n are coprime numbers, and those derived from subsets of R, for instance,
(0, 2)o :=(0, 2)

⋂
Qo , etc., to distinguish between the exponents σ of those power

monomials xσ, x> 0, extendable straightforwardly to x < 0 and not extendable.
Let Qo,e be the subset of Qo, where m ≡ 0 (mod 2), and Qo,o be the subset of Qo,
where m ≡ 1 (mod 2), then both subsets partition the set Qo: Qo,e

⋃
Qo,o =Qo,

Qo,e

⋂
Qo,o = ∅. It is clear that monomials xσ are extendable to x < 0 evenly,

if σ ∈ Qo,e, and oddly, if σ ∈ Qo,o.
Initially (A), we present our attempts to find pairs of one-sided series solu-

tions, substituting pairs of trial one-sided power series, or pairs of ansatze, into
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the original degenerate wave equation, and finally (B), we find the above pairs of
one-sided series solutions (A) once again using the Frobenius method [7,12].

A) Let the pair of trial one-sided power series solutions of the degenerate wave
equation be of the form

u∓(t, x;α) = U∓α,0(t) + U∓α,1(t) |x|σ
∓
α,1 + U∓α,2(t) |x|σ

∓
α,2 + . . . ,

where U∓α,0(t), U∓α,1(t), U∓α,2(t), etc., are unknown coefficient functions of variable t;
σ∓α,1, σ

∓
α,2, etc., are unknown real exponents. Differentiating the above pair of the an-

satze with respect to t and x (and dropping for a while hereafter the argument t
of the functions and some of the lower and upper indices of the functions and
the exponents, to simplify the notation where this will not lead to confusion)

∂p∓

∂t
= U ′′α,0 + U ′′α,1 |x|σ1 + U ′′α,2 |x|σ2 + . . . ,

q∓ = ∓
(

σ1 Uα,1 |x|σ1−1 + σ2 Uα,2 |x|σ2−1 + . . .
)
,

−f∓ = ∓a∗
(

σ1 Uα,1 |x|ω1 + σ2 Uα,2 |x|ω2 + . . .
)
,

−∂f
∓

∂x
= a∗

(
ω1 σ1 Uα,1 |x|ω1−1 + ω2 σ2 Uα,2 |x|ω2−1 + . . .

)
,

where ω1 =σ1 + α− 1, ω2 =σ2 + α− 1, etc., and substituting the obtained pairs
of the series for the derivatives into the degenerate wave equation (1.3) yields to
the following pair of the one-sided series identities

U ′′α,0︸︷︷︸
1

+ U ′′α,1 |x|σ1︸ ︷︷ ︸
2

+ U ′′α,2 |x|σ2︸ ︷︷ ︸
3

+ . . .

= a∗

(
σ1 ω1 Uα,1 |x|ω1−1︸ ︷︷ ︸

1

+ σ2 ω2 Uα,2 |x|ω2−1︸ ︷︷ ︸
2

+ σ3 ω3 Uα,3 |x|ω3−1︸ ︷︷ ︸
3

+ . . .
)
,

(3.2)

being used for non-unique determining all unknown functions and exponents.
i) Let terms 1, 2, 3, etc., in the pair of the one-sided series identities (3.2)

(i. e. the couples of summands marked with the same numbers) be of like powers
and cancel respectively each other, then, after applying a little portion of algebra,
we obtain: 1) the explicit expressions for the exponents σ∓α,µ = µθ, µ∈N, where
θ= 2 − α is a derived parameter, leading to the following pairs of the one-sided
series solutions

u∓(t, x;α) =

U∓α,0(t) + U∓α,1(t) |x|θ + U∓α,2(t) |x|2θ + . . . ,

U∓α,0(t) + U∓α,1(t) x θ + U∓α,2(t) x 2θ + . . . ,
(3.3)

valid respectively for α∈ (0, 2)
⋃

(2,+∞) and (0, 2)o
⋃

(2,+∞)o; and 2) the fol-
lowing pairs of the one-sided recurrence relations
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d2U∓α,µ−1(t)

dt2
= µθ [(µ− 1) θ + 1] a∗ U

∓
α,µ(t) , µ ∈ N . (3.4)

ii) Let each term in the pair of the one-sided series identities (3.2) vanish se-
parately, then: 1) the functions U∓α,0(t), U∓α,µ(t), µ∈N, are linear; 2) the exponents
are equal each other: σ∓α,µ=1−α; and 3) the resulting pairs of the one-sided series
solutions reduce to the following pairs of the one-sided binomials

u∓(t, x;α) =

U∓α,0(t) + U∓α,1(t) |x|1−α, α ∈ (0,+∞) ,

U∓α,0(t) + U∓α,1(t) x 1−α, α ∈ (0,+∞)o.
(3.5)

iii) Let terms 1 in the pair of the one-sided series identities (3.2) vanish
separately, then: 1) U∓α,0(t) are linear functions; 2) ω∓α,1 =0, from where σ∓α,1 =1−α.
Applying the procedure from item i) to terms 2, 3, 4, etc., we find: 1) the explicit
expressions for the exponents σ∓α,µ+1 =µθ+ 1−α, µ ∈ N, leading to the following
pairs of the one-sided series solutions


u∓(t, x;α)=U∓α,0(t)+|x|1−α

(
U∓α,1(t) + U∓α,2(t) |x|θ+ U∓α,3(t) |x|2θ+ . . .

)
,

u∓(t, x;α)=U∓α,0(t)+ x 1−α
(
U∓α,1(t) + U∓α,2(t) x θ+ U∓α,3(t) x 2θ+ . . .

)
,

(3.6)

valid respectively for α∈(0,+∞) and α∈(0,+∞)o ; and 2) the following pairs of
the one-sided recurrence relations

d2U∓α,µ(t)

dt2
= µθ [(µ+ 1) θ − 1] a∗ U

∓
α,µ+1(t) , µ ∈ N . (3.7)

B) Let the pair of trial one-sided power series solutions of the degenerate wave
equation, following the Frobenius method, be of the form

u∓(t, x;α) = U∓α (t) + |x|ω
∓
α

(
U∓α,0(t) + U∓α,1(t) |x|σ

∓
α,1 + U∓α,2(t) |x|σ

∓
α,2 + . . .

)
,

where U∓α (t), U∓α,0(t), U∓α,1(t), U∓α,2(t), etc., are unknown coefficient functions of va-
riable t; ω∓α , σ

∓
α,1, σ

∓
α,2, etc., are unknown real exponents. Differentiating the above

pair of the ansatze with respect to t and x

∂p∓

∂t
= U ′′α + |x|ω

(
U ′′α,0 + U ′′α,1 |x|σ1 + U ′′α,2 |x|σ2 + . . .

)
,

q∓ = ∓ |x|ω−1
(
ω Uα,0 + ω1 Uα,1 |x|σ1 + ω2 Uα,2 |x|σ2 + . . .

)
,

−f∓ = ∓a∗|x|ω−1+α
(
ω Uα,0 + ω1 Uα,1 |x|σ1 + ω2 Uα,2 |x|σ2 + . . .

)
,

−∂f
∓

∂x
= a∗|x|ω−2+α

(
ω (ω − 1 + α)Uα,0 + ω1 (ω − 1 + α+ σ1)Uα,1 |x|σ1

+ ω2 (ω − 1 + α+ σ2)Uα,2 |x|σ2 + . . .
)
,
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where ω1 =ω+σ1, ω2 =ω+σ2, etc., and substituting the obtained pairs of the series
for the derivatives into the degenerate wave equation, we obtain the following pair
of the one-sided series identities

U ′′α︸︷︷︸
1

+ |x|ω
(
U ′′α,0︸︷︷︸

2

+ U ′′α,1 |x|σ1︸ ︷︷ ︸
3

+ U ′′α,2 |x|σ2 + . . .
)

= a∗|x|o−1
(
ωoUα,0︸ ︷︷ ︸

1

+ ω1 (o+ σ1)Uα,1 |x|σ1︸ ︷︷ ︸
2

+ ω2 (o+ σ2)Uα,2 |x|σ2︸ ︷︷ ︸
3

+ . . .
)
,
(3.8)

where o=ω − 1 + α . The identities are to be used for determining all unknown
functions and exponents, but in a non-unique way.

i) Let terms 1 in (3.8) be of like powers (accounting for the multiplier a∗|x|o−1),
then we obtain: a) o∓α = 1, ω∓α = θ; and b) the following pair of the recurrence
relations

d2U∓α (t)

dt2
= ω∓α o

∓
α a∗U

∓
α,0(t) = θ a∗U

∓
α,0(t) .

Let now terms 2 in (3.8) be of like powers, then we obtain: a) σ∓α,1 = ω∓α =θ;
and b) the following pair of the recurrence relations

d2U∓α,0(t)

dt2
= ω∓α,1

(
o∓α + σ∓α,1

)
a∗U

∓
α,1(t) = 2θ (θ + 1) a∗U

∓
α,1(t) .

Then, repeating the above procedure for terms 3 in (3.8), we obtain: a) σ∓α,2 =

=ω∓α + σ∓α,1 =2θ, and b) the following pair of the recurrence relations

d2U∓α,1(t)

dt2
= ω∓α,2

(
o∓α + σ∓α,2

)
a∗U

∓
α,2(t) = 3θ (2θ + 1) a∗U

∓
α,2(t) ,

etc. That is, we obtain nothing but the pairs of the one-sided series solutions (3.3)
again.

ii) Let in (3.8): a) the functions U∓α (t) and U∓α,0(t) be linear; b) ω∓α = 1 − α;
and c) σ∓α, µ = 0, µ∈N, then we obtain the pairs of the one-sided binomial solu-
tions (3.5) again.

iii) Let terms 1 in (3.8) vanish separately, then: a) the functions U∓α (t) are
linear; b) o∓α = 0, ω∓α = 1−α. Let now terms 2 in (3.8) be of like powers, then
we obtain: a) σ∓α,1 =θ; b) the following pair of the recurrence relations

d2U∓α,0(t)

dt2
= ω∓α,1

(
o∓α + σ∓α,1

)
a∗U

∓
α,1(t) = θ (2θ − 1) a∗U

∓
α,1(t) .

Treating terms 3 in (3.8) in the same way we obtain: a) σ∓α,2 = 2θ; b) the fol-
lowing pair of the recurrence relations
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d2U∓α,1(t)

dt2
= ω∓α,2

(
o∓α + σ∓α,2

)
a∗U

∓
α,2(t) = 2θ (3θ − 1) a∗U

∓
α,2(t) .

Repeating the above procedure, we eventually obtain: 1) the explicit expressions
for the exponents σ∓α,µ=µθ, leading to the following pairs of the one-sided series
solutions


u∓(t, x;α)=U∓α (t) + |x|1−α

(
U∓α,0(t) + U∓α,1(t) |x|θ+ U∓α,2(t) |x|2θ+ . . .

)
,

u∓(t, x;α)=U∓α (t) + x 1−α
(
U∓α,0(t) + U∓α,1(t) x θ+ U∓α,2(t) x 2θ+ . . .

)
,

(3.9)

valid respectively for α ∈ (0,+∞) and (0,+∞)o; and 2) the following pairs of
the one-sided recurrence relations

d2U∓α,µ−1(t)

dt2
= µθ [(µ+ 1) θ − 1] a∗U

∓
α,µ(t) , µ ∈ N . (3.10)

That is, we obtain nothing but the pairs of the the one-sided series solu-
tions (3.6) again.

C ) When constructing the pairs of the one-sided series solutions (3.3), (3.5)
and (3.9) of the degenerate wave equation, we have not accounted for the following
(1-parameter families of the) pairs of the binomial solutions

u∓(t, x; 2) =

U∓2,0(t) + U∓2,σ(t) |x|σ∓ , σ∓ ∈ R ,

U∓2,0(t) + U∓2,σ(t) x σ∓ , σ∓ ∈ Ro ,
(3.11)

where σ∓∈R, U∓2,0(t) are linear functions, and the functions U∓2,σ(t) satisfy the fol-
lowing ordinary linear homogeneous differential equations

d2U∓2,σ(t)

dt2
− σ (σ + 1) a∗U

∓
2,σ(t) = 0 . (3.12)

Now we are to follow Definition 2.3 and to select the required series solutions
out of those obtained in this Section.

4. Series based analysis of the original problem

In this Section we turn out to possessing or violating property Z by solu-
tions to the initial boundary value problem (1.4) using the series solutions of
the degenerate wave equation. On the one hand, the one-sided series solutions
constituting a pair are independent, on the other hand, possessing property Z
implies integrity of the ‘string’ on the degeneracy segment and, more generally,
fulfilling the conditions of the Definition 2.3, except perhaps the last one.
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To gain the required properties for the series solutions, we follow the three-step
procedure applied on the degeneracy segment: 1) continuous matching the one-
sided series solutions by setting U−α (t) = U+

α (t), U−α,µ(t) = U+
α,µ(t) (provided all

exponents of the one-sided series solutions are non-negative for the resulting con-
tinuous, or two-sided, series solutions to be bounded); 2) verifying continuity of
the flux; 3) verifying differentiability of the flux.

First, we apply the procedure to the pairs of the one-sided series solutions (3.3),
(3.5), and (3.9).

1) Continuous matching the above one-sided series solutions formally yields
to the following bounded and continuous, or two-sided, nontrivial series solutions
(trivial solutions, valid if α∈ [2,+∞), are discussed in the proof of Proposition 4.2)

u1(t, x;α) = Uα,0(t) +
∞∑
µ=1

Uα,µ(t) |x|µθ, α ∈ (0, 2) ,

u2(t, x;α) = Uα,0(t) +
∞∑
µ=1

Uα,µ(t) x µθ, α ∈ (0, 2)o ,

u3(t, x;α) = Uα,0(t) + Uα,1(t) |x|1−α, α ∈ (0, 1) ,

u4(t, x;α) = Uα,0(t) + Uα,1(t) x 1−α, α ∈ (0, 1)o ,

u5(t, x;α) = Uα(t) + |x|1−α
∞∑
µ=0

Uα,µ(t) |x|µθ, α ∈ (0, 1) ,

u6(t, x;α) = Uα(t) + x 1−α
∞∑
µ=0

Uα,µ(t) x µθ, α ∈ (0, 1)o .

(4.1)

2) The respective one-sided values −f∓=aq∓ of the fluxes for the above two-
sided series solutions (for x < 0 and x > 0) are given by the following expressions

−f∓1 (t, x;α) = a∗θ x

∞∑
µ=1

µUα,µ(t) |x|(µ−1)θ,

−f∓2 (t, x;α) = ∓a∗θ x
∞∑
µ=1

µUα,µ(t) x (µ−1)θ,

−f∓3 (t, x;α) = ∓a∗(1− α)Uα,1(t) ,

−f∓4 (t, x;α) = ∓a∗(1− α)Uα,1(t) ,

−f∓5 (t, x;α) = ∓a∗
∞∑
µ=0

(1− α+ µθ)Uα,µ(t) |x|µθ,

−f∓6 (t, x;α) = ∓a∗
∞∑
µ=0

(1− α+ µθ)Uα,µ(t) x µθ.

(4.2)
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To complete the current step of the procedure we calculate the one-sided values
of the fluxes on the degeneracy segment (by substituting in (4.2) zero value instead
of x) and conclude that the series solutions 1 and 2 produce zero one-sided fluxes:
f1,2(t, 0−;α) = 0 = f1,2(t, 0+;α), whereas the series solutions 3 – 6 produce non-
zero one-sided fluxes of opposite signs: f3−6(t, 0−;α)= −f3−6(t, 0+;α). Therefore,
we retain the series solutions 1 and 2 with the continuous fluxes to implement
the next step.

3) It is clear that the flux of the series solution 1 is continuously differenti-
able on the degeneracy segment, whereas the flux of the series solution 2 is not.
Therefore, the only required series solution, we retain for further studying, reads

u(t, x;α) = Uα,0(t) +

∞∑
µ=1

Uα, µ(t) |x|µθ, α ∈ (0, 2) , (4.3)

where the coefficient functions obey the following recurrence relations

U ′′α,µ−1(t) = µθ [(µ− 1) θ + 1] a∗Uα, µ(t) , µ ∈ N . (4.4)

Second, we apply the procedure to the pairs of the binomial solutions (3.11).
1) Implementing continuous matching yields to the following bounded and con-

tinuous solutions (1-parameter families of solutions){
u7(t, x; 2, σ) = U2,0(t) + U2,σ(t) |x|σ, σ ∈ (0,+∞) ,

u8(t, x; 2, σ) = U2,0(t) + U2,σ(t) x σ, σ ∈ (0,+∞)o ,
(4.5)

where the functions U2,0(t) are linear, and the functions U2,σ(t) satisfy the follo-
wing ordinary linear homogeneous differential equations

U ′′2,σ(t)− a∗σ (σ + 1)U2,σ(t) = 0 . (4.6)

2) The one-sided values of the fluxes for the above solutions

−f7(t, x; 2, σ) = ∓a∗σ U2,σ(t) |x|σ+1 ,

−f8(t, x; 2, σ) = a∗σ U2,σ(t) x σ+1 ,

vanish on the degeneracy segment, proving continuity of both fluxes.
3) Continuous differentiability of both fluxes is evident. Completing the pro-

cedure, we conclude that both binomial solutions (4.5) are required.

Proposition 4.1. Possessing property Z is not necessary for the required solution
to the 1-parameter initial boundary value problem (1.4) if α∈(0, 2).

Proof. Applying the required series solution (4.3) exactly on the degeneracy seg-
ment, we find that u(t, 0;α) =Uα,0(t) , where the undetermined function Uα,0(t)
is a solution to the Cauchy problem
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U ′′α,0(t) = θ a∗Uα,1(t) , t ∈ (0, T ] , Uα,0(0) = 0 , U ′α,0(0) = 0 ,

assembled from the recurrence relations (4.4) and the initial conditions of the prob-
lem (1.4). Non-uniqueness of Uα,0(t) stems from the undetermined function Uα,1(t).

Assumption Uα,1(t) ≡ 0 yields to a linear function Uα,0(t), and from the above
initial conditions we conclude that Uα,0(t)≡ 0. But assuming that Uα,1(t) is not
identically zero, we conclude that Uα,0(t) is not identically equal to zero as well,
though the initial conditions it satisfies are all zero. Hence, property Z is not
necessary for the required solution to the initial boundary value problem (1.4).

It should be noted, that continuity of the required solution is essentially used
to prove the proposition. Indeed, let the ‘string’ lose its integrity, then prob-
lem (1.4) immediately splits into two quite independent subproblems referred to
as the left one

∂2u

∂t2
=

∂

∂x

(
a
∂u

∂x

)
, (t, x) ∈ (0, T )×(−l, 0) ,

u(t,−l;α) = 0 , t ∈ [0, T ] ,

u(t, 0;α) = 0 , t ∈ [0, T ] ,

u(0, x;α) = 0 , x ∈ [−l, 0] ,

∂u(0, x;α)

∂t
= 0 , x ∈ [−l, 0] ,

(4.7)

and the right one

∂2u

∂t2
=

∂

∂x

(
a
∂u

∂x

)
, (t, x) ∈ (0, T )×(0,+l) ,

u(t, 0;α) = 0 , t ∈ [0, T ] ,

u(t,+l;α) = h(t) , t ∈ [0, T ] ,

u(0, x;α) = 0 , x ∈ [0,+l] ,

∂u(0, x;α)

∂t
= 0 , x ∈ [0,+l) .

(4.8)

Both problems are evidently solvable, whereas the unique solution to the left
subproblem is trivial and property Z necessarily holds.

Proposition 4.2. Possessing property Z is necessary for the required solutions to
the 1-parameter initial boundary value problem (1.4) if α∈ [2,+∞).

Proof. Let α = 2, then the required series solutions to the problem are those
given by (4.5), where the linear functions U2,0(t)≡0, due to the initial conditions
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of the problem. Therefore, u(t, 0; 2)≡ 0, and the unique solution to the left sub-
problem (4.7) is trivial. Hence, property Z necessarily holds.

Let α ∈ (2,+∞), then the required series solutions (3.3), (3.5), and (3.9) to
the problem are those where all functions Uα,µ(t) preceding the power monomials
are identically equal to zero. Therefore, the series solutions reduce to the leading
terms Uα(t) or Uα,0(t), being zero due to the initial conditions of the problem.
The remaining part of the proof is the same as for α=2.

5. Separation of variables applied to the original equation

In this Section we find the series solutions to the original degenerate wave
equation that can be rewritten as

∂2u(t, x)

∂t2
− a(x;α)

∂2u(t, x)

∂x2
= a′(x;α)

∂u(t, x)

∂x
, (5.1)

in a way different to that used in Section 3.
First, we assume that the independent variables in (5.1) are separable, hence

the trial solution reads

u(t, x;α) = O(t;α)X(x;α) , (5.2)

and substitute the above representation into (5.1) to obtain the following system
of two ordinary differential equations of the second order{

O′′(t;α)∓ λ2O (t;α) = 0 ,

a(x;α)X ′′(x;α) + a′(x;α)X ′(x;α)∓ λ2X(x;α) = 0 ,
(5.3)

where ±λ2 is the unknown parameter of separation of the variables (λ>0).
Second, we: a) substitute the power law (1.2) into the system (5.3)

a∗x
αX ′′(x;α) + a∗αx

α−1X ′(x;α)∓ λ2X(x;α) = 0 ,

assuming initially that x > 0; b) introduce a new dependent variable

X(x;α) = xβw(x;α) , (5.4)

where β is the undetermined exponent; and c) find the relations between the first
and the second derivatives of X and w as follows

X ′ = β xβ−1w + xβw′, X ′′ = β (β − 1)xβ−2w + 2β xβ−1w′ + xβw′′;

d) then, a 4-parameter (α, β, λ,∓) family of ordinary differential equations of
the second order for the required function w reads
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a∗x
αw′′ + a∗x

α−1 (2β + α)w′ + a∗x
α−2β (β − 1 + α)w′ ± λ2w = 0 . (5.5)

Third, we a) introduce a new independent variable: x̄ = χ(x), where func-
tion χ(x) is invertible and differentiable; and b) obtain the relations between
the first and the second derivatives of w(x;α) and w̄(x̄;α) := w(χ−1(x̄);α)

w′ =
dw̄

dx̄

dχ

dx
, w′′ =

d2w̄

dx̄2

(
dχ

dx

)2

+
dw̄

dx̄

d2χ

dx2
.

Imposing constraint a∗x
α

(
dχ

dx

)2

= 1 on the required function χ(x) yields to

dχ

dx
=

1√
a∗x

α
, a∗x

α d2χ

dx2
= −α

2

1

x

√
a∗x

α ,

then assuming that x̄=0 when x=0, we obtain by integration the explicit relation
between x and x̄

x̄ =
2

θ

x√
a∗x

α
= Ωx

θ
2 ⇔

√
a∗x

α

x
=

2

θ

1

x̄
,

where an α-dependent auxiliary quantity is used

Ω =
2

θ

1√
a∗

. (5.6)

Replacing the couple of the variables (x,w) with that of the variables (x̄, w̄)
in (5.5) yields to a new 4-parameter (α, β, λ,∓) family of ordinary differential
equations of the second order

d2w̄

dx̄2
+
(

2β +
α

2

) 2

θ

1

x̄

dw̄

dx̄
+ β (β − 1 + α)

(
2

θ

1

x̄

)2

w̄ ∓ λ2w̄ = 0 .

Setting the value of the first coefficient(
2β +

α

2

) 2

θ
= 1 ,

we find: a) the exponent in the transformation (5.4)

β =
1− α

2
,

b) the value of the second coefficient in the above ordinary differential equation

β (β − 1 + α)

(
2

θ

)2

= −β2

(
2

θ

)2

= −
(

1− α
θ

)2

≡ −%2,

and c) the resulting 3-parameter (%(α), λ,∓) family of ordinary differential equa-
tions of the second order
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d2w̄

dx̄2
+

1

x̄

dw̄

dx̄
− %2

x̄2
w̄ ∓ λ2w̄ = 0 . (5.7)

I ) Assuming that λ>0 and introducing a new couple of the independent and
the dependent variables once again: s = λx̄, W (s;α) := w̄(λ−1s;α), we eventually
obtain a 2-parameter (%(α),∓) family of ordinary differential equations of the se-
cond order

d2W

ds2
+

1

s

dW

ds
−
(
%2

s2
± 1

)
W = 0 .

The choice of the lower sign in the obtained family leads to the 1-parameter (%(α))
Bessel equation

d2W

ds2
+

1

s

dW

ds
−
(
%2

s2
− 1

)
W = 0 , (5.8)

whereas the choice of the upper sign leads to the 1-parameter (β(α)) modified
Bessel equation

d2W

ds2
+

1

s

dW

ds
−
(
%2

s2
+ 1

)
W = 0 . (5.9)

i) A 3-parameter family of solutions of the ordinary differential equation (5.8),
when % /∈ Z (i. e. α∈(0, 1)

⋃
(1, 2)) , is known [9,19] to be

W (s;α) = A1J−%(s) +A2 J+%(s) , (5.10)

where A1,2 are arbitrary constants (parameters), and J∓%(s) are the Bessel func-
tions of the first kind of orders ∓%

J∓%(s) =
∞∑
µ=0

(−1)µ

µ! Γ(µ∓ %+ 1)

(s
2

)2µ∓%
=
(s

2

)∓% ∞∑
µ=0

A∓%, µ

(s
2

)2µ
. (5.11)

whereas in case % ∈ Z (i. e. α=1) a 2-parameter family of solutions of the ordinary
differential equation (5.8) is known [9,19] to be

W (s;α) = B1J0(s) +B2 N0(s) , (5.12)

where B1,2 are arbitrary constants (parameters), J0(s) and N0(s) are respectively
the Bessel and the Neumann functions of the first kind, both of order zero

J0(s) =

∞∑
µ=0

(−1)µ

(µ!)2

(s
2

)2µ
=

∞∑
µ=0

A 0, µ

(s
2

)2µ
, (5.13)

N0(s) =
2

π

(
C + ln

s

2

)
J0(s)− 1

π

−1∑
µ=0

(−µ− 1)!

µ!

(s
2

)2µ
− 2

π

∞∑
µ=0

(−1)µ Φ(µ)

(µ!)2

(s
2

)2µ
,
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where C = 0.5772 . . . is the Euler constant and Φ(µ) =

µ∑
ρ=1

1

ρ
, Φ(0) = 0.

ii) A 3-parameter family of solutions of the ordinary differential equation (5.9),
when % /∈ Z (i. e. α∈(0, 1)

⋃
(1, 2)), is known [9,19] to be

W (s;α) = C1I−%(s) + C2 I+%(s) , (5.14)

where C1,2 are arbitrary constants (parameters), and I∓%(s) are the modified
Bessel functions of the first kind of orders ∓%

I∓%(s) =

∞∑
µ=0

1

µ! Γ(µ∓ %+ 1)

(s
2

)2µ∓%
=
(s

2

)∓% ∞∑
µ=0

B∓%, µ

(s
2

)2µ
, (5.15)

whereas in case % ∈ Z (i. e. α=1) a 2-parameter family of solutions of the ordinary
differential equation (5.9) is known [9,19] to be

W (s;α) = D1I0(s) +D2 K0(s) , (5.16)

where D1,2 are arbitrary constants (parameters), I0(s) and K0(s) are respectively
the modified Bessel function of the first kind and the modified Bessel function of
the second kind, both of order zero

I0(s) =
∞∑
µ=0

1

(µ!)2

(s
2

)2µ
=
∞∑
µ=0

B 0, µ

(s
2

)2µ
, (5.17)

i) Tracing backwards all the transformations of the independent and the de-
pendent variables we find from (5.10), (5.12) the following family of solutions of
the second equation of the system (5.3)

X(x;α) =


x

1−α
2

[
A1 J−%

(
λΩx

θ
2

)
+A2 J+%

(
λΩx

θ
2

)]
, α ∈ (0, 1)

⋃
(1, 2) ,

B1 J0

(
λΩx

θ
2

)
+B2 N0

(
λΩx

θ
2

)
, α = 1 .

Substituting the respective power series instead of J∓%, J0, N0 and retaining
only the bounded terms we obtain

X(x;α) =



α∈(0,2)︷ ︸︸ ︷
A1 Λ−

1−α
θ

∞∑
µ=0

A−%,µ Λ2µ xµθ + x1−αA2 Λ+ 1−α
θ

∞∑
µ=0

A+%,µ Λ2µ xµθ︸ ︷︷ ︸
α∈(0,1)

,

B1

∞∑
µ=0

A 0,µ Λ2µ xµθ, α = 1 ,
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where 2Λ = λΩ. Then, performing the even extension of the above functionX(x;α)
to x<0, leading to the continuous and continuously differentiable flux, similarly
to Section 4, we obtain the following required composite solution of the second
equation of the system (5.3)

X(x;α) =
∞∑
µ=0

A−%,µ Λ2µ |x|µθ, (5.18)

where the coefficients A−%,µ are taken from the series (5.11), if α∈ (0, 1) (%> 0)
and α∈(1, 2) (%<0), and are taken from the series (5.13), if α=1 (%=0).

ii) Tracing backwards all the transformations of the independent and the de-
pendent variables we find from (5.14), (5.16) the following family of solutions of
the second equation of the system (5.3)

X(x;α) =


x

1−α
2

[
C1 I+%

(
λΩx

θ
2

)
+ C2 I−%

(
λΩx

θ
2

)]
, α ∈ (0, 1)

⋃
(1, 2) ,

D1 I0

(
λΩx

θ
2

)
+D2 K0

(
λΩx

θ
2

)
, α = 1 .

Substituting the respective power series instead of I∓%, I0, K0 and retaining
only the bounded terms we obtain

X(x;α) =



α∈(0,2)︷ ︸︸ ︷
C1 Λ−

1−α
θ

∞∑
µ=0

B−%,µ Λ2µ xµθ + x1−αC2 Λ+ 1−α
θ

∞∑
µ=0

B+%,µ Λ2µ xµθ︸ ︷︷ ︸
α∈(0,1)

,

D1

∞∑
µ=0

B 0,µ Λ2µ xµθ, α = 1 ,

Performing the even extension of the above function X(x;α) to x < 0 and
doing as in case of the solution (5.10), (5.12), we obtain the following required
composite solution of the second equation of the system (5.3)

X(x;α) =

∞∑
µ=0

B−%,µ Λ2µ|x|µθ, (5.19)

where the coefficients B−%,µ are taken from the series (5.15), if α∈ (0, 1) (%> 0)
and α∈(1, 2) (%<0), and are taken from the series (5.17), if α=1 (%=0).

II ) Assuming that λ= 0, we obtain directly from (5.7) a 1-parameter (%(α))
family of ordinary differential equations of the second order

d2w̄

dx̄2
+

1

x̄

dw̄

dx̄
− %2

x̄2
w̄ = 0 . (5.20)
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A 3-parameter family of solutions of equation (5.20) reads

w̄ (x̄;α) = E1 x̄
−% + E2 x̄

+%,

whereE1,2 are arbitrary constants. Applying the transformation leading from (x̄, w̄)
to (x,w) backwards we obtain

w (x;α) = E1

(
Ωx

θ
2

)−%
+ E2

(
Ωx

θ
2

)+%
= . . . = Ē1 x

− 1−α
2 + Ē2 x

+ 1−α
2 .

Eventually, applying the transformation (5.4) yields to the solution of the second
equation of the system (5.3)

X(x;α) = x+ 1−α
2

(
Ē1 x

− 1−α
2 + Ē2 x

+ 1−α
2

)
= Ē1 + Ē2 x

1−α.

The evident extensions of the above function to x < 0

X(x;α) =

{
Ē1 + Ē2 |x|1−α,

Ē1 + Ē2 x 1−α,
(5.21)

lead, as it is known from Section 4, to the discontinuous flux f , therefore no func-
tion (5.21) must be accounted for in the representation (5.2).

Now we turn out to the first ordinary differential equation of the system (5.3);
its 2-parameter ((λ,∓), λ > 0) family of solutions is known to be

O(t;α) =

{
F1 exp (−λt) + F2 exp (+λt) ,

G1 cos (+λt) + G2 sin (+λt) ,
(5.22)

where F1,2, G1,2 are arbitrary constants.
This completes finding solutions of the original wave equation using separation

of variables, but we especially note that the spatial parts X(x;α) (5.18), (5.19) of
the solutions (5.2) obtained in this Section includes the same terms |x|µθ, µ ∈ Z+,
as those present in the required series solution (4.3).

6. Reformulation of the original problem

The power law (1.2) in the coefficient function a(x;α) produces the degene-
racy of the wave equation (1.1). We implement stretching of the spatial inde-
pendent variable x leading to ‘inflation’ of the degeneracy. For this we introduce
a transformation of the independent variables (t, x) → (τ, ξ) using the following
system of the first order differential equations

dτ

dt
= 1 ,

dξ

dx
=

1√
a(x;α)

,
(6.1)
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supplemented with the evident boundary conditions: τ = 0 when t = 0 and ξ = 0
when x = 0. The only non-trivial solution of the Cauchy problem gives the desired
1-parameter transformation of the independent variables{

τ = ϑ(t) ,

ξ = ψ(x;α) ,
(6.2)

where ϑ(t) = t,

ψ(x;α) = sign (x)

Ω |x|
θ
2 , 0 6 |x| 6 c ,

ξc + (|x| − c) , c < |x| 6 1 ,
(6.3)

and ξc = ψ(c;α). The function (6.3) is monotonic differentiable (with the only
exception for the point x=0, Fig. 6.1), hence the transformation (6.4) is uniquely
invertible {

t = ϑ̄(τ) ,

x = φ(ξ;α) ,
(6.4)

where ϑ̄(τ) = ϑ−1(τ) = τ ,

φ(ξ;α) = sign (ξ)


(
Ω−1|ξ|

)2
θ , 0 6 |ξ| 6 ξc ,

c+ (|ξ| − ξc) , ξc < |ξ| 6 ξl ,
(6.5)

ξl = ψ(1;α), and Ω is given by (5.6).
The transformation formulas (6.2), (6.4) are equivalent to the following opera-

tor identities

∂2

∂t2
=

∂2

∂τ2
, ∂

∂x
=

(
1√
a

)
x→ξ

∂

∂ξ
, ∂2

∂x2
=

(
1

a

)
x→ξ

∂2

∂ξ2
− 1

2

(
a′

a
√
a

)
x→ξ

∂

∂ξ
,

yielding to the transformed wave equation

∂2υ(τ, ξ;α)

∂τ2
− ∂2υ(τ, ξ;α)

∂ξ2
= g(ξ;α)

∂υ(τ, ξ;α)

∂ξ
, (6.6)

where υ(τ, ξ;α) := u (ϑ(τ), φ(ξ;α);α), g(ξ;α) :=
(√

a(x;α)
)′
x→ξ

.

There are two ways to rewrite the transformed wave equation purely in the va-
riables (τ, ξ). The first one is straightforward and implies two steps. The first step
needs obtaining an explicit dependence of the coefficient function g(ξ;α) in (6.6)
on the variable x
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Fig. 6.1. The function ψ(x;α) (6.3) stretches the variable x near the degeneracy seg-
ment and ‘inflates’ the degeneracy of the original wave equation (1.1), (5.1): bold solid
curves 1 – 7 are drawn for α= 0.25 (0.25) 1.75 respectively (c= 0.1, x> 0); the thin
dashed line shows the right boundary x=c of the segment [−c,+c] in which the power
law a(x;α)=a∗|x|α (1.2) of the degeneracy holds

(√
a(x;α)

)′
≡ 1

2

a′(x;α)√
a(x;α)

=sign (x)


1

2

a∗α |x|α−1√
a∗ |x|

α
2

=
α

θ

(
Ω |x|

θ
2

)−1
, 0 < |x|6c ,

0 , c < |x|61 ,

whereas the second step needs replacing the variable x with formula (6.5) and
yields to the desired composite expression
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g(ξ;α) ≡
(√

a(x;α)
)′
x→ξ

=


α

θ

1

ξ
, 0 < |ξ| 6 ξc ,

0 , ξc < |ξ| 6 ξl ,
(6.7)

where the hyperbolic and identically equaled to zero branches are not continuously
matched as shown in Fig. 6.2.

The second way implies two steps to be done as well. The first step needs
implementing the transformation of the variable x into the variable ξ

1

2

(
a′(x;α)√
a(x;α)

)
x→ξ

=
1

2

1√
a(φ(ξ;α);α)

da(φ(ξ;α);α)

dξ

(
dξ

dx

)
x→ξ︸ ︷︷ ︸

1√
a(φ(ξ;α);α)

=
1

2

b′(ξ;α)

b(ξ;α)
,

where b(ξ;α) is the coefficient function of the original wave equation expressed
purely through the variable ξ

b(ξ;α) ≡ a(φ(ξ;α);α) =

a∗
(
Ω−1|ξ|

) 2α
θ , 0 < |ξ| 6 ξc ,

1 , ξc < |ξ| 6 ξl ,
(6.8)

whereas the second step involves ‘deciphering’ the coefficient function of the only
first derivative of the transformed wave equation in terms of the variable ξ and
yields exactly to the previously obtained composite expression

1

2

b′(ξ;α)

b(ξ;α)
= g(ξ;α)

(6.7)
≡
(√

a(x;α)
)′
x→ξ

.

Finally, we obtain the following transformed formulation of the original initial
boundary value problem (1.4)



∂2υ(ξ;α)

∂τ2
=
∂2υ(ξ;α)

∂ξ2
+ g(ξ;α)

∂υ(ξ;α)

∂ξ
, (τ, ξ)∈(0, T ]×(−ξl,+ξl),

υ(τ,−ξl;α) = 0 , τ ∈ [0, T ] ,

υ(τ,+ξl;α) = h(τ) , τ ∈ [0, T ] ,

υ(0, ξ;α) = 0 , ξ∈ [−ξl,+ξl] ,

∂υ(0, ξ;α)

∂τ
= 0 , ξ∈ [−ξl,+ξl) ,

(6.9)

referred to as the transformed initial boundary value problem.
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Fig. 6.2. The piece-wise continuous and differentiable coefficient function g(ξ;α) (6.7)
of the transformed wave equation: only hyperbolic branches are drawn with bold solid
curves 1 – 7 for α = 0.25 (0.25) 1.75 respectively; the bold dashed line joins the right
ends of the hyperbolic branches

7. Series solutions of the transformed wave equation

There are two ways, to find one-sided series solution of the transformed wave
equation (6.6). The first one uses the transformation of the independent vari-
ables (6.2), (6.4), applied to the pairs of the one-sided series solutions (3.3),
(3.5), and (3.9) of the original wave equation (1.1), whereas the second one uses
the procedures of Sections 3, but as applied to the transformed wave equation.

I ) Implementing the first way is straightforward to replace the independent va-
riables (t, x)→(τ, ξ), where t= ϑ̄(τ)≡τ , whereas |x|, x are respectively replaced as

|x| =
(
Ω−1|ξ|

)2
θ , α ∈ (0, 2) ,

x =
(
Ω−1 ξ

)2
θ , α ∈ (0, 2)o .

(7.1)

Initially, consider case A) of Section 3.
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i) Let both pairs of the one-sided series solutions (3.3) be given, then using
the independent variables substitution yields to the only pair

υ∓(τ, ξ;α) ≡ u∓
(
ϑ̄(τ), φ(ξ;α);α

)
=
∞∑
µ=0

V ∓α,µ(τ) ξ2µ, (7.2)

where

V ∓α,µ(τ) =

(
θ

2

)2µ

aµ∗ U
∓
α,µ

(
ϑ̄(τ)

)
, µ ∈ Z+ , (7.3)

and the following pair of the one-sided recurrence relations

d2V ∓α,µ−1(τ)

dτ2
= 4µ

(µ− 1) θ + 1

θ
V ∓α,µ(τ) , µ ∈ N . (7.4)

ii) Let both pairs of the one-sided binomial solutions (3.5) be given, then using
the independent variables substitution yields to the following two pairs

υ∓(τ, ξ;α) =


V ∓α,0(τ) + V ∓α,1(τ) |ξ|(1−α)

2
θ , α ∈ (0,+2) ,

V ∓α,0(τ) + V ∓α,1(τ) ξ
(1−α)

2
θ , α ∈ (0,+2)o,

(7.5)

where functions V ∓α,0(τ) and V ∓α,1(τ) are linear and

V ∓α,0(τ) = U∓α,0
(
ϑ̄(τ)

)
, V ∓α,1(τ) =

[(
θ

2

)2

a∗

]1−α
θ
U∓α,1

(
ϑ̄(τ)

)
. (7.6)

iii) Let both pairs of the one-sided series solutions (3.6) be given, then using
the independent variables substitution yields to the following two pairs

υ∓(τ, ξ;α) =


V ∓α,0(τ) + |ξ|(1−α)

2
θ

∞∑
µ=1

V ∓α,µ(τ) ξ2(µ−1), α ∈ (0,+2) ,

V ∓α,0(τ) + ξ
(1−α)

2
θ

∞∑
µ=1

V ∓α,µ(τ) ξ2(µ−1), α ∈ (0,+2)o,

(7.7)

where

V ∓α,µ(τ) =

[(
θ

2

)2

a∗

]θµ−1
θ
U∓α,µ

(
ϑ̄(τ)

)
, µ ∈ N , (7.8)

and the following pair of the recurrence relations

d2V ∓α,µ(τ)

dτ2
= 4µ

µθ − 1

θ
V ∓α,µ+1(τ) , µ ∈ N . (7.9)
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Considering three items of case B) of Section 3 is performed exactly in the same
way, therefore we omit case B) and complete implementing the first way.

II ) Now we turn out to implementing the second way.
A) Let trial one-sided series solutions of the transformed wave equation (6.6)

be of the form

υ∓(τ, ξ;α) = V ∓α,0(τ) + V ∓α,1(τ) |ξ|σ
∓
α,1 + V ∓α,2(τ) |ξ|σ

∓
α,2 + . . .

where all undetermined functions and quantities have the same meaning, as in Sec-
tion 3, then

∂2υ∓

∂τ2
= V ′′α,0 + V ′′α,1 |ξ|σ1 + V ′′α,2 |ξ|σ2 + . . . ,

1

ξ

∂υ∓

∂ξ
= ∓

(
σ1 Vα,1 |ξ|σ1−2 + σ2 Vα,2 |ξ|σ2−2 + . . .

)
,

∂2υ∓

∂ξ2
= ω1 σ1 Vα,1 |ξ|σ1−2 + ω2 σ2 Vα,2 |ξ|σ2−2 + . . . ,

and substituting the above series instead of the respective terms of the transfor-
med wave equation yields to the following pair of the one-sided series identities

V ′′α,0︸︷︷︸
1

+V ′′α,1 |ξ|σ1︸ ︷︷ ︸
2

+V ′′α,2 |ξ|σ2+. . . = σ1 o1 Vα,1 |ξ|σ1−2︸ ︷︷ ︸
1

+σ2 o2 Vα,2 |ξ|σ2−2︸ ︷︷ ︸
2

+. . . , (7.10)

where ω1 =σ1−1, ω2 =σ2−1, etc., o1 =ω1+θ−1α, o2 =σ2+θ−1α, etc.
i) Assuming that in (7.10) the terms with the same numbers have the same

powers in the variable |ξ|, we obtain the only pair of one-sided series solutions (7.2)
and the pair of the one-sided recurrence relations (7.4) again.

ii) Assuming that in (7.10) the terms must vanish separately, we obtain two
pairs of the binomial solutions (7.5) again.

iii) Assuming that in (7.10) both terms 1 vanish separately, we obtain two
pairs of the one-sided series solutions (7.7) and the pair of the one-sided recurrence
relations (3.7) again.

B) Let trial one-sided series solutions of the transformed wave equation (6.6)
be of the form

υ∓(τ, ξ;α) = V ∓α (τ) + |ξ|ω
∓
α

(
V ∓α,0(τ) + V ∓α,1(τ) |ξ|σ

∓
α,1 + V ∓α,2(τ) |ξ|σ

∓
α,2 + . . .

)
,

then
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∂2υ∓

∂τ2
= V ′′α + |ξ|ω

(
V ′′α,0 + V ′′α,1 |ξ|σ1 + V ′′α,2 |ξ|σ2 + . . .

)
,

1

ξ

∂υ∓

∂ξ
= ∓|ξ|ω−2

(
ω Vα,0 + ω1 Vα,1 |ξ|σ1 + ω2 Vα,2 |ξ|σ2 + . . .

)
,

∂2υ∓

∂ξ2
= |ξ|ω−2

(
ω (ω − 1)Vα,0 + ω1 (ω − 1 + σ1)Vα,1 |ξ|σ1

+ ω2 (ω − 1 + σ2)Vα,2 |ξ|σ2 + . . .
)
,

and substituting the above series instead of the respective terms of the transfor-
med wave equation we obtain the following pair of the one-sided series identities

V ′′α︸︷︷︸
1

+ |ξ|ω
(
V ′′α,0︸︷︷︸

2

+ V ′′α,1 |ξ|σ1︸ ︷︷ ︸
3

+ V ′′α,2 |ξ|σ2 + . . .
)

= |ξ|ω−2
(
ω oVα,0︸ ︷︷ ︸

1

+ ω1 (o+ σ1)Vα,1 |ξ|σ1︸ ︷︷ ︸
2

+ ω2 (o+ σ2)Vα,2 |ξ|σ2︸ ︷︷ ︸
3

+ . . .
)
,

(7.11)

where o=ω − 1 + θ−1α, ω1 =ω + σ1, ω2 =ω + σ2, etc.
i) Let the terms in (7.11) with the same numbers be of the same powers, then

we obtain: 1) the explicit expressions for the exponents: ω∓α =2, σ∓α,µ=2µ, leading
to the only pair of the one-sided series solutions

υ∓(τ, ξ;α) = V ∓α (τ) + V ∓α,0(τ) ξ2 + V ∓α,1(τ) ξ4 + . . . ;

and 2) the pair of the one-sided recurrence relations

d2V ∓α (τ)

dτ2
=

4

θ
V ∓α,0(τ) ,

d2V ∓α,µ−1(τ)

dτ2
= 4(µ+ 1)

µθ + 1

θ
V ∓α,µ(τ) , µ ∈ N .

It is evident, that we obtain nothing but the series solution (7.2), (7.4) again.
ii) Let the functions V ∓α (τ), V ∓α,0(τ) be linear, then θ ω∓α =2 (1−α), σ∓α, µ=0,

µ ∈ N, and we obtain the pairs of the binomial solutions (7.5) again.
iii) Let terms 1 in (7.11) vanish separately, and the other terms with the same

numbers be of the same powers, then we obtain: 1) that V ∓α (τ) are linear func-
tions; 2) the explicit expressions for the exponents: θ ω∓α = 2 (1−α) , σ∓α,µ = 2µ,
leading to the following pairs of the one-sided series solutions

υ∓(τ, ξ;α) =V ∓α (τ) + |ξ|(1−α)
2
θ

(
V ∓α,0(τ) + V ∓α,1(τ) ξ2 + V ∓α,2(τ) ξ4+. . .

)
,

υ∓(τ, ξ;α) =V ∓α (τ) + ξ (1−α)
2
θ

(
V ∓α,0(τ) + V ∓α,1(τ) ξ2 + V ∓α,2(τ) ξ4+. . .

)
,

(7.12)
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valid respectively if α ∈ (0, 2) and if α∈ (0, 2)o; 3) the following pair of the one-
sided recurrence relations

d2V ∓α,µ−1(τ)

dτ2
= 4µ

(µ+ 1) θ − 1

θ
V ∓α,µ(τ) , µ ∈ N . (7.13)

This completes implementing the second way of obtaining one-sided series
solutions for the transformed wave equation.

Both ways have been proved to give identical one-sided series solutions.

8. Series based analysis of the transformed problem

There are two ways of finding the required continuous, or two-sided, series
solutions of the transformed wave equation (6.6). The first way uses the transfor-
mation of the independent variables (6.2), (6.4), applied to the only required two-
sided series solution (4.3) of the original wave equation (1.1), whereas the second
one uses the procedure of continuous matching of one-sided series solutions, but
as applied to the transformed wave equation, followed by introducing the proper
definition of the required solution and keeping in mind property Z.

I ) Implementing the first way immediately gives the following two-sided series
solution

υ(τ, ξ;α) = Vα,0(τ) + Vα,1(τ) ξ2 + Vα,2(τ) ξ4 + . . . =
∞∑
µ=0

Vα,µ(τ) ξ2µ, (8.1)

where the coefficient functions obey the following recurrence relations

V ′′α,µ−1(τ) = 4µ
(µ− 1) θ + 1

θ
Vα,µ(τ) , µ ∈ N . (8.2)

II ) Implementing the second way follows the three-step procedure of Section 4.
1) Implementing the continuous matching of the one-sided series solutions

obtained in Section 7 gives the following two-sided bounded series solutions

υ1(τ, ξ;α) =

∞∑
µ=0

Vα,µ(τ) ξ2µ, α ∈ (0, 2) ,

υ3(τ, ξ;α) = Vα,0(τ) + Vα,1(τ) |ξ|(1−α)
2
θ , α ∈ (0, 1) ,

υ4(τ, ξ;α) = Vα,0(τ) + Vα,1(τ) ξ (1−α)
2
θ , α ∈ (0, 1)o ,

υ5(τ, ξ;α) = Vα(τ) + |ξ|(1−α)
2
θ

∞∑
µ=0

Vα,µ(τ) ξ2µ, α ∈ (0, 1) ,

υ6(τ, ξ;α) = Vα(τ) + ξ (1−α)
2
θ

∞∑
µ=0

Vα,µ(τ) ξ2µ, α ∈ (0, 1)o .

(8.3)
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2) Implementing continuity of the flux needs, first of all, the definition of
the flux, therefore we rewrite the transformed wave equation in a flux form

∂π

∂τ
+
∂ϕ

∂ξ
= ρ , (8.4)

usually referred to as the balance law, where π(τ, ξ;α) :=
∂υ

∂τ
,


ϕ(τ, ξ;α) := −∂υ

∂ξ
− α

θ

υ

ξ
, ρ(τ, ξ;α) :=

α

θ

υ

ξ2
, 0 6 |ξ| 6 ξc ,

ϕ(τ, ξ;α) := −∂υ
∂ξ

, ρ(τ, ξ;α) := 0 , ξc < |ξ| 6 1 ,

(8.5)

ϕ being the desired flux and ρ being the right side, or the source term.
Calculation of the flux and the right side of the balance law (8.4) for the series

solutions 1, 3 – 6 shows that both are unbounded on the degeneracy segment, due
to the leading terms Vα,0(τ) or Vα(τ), therefore we rewrite the balance law (8.4)
by introducing regularization

∂π

∂τ
+
∂ϕ̊

∂ξ
= ρ̊ , (8.6)

where

ϕ̊(τ, ξ;α) := −∂υ
∂ξ
− α

θ

υ̊

ξ
, ρ̊(τ, ξ;α) :=

α

θ

υ̊

ξ2
, 0 6 |ξ| 6 ξc , (8.7)

and υ̊(τ, ξ;α) := υ(τ, ξ;α)− υ(τ, 0;α).
The above regularization yields to the following fluxes calculated on both sides

of the degeneracy segment

−ϕ̊∓1 (τ, ξ;α) = ξ

∞∑
µ=1

(α
θ

+ 2µ
)
Vα,µ(τ) ξ2µ−2,

−ϕ̊∓3 (τ, ξ;α) = ∓Vα,1(τ) |ξ|−
α
θ ,

−ϕ̊∓4 (τ, ξ;α) = Vα,1(τ) ξ −
α
θ ,

−ϕ̊∓5 (τ, ξ;α) = ∓|ξ|−
α
θ

∞∑
µ=0

(1 + 2µ)Vα,µ(τ) ξ2µ,

−ϕ̊∓6 (τ, ξ;α) = ξ −
α
θ

∞∑
µ=0

(1 + 2µ)Vα,µ(τ) ξ2µ,

(8.8)

and we immediately find the flux ϕ̊1(τ, ξ;α) for the series solution υ̊1(τ, ξ;α) to
be the only continuous and even continuously differentiable on the degeneracy
segment, whereas all other fluxes turn out to be unbounded.
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We gather below the series solution υ1(τ, ξ;α) and the derived source term
and the flux

υ(τ, ξ;α) =
∞∑
µ=0

Vα, µ(τ) ξ2µ,

ρ̊(τ, ξ;α) =
∞∑
µ=1

Vα, µ(τ) ξ2µ−2,

−ϕ̊(τ, ξ;α) =

∞∑
µ=1

(α
θ

+ 2µ
)
Vα, µ(τ) ξ2µ−1,

(8.9)

to introduce the following

Definition 8.1. A function υ(τ, ξ;α) is called the solution with the continuously
differentiable flux (or shortly, the required solution) to the initial boundary value
problem (6.9) if inside the space-time rectangle [0, T ] × [−ξl,+ξl] it: 1) is conti-
nuous and twice continuously differentiable in the variables τ and ξ; 2) satisfies
the degenerate wave equation; and 3) satisfies the initial and boundary conditions
of the problem.

Hence, the only required series solution of the transformed wave equation
(introduced by Definition 8.1, in which the last item is removed) out of those
obtained in Section 7 and presented in (8.3) is that given by (8.9). Note, that
continuity of: 1) the right side of the transformed wave equation and 2) the flux ϕ̊
and the source term ρ̊ of the regularized balance law (8.6) are evident implications
of Definition 8.1.

Proposition 8.1. Possessing property Z is not necessary for the required solution
to the 1-parameter initial boundary value problem (6.9) if α∈(0, 2).

Proof. Essential part of the proof is a repetition of that for Proposition 4.1 at
p. 18.

9. Separation of variables applied to the transformed equation

Assume that the trial solution of the transformed wave equation is of the form

υ(τ, ξ;α) = Θ (τ ;α) Ξ (ξ;α) , (9.1)

where functions Θ (τ ;α) and Ξ (ξ;α) are to be determined. Then, substituting
the ansatz (9.1) into the transformed wave equation (6.6), (6.7) (0 < |ξ| 6 ξc)

∂2υ

∂τ2
− ∂2υ

∂ξ2
=
α

θ

1

ξ

∂υ

∂ξ
,

we find the above equation rewritten as
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Θ′′(τ ;α)

Θ (τ ;α)
=

1

Ξ (τ ;α)

(
Ξ′′(τ ;α) +

α

θ

1

ξ
Ξ ′(τ ;α)

)
= ±λ2 = const ,

where ±λ2 is the unknown parameter of separation of the independent variables
(λ>0), whereas the functions Θ (τ ;α), Ξ (ξ;α) satisfy the following system of two
ordinary differential equations of the second order

Θ′′(τ ;α)∓ λ2 Θ (τ ;α) = 0 ,

Ξ′′(ξ;α) +
α

θ

1

ξ
Ξ ′(ξ;α)∓ λ2 Ξ (ξ;α) = 0 .

(9.2)

We start our solving the system (9.2) from the second equation: 1) assume
that ξ>0; 2) introduce a new dependent variable w(ξ;α) using a power substitu-
tion (the dependent variable transformation)

Ξ (ξ;α) = ξβw(ξ;α) , (9.3)

where the exponent β is to be determined by imposing a proper constraint; and
then 3) determine uniquely the ordinary differential equation the function w (ξ;α)
satisfies. For this, we apply the following three-step procedure.

First, differentiating the substitution (9.3) twice yields to the relations between
the first and the second derivatives of the functions Ξ (ξ;α) and w(ξ;α)

Ξ′ = β ξβ−1w + xβw′, Ξ′′ = β (β − 1) ξβ−2w + 2β ξβ−1w′ + ξβw′′.

Second, substituting the obtained relations into the second differential equa-
tion of the system (9.2) gives a 4-parameter (α, β, λ,∓) family of ordinary diffe-
rential equations of the second order

ξβw′′ + ξβ−1
(

2β +
α

θ

)
w′ + ξβ−2β

(
β − 1 +

α

θ

)
w ∓ λ2w = 0 .

Third, imposing the following constraint on the exponent β

2β +
α

θ
= 1 ⇒ β(α) =

1− α
θ

leads to a 3-parameter (β(α), λ,∓) family of ordinary differential equations of
the second order

w′′ +
1

ξ
w′ −

(
β2

ξ2
± λ2

)
w = 0 . (9.4)

I ) Assuming that λ 6= 0, we change both dependent and independent variables:
s=λξ,W (s;α) := w

(
λ−1s;α

)
, and obtain a 2-parameter (β(α),∓) family of ordi-

nary differential equations of the second order
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d2W

ds2
+

1

s

dW

ds
−
(
β2

s2
± 1

)
W = 0 .

The choice of the lower sign in the obtained family leads to the 1-parameter (β(α))
Bessel equation

d2W

ds2
+

1

s

dW

ds
−
(
β2

s2
− 1

)
W = 0 , (9.5)

whereas the choice of the upper sign leads to the 1-parameter (β(α)) modified
Bessel equation

d2W

ds2
+

1

s

dW

ds
−
(
β2

s2
+ 1

)
W = 0 . (9.6)

i) A 3-parameter family of solutions of (9.5), β /∈Z (i. e. α∈ (0, 1)
⋃

(1, 2)) ,
is known [9,19] to be

W (s;α) = A1 J−β(s) +A2 J+β(s) , (9.7)

where A1,2 are arbitrary constants, and J∓β(s) are the Bessel functions of the first
kind of orders ∓β (see Section 5), whereas a 2-parameter family of solutions
of the equation (9.5), β∈Z , is known [9,19] to be

W (s;α) = B1 J0(s) +B2 N0(s) , (9.8)

where B1,2 are arbitrary constants, and J0(s) and N0(s) are respectively the Bessel
and the Neumann functions of the first kind of order zero (see Section 5).

ii) A 3-parameter family of solutions of the equation (9.6), β /∈Z , is known
[9,19] to be

W (s;α) = C1 I−β(s) + C2 I+β(s) , (9.9)

where C1,2 are arbitrary constants, and I∓β(s) are the modified Bessel functions
of the first kind of orders ∓β (see Section 5), whereas a 2-parameter family of so-
lutions of the equation (9.6), β∈Z , is known [9,19] to be

W (s;α) = D1 I0(s) +D2 K0(s) , (9.10)

where D1,2 are arbitrary constants, and I0(s) and K0(s) are respectively the modi-
fied Bessel function of the first kind and the modified Bessel function of the second
kind of order zero (see Section 5).

i) Similarly to Section 5, we find from (9.7), (9.8) the following families of so-
lutions of the second equation of the system (9.2)

Ξ(ξ;α) =


ξ

1−α
θ

[
A1 J−β (λξ) +A2 J+β (λξ)

]
, α ∈ (0, 1)

⋃
(1, 2) ,

B1 J0 (λξ) +B2 N0 (λξ) , α = 1 ,
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and after retaining only the bounded terms the families read

Ξ(ξ;α) =



α∈(0,2)︷ ︸︸ ︷
A1 λ

−1−α
θ

∞∑
µ=0

A−β,µ λ
2µ ξ2µ + ξ

1−α
θ A2 λ

+
1−α
θ

∞∑
µ=0

A+β,µ λ
2µ ξ2µ

︸ ︷︷ ︸
α∈(0,1)

,

B1

∞∑
µ=0

A 0,µ λ
2µ ξ2µ, α = 1 ,

The straightforward extension of the above bounded families to ξ < 0 and
retaining only those terms leading to the continuous and continuously diffe-
rentiable flux gives the required composite solution of the second equation of
the system (9.2)

Ξ(ξ;α) =

∞∑
µ=0

A−β,µ λ
2µ ξ2µ, α ∈ (0, 2), (9.11)

where the coefficients A−β,µ are taken from the series (5.11), if α∈ (0, 1) (β > 0)
and α∈(1, 2) (β<0), and are taken from the series (5.13), if α=1 (β=0).

ii) Again, doing similarly to Section 5, we find from (9.9), (9.10) the following
families of solutions of the second equation of the system (9.2)

Ξ(ξ;α) =


ξ

1−α
θ

[
C1 I−β (λξ) + C2 I+β (λξ)

]
, α ∈ (0, 1)

⋃
(1, 2) ,

D1 I0 (λξ) +D2 K0 (λξ) , α = 1 .

Retaining only the bounded terms in the families yields to

Ξ(ξ;α) =



α∈(0,2)︷ ︸︸ ︷
C1 λ

−1−α
θ

∞∑
µ=0

B−β,µ λ
2µ ξ2µ + ξ

1−α
θ C2 λ

+
1−α
θ

∞∑
µ=0

B+β,µ λ
2µ ξ2µ

︸ ︷︷ ︸
α∈(0,1)

,

D1

∞∑
µ=0

B 0,µ λ
2µ ξ2µ, α = 1 .

Eventually, doing exactly as in item i), we obtain the following required
composite solution of the second equation of the system (9.2)

Ξ(ξ;α) =
∞∑
µ=0

B−β,µ λ
2µξ2µ, (9.12)
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where the coefficients B−%,µ are taken from the series (5.15), if α∈ (0, 1) (%> 0)
and α∈(1, 2) (%<0), and are taken from the series (5.17), if α=1 (%=0).

II ) Assuming that λ= 0, we obtain directly from (9.4) a 1-parameter (β(α))
ordinary differential equation of the second order

d2w0

dξ2
+

1

ξ

dw0

dξ
− β2w0

ξ2
= 0 . (9.13)

A 3-parameter family of solutions of the equation (9.13) is as follows

w0 (ξ;α) = E1 ξ
−β + E2 ξ

+β,

where E1,2 are arbitrary constants, and after applying the inverse transforma-
tion (9.3) we obtain the family of solutions of the second equation of the system (9.2)

Ξ (ξ;α) = ξβ
(
E1 ξ

−β + E2 ξ
+β
)

= E1 + E2 ξ
(1−α)

2
θ ,

extendable to ξ < 0 as follows

Ξ (ξ;α) =


E1 + E2 |ξ|

(1−α)
2
θ , α ∈ (0, 2),

E1 + E2 ξ
(1−α)

2
θ , α ∈ (0, 2)o.

(9.14)

Both families (9.14) leads, as it is known from Section 8, to the discontinuous
flux ϕ̊ (8.7), therefore no family (9.14) must be accounted for in the ansatz (9.1).

Now we turn to the first ordinary differential equation of the system (9.2); its
3-parameter families of solutions are known to be

Θ(τ ;α) =

{
F1 exp (−λτ) + F2 exp (+λτ) ,

G1 cos (+λτ) + G2 sin (+λτ) ,
(9.15)

where F1,2, G1,2 are arbitrary constants.
Combining the families (9.15) for Θ(τ ;α) and the families (9.11) and (9.12)

for Ξ (ξ;α) in the ansatz (9.1), we obtain the required solutions of the transformed
wave equation (6.6), (6.7). The spatial parts Ξ (ξ;α) (9.11), (9.12) of the obtained
solutions include the same terms ξ2µ, µ∈Z+, as those present in the only required
series solution (8.9).

10. Functional properties of the series solutions

In this Section we turn out to our preliminary functional estimations concerning
solutions of the degenerate wave equation made in Section 2.

Proposition 10.1. All bounded series solutions u(t, x;α) (4.1) of the original
degenerate wave equation (1.1) are elements of the functional space H1

a(−c,+c)
for all t∈ [0, T ].
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Proof. The underlying idea of the proof is straightforwardly based on properties
of convergent power series [1, 20]. On the one hand, 1) usual convergence implies
absolute convergence, then 2) absolute convergence implies uniform convergence,
and eventually 3) uniform convergence implies term-by-term differentiation and
integration (term-by-term differentiation was, by the way, implied when finding
the one-sided series solutions in Section 3 and then matching the obtained one-
sided series solutions continuously in Section 4). On the other hand, uniform
convergence of two (or more) power series implies their term-by-term product,
and the resulting power series is also uniformly convergent. These properties and
the definition of the norm of the functional space H1

a(−c,+c) are quite sufficient
to immediately complete the proof, nevertheless we perform careful calculations of
the norm for some of the series solutions (4.1). The only thing we need is to assume
that all series solutions are convergent in the c-band. Accounting for the exact
solutions of the degenerate wave equation found in Section 9 using separation of
the variables our assumption seems even more than reasonable.

First, we take the series solution u1(t, x;α) (4.1), valid if α ∈ (0, 2) and
uniformly convergent for all t ∈ [0, T ], then we have

u2
1 =

( ∞∑
µ=0

Uα,µ(t) |x|µθ
)2

=
∞∑
µ=0

Ūα,µ(t) |x|µθ,

q1 = ∓θ
∞∑
µ=1

µUα,µ(t) |x|µθ−1,

aq1 = ∓a∗θ |x|α
∞∑
µ=1

µUα,µ(t) |x|µθ−1 = ∓a∗θ
∞∑
µ=1

µUα,µ(t) |x|(µ−1)θ+1,

aq2
1 = a∗θ

2

( ∞∑
µ=1

µUα,µ(t) |x|µθ−1

)( ∞∑
µ=1

µUα,µ(t) |x|(µ−1)θ+1

)
=
∞∑
µ=1

Ũα,µ(t) |x|µθ,

where the coefficient functions Ūα,µ(t), µ∈Z+, and Ũα,µ(t), µ∈N, are determined
using the series product rule, the upper sign is taken for x<0, whereas the lower
sign for x>0, and t∈ [0, T ]. It is clear that the derived series u2

1 +aq2
1 is uniformly

convergent for all t ∈ [0, T ], therefore the norm of u1(t, x;α) is bounded to be

‖u1‖
2
H1
a(−c,+c) =

ˆ c

−c

[
u2

1 + aq2
1

]
dx

= Ūα,0(t)

ˆ c

−c
dx+

∞∑
µ=1

(
Ūα,µ(t) + Ũα,µ(t)

) ˆ c

−c
|x|µθ dx

= 2c Ūα,0(t) + 2
∞∑
µ=1

(
Ūα,µ(t) + Ũα,µ(t)

) 2cµθ+1

µθ + 1
.
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Second, we take the series solution u2(t, x;α) (4.1), valid if α ∈ (0, 2)o and
uniformly convergent for all t ∈ [0, T ], then we have

u2
2 =

( ∞∑
µ=0

Uα,µ(t)xµθ

)2

=

∞∑
µ=0

Ūα,µ(t)xµθ,

q2 = θ

∞∑
µ=1

µUα,µ(t)xµθ−1,

aq2 = a∗θ |x|α
∞∑
µ=1

µUα,µ(t)xµθ−1 = ∓a∗θ
∞∑
µ=1

µUα,µ(t)x(µ−1)θ+1,

aq2
2 = ∓a∗θ2

( ∞∑
µ=1

µUα,µ(t)xµθ−1

)( ∞∑
µ=1

µUα,µ(t)x(µ−1)θ+1

)
=∓

∞∑
µ=1

Ũα,µ(t)xµθ,

and the norm of u2(t, x;α) reads

‖u2‖
2
H1
a(−c,+c) =

ˆ c

−c

[
u2

2 + aq2
2

]
dx = Ūα,0(t)

ˆ c

−c
dx

+
∞∑
µ=1

(
Ūα,µ(t)− Ũα,µ(t)

)ˆ 0

−c
xµθ dx

+
∞∑
µ=1

(
Ūα,µ(t) + Ũα,µ(t)

)ˆ c

0
xµθ dx <∞ .

Performing the calculation gives for the norm the following bounded expres-
sions

‖u2‖
2
H1
a(−c,+c) = 2c Ūα,0(t)

+



∞∑
γ=1

Ūα,2γ(t)
2c 2γθ+1

2γθ + 1
+
∞∑
µ=1

Ũα,µ(t)
2cµθ+1

µθ + 1
, α ∈ Qo,o ,

∞∑
µ=1

Ūα,µ(t)
2cµθ+1

µθ + 1
, α ∈ Qo,e .

Calculating the bounded norms for the binomial solutions 2, 3 (4.1) and
the series solutions 5, 6 (4.1) is performed exactly in the same way.

Proposition 10.1 says that we cannot distinguish between the series solu-
tions (4.1) using the norm of the functional space H1

a(−c,+c).
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1. Introduction

In recent decades, researchers have paid much attention to chaotic behavior in
many fields, such as meteorology, medicine, economics, signal processing, traffic
flow, and many others [16,34,36,49]. They also developed many models describing
chaotic time series in order to predict the behavior of these time series. Researchers
have found that it is a difficult problem to forecast chaotic time series, which are
the evolution of chaotic systems, with the use of traditional time series forecasting
methods [16, 36]. Now chaos theory has become an important part of nonlinear
science and is used for forecasting chaotic time series. Therefore, modeling of
chaotic systems constructed from observed data and predicting multiple future
values of the time series has become an important issue [16,34,36,49].

We will assume that we know the dimension n of the real phase space in which
the considered dynamic process P(t) ∈ Rn takes place [7]. Further, for modeling
of the process P(t) = (P1(t), ..., Pn(t))T neural networks will be used [17, 25, 26].
The motivation for this use is given below.

In the beginning we give a generalization of one well-known result of approxi-
mation theory of functions:
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Theorem 1.1. [17] Let φ(z) : R→ R be a nonconstant, bounded, and monotone-
increasing continuous nonlinear function. Let also f(x1, ..., xn) : Rn → R be any
given continuous function. Then, ∀ε > 0 there exist an integer k > 0 and sets
of real constants αi, βi, and γij, where i = 1, ..., k; j = 1, ..., n such that we may
define the function

F (x1, ..., xn) =
k∑
i=1

αiφ
( n∑
j=1

γijxj + βi

)
as an approximation realization of the function f(x1, ..., xn):

∀x1, ..., xn ∈ R |F (x1, ..., xn)− f(x1, ..., xn)| < ε.

The function φ(z) : R → R is called an activation function [17, 26]. (In most
scientific publications is suggested that φ(z) : R → [0, 1] is a sigmoid function.
However, in some cases, the condition that the activation function φ(x) is bounded
can be removed [48].)

In the future, we will use the version of Theorem 1.1, in which one activation
function φ(z) will be replaced by several similar functions φ1(z),..., φk(z):

F (x1, ..., xn) =
k∑
i=1

αiφi

( n∑
j=1

γijxj + βi

)
.

Let
x0 = x(t0), x1 = x(t1), ..., xN = x(tN ) (1.1)

be a finite sequence of numerical values of some scalar dynamical variable x(t)
measured with the constant time step ∆t in the moments ti = t0 +i∆t; xi = x(ti);
i = 0, 1, ..., N . Sequence (1.1) is called a time series [29] – [31], [34], [49].

Suppose that we know n time series
P10, P11, P12, ..., P1N ,
P20, P21, P22, ..., P2N ,
.................,

Pn0, Pn1, Pn2, ..., PnN

(1.2)

that describe the components of the process P(t) = (P1(t), ..., Pn(t))T (hereN >>
n).

Further, we propose an approximate procedure for determining unknown right-
hand sides of the differential equations. The procedure is based on the least-
squares method and the fact that we know with sufficient precision the values
of x(t) and its derivatives of order equal to the equation order. In this case we
avoid considering a possible ill-posed problem by applying consecutive smoothing
procedures leading to shortening the given time series (see [16,36]).
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Let (u,v) be a scalar product of real vectors u,v ∈ Rn. Introduce the real
matricesA ∈ Rn×n,B ∈ Rn×m, C ∈ Rm×n, and real vectors d = (d1, ..., dn)T , cj =
(cj1, ..., cjn) ∈ Rn; j = 1, ...,m ≤ n.

We assume that using suitable methods (based on Theorem 1.1) the system
of ordinary autonomous differential equations, the solution x(t) ∈ Rn of which
simulates process P(t) with a given accuracy, was reconstructed [7].

We assume that this system (with the known vector of initial values xT (0) =
(x10, ..., xn0)) has the following form:

ẋ(t) = d+Ax+BΦ(Cx)⇐⇒



ẋ1(t) = d1 +
n∑
j=1

a1jxj(t) +
m∑
j=1

b1jφj(cj ,x(t)),

ẋ2(t) = d2 +

n∑
j=1

a2jxj(t) +

m∑
j=1

b2jφj(cj ,x(t)),

. . . . . . . . . . . . . . . . ,

ẋn(t) = dn +

n∑
j=1

anjxj(t) +

m∑
j=1

bnjφj(cj ,x(t)),

(1.3)
where Φ(u) = (φ1(u1), ..., φm(um))T . (Note the system (1.3) can be interpreted
as a generalized Hopfield neural network (see [25, 48]) with activation functions
φ1(u1), ..., φm(um).)

The form of system (1.3) is dictated by the following considerations: the
nonlinear parts of system (1.3) are continuous functions, and therefore Theorem
1.1 was used to describe them; the presence of a linear part makes it possible to
use linearization methods to study the stability of solutions of system (1.3).

There is only one serious flaw in the research plan outlined above. This
disadvantage lies in the insufficient verification of the adequacy of the constructed
model and the process under study. In this paper, mathematical tools have been
developed to test the adequacy, based on an algebraic theory of invariants. The
idea of such verification is based on the following well-known fact: with arbitrary
observations of a dynamic process, there are always functions that are independent
of the methods of observations, but depend on an internal structure that determines
the behavior of the process. Functions describing this structure are called invariants.

Currently, the construction of a complete set of invariants describing arbitrary
nonlinear dynamical systems is an unsolved problem. Therefore, in this article,
the approach based on obtaining the missing invariants for the studied nonlinear
system using known invariants obtained for a special linear system, was developed.
(Immediately, we note that the construction of such invariants may also have an
independent mathematical interest.)

Suppose that the same dynamic process P(t) ∈ Rn is given by another set of
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time series 
Q10, Q11, Q12, ..., Q1N ,
Q20, Q21, Q22, ..., Q2N ,
.................,

Qn0, Qn1, Qn2, ..., QnN .

(1.4)

Instead of variable x, we introduce a new phase variable y ∈ Rn. Introduce
also the real matrices F ∈ Rn×n, G ∈ Rn×m, H ∈ Rm×n, and real vectors l =
(l1, ..., ln)T ,hj = (hj1, ..., hjn) ∈ Rn; j = 1, ...,m ≤ n.

We also assume that in this case other activation functions ψ1(u1), ..., ψm(um)
can be used to simulate process P(t). (Nevertheless, case φ1(u1) = ψ1(u1), ...,
φm(um) = ψm(um) is not excluded.)

In this case, instead of system (1.3), we get the following system of ordinary
autonomous differential equations:

ẏ(t) = l +Fy +GΨ(Hy)⇐⇒



ẏ1(t) = l1 +
n∑
j=1

f1jyj(t) +
m∑
j=1

g1jψj(hj ,y(t)),

ẏ2(t) = l2 +

n∑
j=1

f2jyj(t) +

m∑
j=1

g2jψj(hj ,y(t)),

. . . . . . . . . . . . . . . . ,

ẏn(t) = ln +

n∑
j=1

fnjyj(t) +

m∑
j=1

gnjψj(hj ,y(t)),

(1.5)
where Ψ(v) = (ψ1(v1), ..., ψm(vm))T .

Systems (1.3) and (1.5) describe the same dynamic process P(t). In order to
establish (in the sense that will be below) the equivalence of systems (1.3) and
(1.5), we introduce the following assumptions:

1) functions Φ(u) and Ψ(v) are continuous in the interval (−∞,∞);
2) Φ(0) = Ψ(0) = 0;
3) there exist constants L1 > 0, L2 > 0, and neighborhood O of the origin such

that ∀u,v ⊂ O ‖Φ(u)−Φ(v)‖2 < L1‖u−v‖2 and ‖Ψ(u)−Ψ(v)‖2 < L2‖u−v‖2.
Let the conditions 1) – 3) be fulfilled. Then, we can assume that there exist

the nondegenerate matrices S ∈ Rn×n, T ∈ Rn×m, and W ∈ Rm×n such that
x = Sy , d = Sl, and{

F = S−1AS,G = S−1BT,H = W−1CS,
∀s ∈ Rm Ψ(s) = T−1Φ(W s).

(1.6)

If the mentioned matrices exist, then systems (1.3) and (1.5) are called equivalent.
To fulfill all equivalence conditions (especially (1.6)), it is necessary to indicate

the class of functions Φ(s) (or Ψ(s)) that satisfy these conditions. One of these
classes is the class of piecewise linear functions. (In the theory of neural networks,
this class is a well-known class of rectified linear units (ReLU)). In the present time
ReLU are standard functions to increase the depth of learning of neural networks.
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Therefore, we will further assume that either the components of vectors Φ(s),
Ψ(s) are piecewise continuous linear functions or these are piecewise continuous
nonlinear functions such that Φ(s) = Ψ(s) (in this case T = W = Em, where Em
is the identity matrix of order m).

A common practice in chaotic time series analysis has been to reconstruct
the phase space by utilizing the delay-coordinate embedding technique, and then
to compute the dynamical invariants such as fractal dimension of the underlying
chaotic set, and its Lyapunov spectrum. As a large body of literature exists on
application of the technique of the time series to study chaotic attractors [29] –
[31], [34], [38], [49], a relatively unexplored issue is its applicability to dynamical
systems of differential equations depending on parameters. Our focus will be
concentrated on the analysis of influence of parameters of found dynamic system
on the behavior of its solutions. These parameters are determined by the structure
of the time series (1.1) and choice of approximating functions in the right-hand
sides of the obtained system of differential equations.

1.1. Continuous analog of neural network models

In recent years, an interesting idea has appeared to interpret a system of
ordinary differential equations in the form of a suitable neural network (residual
network) [11,27,51]. The essence of this idea is as follows.

Consider the following neural network

x(t+ 1) = x(t) + h(x(t),Ω),x(0) = x0; t = 1, ..., N. (1.7)

Here h(u,v) : Rn ×Rk → Rn is a vector of continuous functions, Ω : Rk → Rn is
a vector of parameters.

Now we rewrite relation (1.7) in the following form:

x(t+ 1)− x(t)

(t+ 1)− t
= h(x(t),Ω).

If we consider function x(t) as a function of a continuous argument on some
interval [x0,xN ], then the last equation can be rewritten in the following form:

x(t+ ∆t)− x(t)

∆t
= h(x(t),Ω).

If now we direct the number of "layers"N →∞ and we assume ∆t→ 0, then we
get the following system of ordinary differential equations

ẋ(t) = h(x(t),Ω),x(0) = x0, (1.8)

So we can say that neural network (1.7) is the well-known Euler discretization
procedure of system (1.8):

x(t+ ∆t)− x(t) = ∆t · (h(x(t),Ω)),x(0) = x0,
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Fig. 1.1. The architecture of the i-th layer of the neural network (1.7) for h(x(t),Ω) ≡ d +

Ax(t) +BΦ(Cx(t)); i = 0, ..., N . Here ekj = akj , if k 6= j and ekk = akk + 1; k, j = 1, ..., n. All
other designations are the same as in (1.3)

where ∆t is the discretization step.
Besides, sequence (1.7) can be viewed as a neural network with N − 1 hidden

layers, input layer x0 and output layer xN . The architecture of such neural
network is determined by the operator h(x(t),Ω), and if h(x(t),Ω) ≡ d+Ax(t)+
BΦ(Cx(t)), then an arbitrary hidden layer of this network will have the structure
shown in Fig. 1.

Therefore, sequence (1.7) is a neural network model of the process P(t). In
addition, the number of neurons in an arbitrary hidden layer of this network, in
which h(x(t),Ω) ≡ d +Ax(t) +BΦ(Cx(t)), does not exceed nm [17, 26].

The problem that is usually considered when modeling process P(t) is as
follows: find parameters d, A,B,C (with the known activation function Φ(u)) of
the neural network that minimize the following loss function:

N∑
t=1

‖P(t)− x(t)‖2.

Here ‖u‖ is a norm of the vector u.
Since the number n is the dimension of the embedding space and it is completely

determined by process P(t), the numbers N and nm, which determine the depth
and number of neurons in any layer of the neural network, can be arbitrarily
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selected. Thus, there are quite wide opportunities for the neural network modeling
of process P(t).

Now, by analogy with (1.3), we assume that process P(t) is modeled by neural
network (1.7), whose operator has the form h(x(t),Ω) ≡ l+Fy(t) +GΨ(Hy(t)).
(In this case, we are already talking about defining parameters l, F,G,H with
the known activation function Ψ(u).) Obviously, the equivalence conditions for
such neural networks coincide with conditions (1.6). Therefore, the problems of
establishing the equivalence of two differential or two neural network models do
not differ from each other. In both cases, conditions (1.6) should be used to
confirm equivalence. (However, it should be noted that differential and neural
network models of the same process, generally speaking, are not equivalent [51].)

In conclusion of this section, we note that the question of which of the modeling
methods either using differential equations or neural networks, is more effective
as long as it remains open.

For simplicity, we put in system (1.3) d = 0. Now we introduce the following
control system [50]:

ẋ(t) = Ax +Bu, z = Cx; u = (u1, ..., um)T , z = (z1, ..., zm)T . (1.9)

Then system (1.3) can be viewed as the linear system (1.9) closed by nonlinear
feedback

u = Φ(z) = Φ(Cx) = (φ1(c11x1 + ...+ c1nxn), ..., φm(cm1x1 + ...+ cmnxn))T .

Our main goal is to show how the problem of reconstructing differential
equations from known time series can be reduced to the problem of computing
invariants for the linear control system (1.9).

Thus, the main postulate that we will implement in this work can be formulated
as follows: two different sets of time series (1.2) and (1.4) describe the same
dynamic process P(t) in two different bases of phase space Rn; this assumption
ensures that the invariants of systems (1.3) and (1.5) are the same.

This article is organized as follows. Section 2 describes the mathematical
concepts necessary to solve the equivalence problem. Sections 3 – 4 study the
actions of algebraic groups on varieties of linear systems. Section 5 gives an
algebraic description of the key concept that is used to search for invariants; this
is the concept of null-forms. Section 6 is devoted to the analysis of the structural
stability of linear systems (small changes in the parameters of the system should
not influence on the composition of the invariants of this system). Sections 7 – 9
describe rings of invariants and equivalence conditions for linear control systems.
The whole Section 10 is devoted to the application of the theory of invariants
to the problem of reconstruction of ordinary differential equations from known
measurements of the dynamic characteristics of these equations. Here is a practical
example of the reconstruction of equations describing the behavior of current and
voltage in the contact electric network [7,43]. Finally, some results are summarized
in Section 11.
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2. Mathematical preliminaries

Consider a linear time-invariant control system whose state equation is

ẋ(t) = Ax(t) + Bu(t),x(t) ∈ Rn,u(t) ∈ Rm, (2.1)

and an output equation has the form

y(t) = Cx(t),y(t) ∈ Rp. (2.2)

Here Rn, Rm, Rp are real linear spaces of vector-columns of dimensionalities
n, m, p; x(t) = (x1(t), ..., xn(t))T , u(t) = (u1(t), ..., um(t))T , and y(t) = (y1(t), ...,
yp(t))

T are vectors of states, inputs, and outputs; A : Rn → Rn, B : Rm →
Rn, C : Rn → Rp are real linear maps of appropriate spaces.

Fix any bases in spaces Rn, Rm, and Rp; then the triple of operators A,B,C
will be represented in the chosen bases by matrices A ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rp×n. Further, we will adhere only to these denotations.

Denote by S = Rp×n × Rn×n × Rn×m a direct product of spaces Rp×n, Rn×n,
and Rn×m. Then system (2.1),(2.2) can be uniquely represented by the triple of
matrices (C,A,B) ∈ S.

Let GL(q,R) be a complete linear group of all square invertible matrices of
sizes q × q with elements from the field of real numbers R.

Introduce the direct product

GL = GL(n,R)×GL(m,R)×GL(p,R)

= {(S, T,W )|S ∈ GL(n,R), T ∈ GL(m,R),W ∈ GL(p,R)}.

We also introduce into system (2.1),(2.2) new variables z ∈ Rn, v ∈ Rm, and
h ∈ Rp under the formulas: x(t) = Sz(t), u(t) = Tv(t), and y(t) = Wh(t), where
S ∈ GL(n,R), T ∈ GL(m,R), and W ∈ GL(p,R). Then we obtain the following
operation GL : S→ S of indicated group on space S:

∀ (C,A,B) ∈ S and ∀(S, T,W ) ∈ GL,

(S, T,W ) ◦ (C,A,B) = (W−1CS, S−1AS, S−1BT ) ∈ S. (2.3)

Let s = (C,A,B) ∈ S and g = (S, T,W ) ∈ GL be an arbitrary elements of
corresponding sets.

Definition 2.1. A polynomial f(s) is called an invariant of weight l = (lS , lT , lW )
of group GL for system (2.1),(2.2) if

f(g ◦ s) = (detS)lS (detT )lT (detW )lW × f(s), ∀g ∈ GL and ∀s ∈ S,

where lS , lT , and lW are some integers. The invariant f(s) of weight l = (lS , lT , lW )
= (0, 0, 0) is called absolute; otherwise the invariant f(s) is called relative [35,44].
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Notice that the problem of any classification of some set of objects (for example,
the set of systems (2.1), (2.2)) implies a decomposition of this set on classes of
identical (in a certain sense) elements. One of the most widespread methods of
such decomposition is a description of system (2.1), (2.2) with the help of functions
not depending on coordinate presentation of system (2.1), (2.2). This description
is usually called invariant. Sometimes the invariant description of system (2.1),
(2.2) is called an invariant (or algebraic) analysis.

The problem of invariant analysis of system (2.1),(2.2) with respect to action
(2.3) was most in detail studied for the case T = Em and W = Ep, where Em
and Ep are identity matrices of degrees m and p. In this case the action (2.3)
is called an action of similarity. In one or another form classification questions
of linear control systems with respect to the action of similarity, their invariants
and canonical forms were studied by many authors (see, for example, C. I. Byrnes
and N. E. Hurt [9], M. Hazewinkel [18, 20], M. Hazewinkel and C. Martin [19],
R. E. Kalman [28], A. Tannenbaum [45, 46]). We also note that in the book of
D. Mumford and J. Fogarty [35] the tasks of invariant theory, directly relating
to the classification questions of linear control systems, were considered. The
topology problems of classification of linear control systems with respect to the
action of similarity in detail were studied in articles of D. F. Delchamps [12], P.
A. Fuhrmann and U. Helmke [14], and U. Helmke [21] – [23].

Note that a main attention of specialists on the mathematical system theory
attract problems of invariant analysis (using geometric invariant theory) connected
with the action of similarity. These problems are following: the finding of good
canonical forms for linear systems, a computation of their invariants, a description
of regular and stable systems, and also a construction of moduli spaces as quotients
of algebraic varieties under algebraic group actions. It should be said that the
indicated problems were considered with different positions by A. Tannenbaum
[46, 47], S. Friedland [13], V. G. Lomadze [32], J. Rosenthal [41], W. Manthey
and U. Helmke [33], M. Bader [1]. In our opinion the most complete solutions of
indicated problems was got in [1]. In this work with the help of geometric invariant
theory and methods of theory quivers compactifications of moduli spaces of linear
dynamical systems were derived.

Except for the classification questions of linear control systems, invariant
theory is widely used in the problem of output feed-back design both for linear
and bilinear control systems (see, for examples, papers [2] – [6], [38], [39], [41,42],
and [50]). Here it should be said that in article [5] it was succeeded to get the
constructive solution of output feed-back design problem for system (2.1), (2.2)
in the case mp > n.

Consider two systems: s1 = (C1, A1, B1) ∈ Sopen ⊂ S and s2 = (C2, A2, B2) ∈
Sopen ⊂ S, where Sopen is an open subset in S.

Equivalence problem. It is necessary to find the set Sopen ⊂ S and to build the
finite set of invariants f1(s), ..., fk(s) (absolute and relative) of group GL such that
∀s1, s2 ∈ Sopen from the conditions f1(s1) = f1(s2), ..., fk(s1) = fk(s2) it follows
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that there exists the element g = (S, T,W ) ∈ GL such that

A2 = S−1A1S, B2 = S−1B1T, C2 = W−1C1S. (2.4)

It should be said that in the present time there is a vast literature devoted to
invariant theory and its applications to different tasks of mathematics, mechanics,
physics, and control theory. However almost in all known manuscripts invariant
theory is considered as part of algebraic geometry and theory of representations of
groups. In addition, these treatises are intended for professional mathematicians
and ineligible for specialists in applied system theory. It superfluously burdens
an application of invariant theory to linear control systems, which this article is
devoted. In this connection, basic results of the present work will be presented in
terms of ordinary linear spaces, matrices and determinants. One of aims of the
article is bringing of the solution of equivalence problem for linear control systems
to such level, as it is done at description of invariant properties of a characteristic
polynomial of square matrix.

In the present time the equivalence problem is not yet solved completely. In
this connection we will solve this problem in a few stages.

On the first from these stages we study the simplified variant of equivalence
problem, for which equation (2.2) in system (2.1), (2.2) is absent. In this case we
suppose that the group GL = GL(n,R) × GL(m,R) and the space S = Rn×n ×
Rn×m.

Now we change the base field R and the group GL by the base field C and
the special linear group SL = SL(n,C)× SL(m,C) saving its action (2.3) on the
complex space S = Cn×n × Cn×m.

In this case all relative invariants of group GL become absolute invariants of
group SL. This circumstance allows us to use the Hilbert-Mumford theory [8,35]
for description of all invariants of group SL with respect to action (2.3). Therefore
in further, all absolute and relative invariants we will call simply invariants.

Denote by C[S]SL a ring of all invariants of group SL with respect to action
(2.3) [35, 44]. A search problem of invariants can be essentially simplified if we
will take advantage of the following concept [35].

Definition 2.2. (See [35]). The element w ∈ S is called a null-form if for an
arbitrary non-constant invariant I(·) ∈ C[S]SL I(w) = 0.

Let w be an element of S and let H be an arbitrary subgroup of SL. Denote
by OH(w) ⊂ S an orbit of the point w with respect to action (2.3) of group H.
Let OH(w) ⊂ S be the closure of OH(w) in S.

The following theorem is a basic instrument for search of null-forms.

Theorem 2.1. (See [35]). The element w ⊂ S is the null-form if and only if
there exists a multiplicative one-parameter subgroup H ⊂ SL such that the point
0 = (0n×n × 0n×m) ∈ OH(w).
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2.1. Null-formes of space S for system (2.1)

Further, for system (2.1) we will use the designation (A,B), where A ∈ Cn×n,
B ∈ Cn×m. We will also call the system (A,B) by a system of type (n,m), where
numbers n and m are dimensions of the state space and input space. In addition,
we will designate the state space and input space by X ≡ Cn and U ≡ Cm.

Without loss of generality, it is possible to consider that rankB = m. In
addition, we will also assume that n > m, since in control theory this case is most
important.

The following concept in linear control theory is fundamental.

Definition 2.3. (See [28]). The system (A,B) is called complete controllable if

X = span{B(U), AB(U), ..., An−1B(U)}.

Let X1 ⊂ X be an invariant subspace in X with respect to the following action
of operator A: AX1 ⊂ X1 [15].

We put U1 = B−1(X1 ∩B(U)) ⊂ U, where B−1(X) is a complete prototype of
operator B : U→ X [15].

Denote by G|L the restriction of operator G : Ck → Cr to subspace L ⊂ Ck
[15]. (Here k and r are natural numbers.)

Definition 2.4. The pair of operators (A|X1 , B|U1), where A|X1 and B|U1 are
restrictions of operators A and B to subspaces X1 and U1 of dimensionalities n1

and m1, is called a subsystem of type (n1,m1) of system (A,B).

Definition 2.5. The pair of operators (A|X/X1
, B|U/U1

), where A|X/X1
and B|U/U1

are restrictions of operators A and B to factor-spaces X/X1 and U/U1 of dimen-
sionalities n− n1 and m−m1, is called a factor-system of type (n− n1,m−m1)
of system (A,B) on the subsystem (A|X1 , B|U1).

Theorem 2.2. Let (A,B) be a system of type (n,m), n > m. Then the system
(A,B) is a null-form if and only if the operator A is nilpotent and (A,B) contains
the subsystem (A|X1 , B|U1) of type (n1,m1), n1 ≥ m1, such that

n1

m1
<

n

m
. (2.5)

Proof. (a1) It is known [35,44] that in the suitable bases of spaces Cn and Cm the
one-parametric group H can be represented by the group of diagonal matrices:

H = H1 ×H2 =

 t−α1 · · · 0
...

. . .
...

0 · · · t−αn

×
 t−β1 · · · 0

...
. . .

...
0 · · · t−βm

 ,

where t is a real parameter, and real numbers α1, α2, ..., αn, β1, β2, ..., βm are
satisfied to the following restrictions:

α1 + α2 + ...+ αn = 0, β1 + β2 + ...+ βm = 0. (2.6)
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Note that if the group H acts on the system (A,B) by rule (2.3), then the elements
of matrices A and B will be transformed on formulas:

aik → aikt
αi−αk , bij → bijt

αi−βj ; i, k = 1, ..., n; j = 1, ...,m.

The trivial system (0, 0) ⊂ Cn×n×Cn×m lies in the closure of orbit OH(A,B)
of system (A,B) if and only if there exist the following limits:

lim
t→∞

H−1
1 AH1 = 0, lim

t→∞
H−1

1 BH2 = 0.

(a2) Both last limits take place if and only if there is a nontrivial joint solution
of equalities (2.6) and the following system of inequalities and equalities:

bij = 0 or αi < βj , i = 1, ..., n; j = 1, ...,m; (2.7)

aii = 0, 1 ≤ i ≤ n; (2.8)

aik = 0 or αi < αk, 1 ≤ k < i ≤ n. (2.9)

First, we suppose that bim = 0 for i = 1, ..., n. Then inequalities (2.7) replace
by inequalities:

αi < βj , i = 1, ..., n; j = 1, ...,m− 1. (2.10)

Further, inequalities (2.7) are shown that numbers αi (or βj) can not have
one sign. Therefore, we will assume that, for example, αn > 0. Now we choose
numbers α1, ..., αn, which satisfy to conditions (2.7) and αn > 0.

Assume that the number βi is given so that inequalities (2.10) will be fulfilled.
Then the number βm can be computed on formula (2.6): βm = −β1 − ...− βm−1.

From here it follows that the system of inequalities (2.10) is solvable. Conse-
quently, systems (2.7) – (2.8) are also solvable. From here it follows that if n < m,
then taking into account conditions (2.9), which determines the nilpotent matrix
A, all systems (A,B) of type (n,m) are null-forms. (By transformations from the
group SL in the matrix B, it is possible to derive one zero column.)

If n = m and detB 6= 0, then the system (A,B) is not a null-form; if detB = 0,
then it can be reduced to the case n < m. Consequently, at n > m the search of
null-forms can be taken to the search of systems (A,B), for which rankB = m.

Further, changing bases in the spaces X and U, it is possible to obtain that
at n1 ≤ i ≤ n and 1 ≤ j ≤ m1 in the matrix B the elements bij = 0. In this case
inequalities (2.7) can be transformed in inequalities:

αi < βj , i = 1, ..., n1; j = 1, ...,m; (2.11)

αi < βj , i = n1 + 1, ..., n; j = m1 + 1, ...,m. (2.12)

Summing inequalities (2.11) n1 times and taking into account the first from
equalities (2.6), we get

−(αn1+1 + ...+ αn) < n1βj , j = 1, ...,m. (2.13)
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It is like easily to get from those inequalities (2.11) that

mαi < β1 + ...+ βm = 0, i = 1, ..., n1. (2.14)

Now summing inequalities (2.13) up to j = m1 and taking into account the
second from equalities (2.6), we have

−m1(αn1+1 + ...+ αn) < −n1(βm1+1 + ...+ βm).

From here we get relation, which is equivalent to the following inequality:

(αn1+1 + ...+ αn) >
n1

m1
(βm1+1 + ...+ βm). (2.15)

Having fulfilled similar computations for system (2.12), we get

(αn1+1 + ...+ αn) >
n− n1

m−m1
(βm1+1 + ...+ βm). (2.16)

A comparison of inequalities (2.15) and (2.16) results in the double inequality

n− n1

m−m1
(βm1+1 + ...+ βm) > (αn1+1 + ...+ αn) >

n1

m1
(βm1+1 + ...+ βm). (2.17)

(a3) From (2.14) and first from equalities (2.6), we have αn1+1 + ...+ αn > 0.
Assume that βm1+1 + ...+ βm > 0. Then the solvability of inequality (2.17) is

possible only in the case (n− n1)/(m−m1) > n1/m1 (or n/m > n1/m1). If the
case βm1+1 + ...+βm < 0 takes place, then the restriction (n−n1)/(m−m1) < 0
must be valid. This inequality results in inequalities: either n > n1 and m < m1

or n < n1 and m > m1 that it is impossible by virtue of the conditions n > n1

and m > m1.
Further, from conditions (2.9), which determine the form of the matrix A,

it follows that n1 is the dimension of the invariant with respect to operator A
subspace X1, which contains subspace B(U1) ⊂ X1 spanned on m1 first columns
of the matrix B.

Suppose opposite: if in the space B(U) there doesn’t exist of the subspace
B(U1) such that

B(U1) ⊂ X1 = span{B(U1), AB(U1), ..., An−1B(U1)}

and (dimX1)/(dimU1) = n1/m1 < n/m, then system (A,B) is the null-form.
Really, if n1/m1 ≥ n/m, then (n−n1)/(m−m1) ≤ n1/m1 and under the condition
αn1+1 + ... + αn > 0 inequality (2.17) is incorrect. Consequently, the system of
restrictions (2.7) – (2.9) is incompatible. The proof is finished. �

Notice that the nilpotency of matrix A [15] is necessary for an equality to
zero of invariants of system (A,B) depending only on A. The equality to zero of
invariants of system (A,B) depending on B is got without the use of concept of
nilpotency. Thus, the following statement is obvious.
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Corollary. Let A be an arbitrary matrix of order n. Then under condition (2.5)
of Theorem 2.2, all invariants of the system (A,B) depending on B are equal to
zero.

3. Stabilizer of system (A,B)

Let ψ(λ) be a minimal polynomial of matrix A ∈ Cn×n [15]. (It means that
polynomial ψ(λ) is the nonzero polynomial of the least degree l ≤ n such that
ψ(A) = 0.)

Assume that a nonzero vector from B(U) has a minimal polynomial f1(λ).
Suppose also that this polynomial is the polynomial of the least degree among
degrees of minimal polynomials of all nonzero vectors from B(U).

Denote by L1 the set all nonzero vectors from B(U), which have the same
minimal polynomial f1(λ). Add the zero vector to the set L1. Denote the newly
obtained set with the same symbol L1.

Lemma 3.1. L1 is the linear subspace in B(U).

Proof. Let U1 = B−1(L1) be a complete prototype of space L1 in U with respect
to the action of operator B. Then it is clear that subspace

X1 = span{B(U1), AB(U1), ..., An−1B(U1)}

is invariant with respect to the action of operator A and it minimal polynomial
coincides with f1(λ). �

Let f1(λ) 6= ψ(λ). Consider the factor-system (A|X/X1
, B|U/U1

). Then it is
possible to find in the factor-space (B(U) + X1)/X1 the subspace L2/X1, all
nonzero vectors of which have the same minimal polynomial f2(λ)(mod X1) [15].
In addition, the degree of this polynomial will be minimum among degrees of all
minimal polynomials, which can have nonzero vectors from (B(U) + X1)/X1.

Now we build the invariant with respect to action of operator A subspace

X2 = span{B(U2), AB(U2), ..., An−1B(U2)} ⊂ X.

Here U2 = B−1(L2) is the complete prototype of space L2 in U with respect
to the action of operator B. If X2 6= X, then we consider the factor-system
(A|X/X2

, B|U/U2
), where U2 = B−1(L2) is the complete prototype of subspace

L2 in U with respect to the action of operator B, and so on. By virtue of finite
dimensionality of the spaces X and U the indicated procedure will be finished on
some stage r:

Ur = U, Xr = X = span{B(Ur), AB(Ur), ..., An−1(Ur)}.

Thus, we have the row of embedded in each other subsystems

(0, 0) ⊂ (A|X1 , B|U1) ⊂ (A|X2 , B|U2) ⊂ ... ⊂ (A|Xr , B|Ur) = (A,B) (3.1)
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such that any factor-system of this row possesses the following property: the state
space Xi/Xi−1 of system (A|Xi/Xi−1

, B|Ui/Ui−1
) is generated by the factor-space

Li/Xi−1 ⊂ (B(U)+Xi)/Xi−1, all nonzero vectors of which have the same minimal
polynomial fi(λ)(mod Xi−1), i = 1, ..., r.

Definition 3.1. (See [20]). The maximal subgroup StabSL(A,B) of group SL is
given by the conditions

StabSL(A,B) = {(S, T ) ∈ SL | AS = SA, BT = SB}

is called a stabilizer of system (A,B).

Lemma 3.2. Let (S, T ) ∈ StabSL(A,B) be an arbitrary element and (A|Xi , B|Ui)
be an arbitrary system of row (3.1). Then the following inclusion takes place:

(S, T ) · (A|Xi , B|Ui) ∈ (A|Xi , B|Ui), i = 1, ..., r. (3.2)

Proof. We prove justice (3.1) for i = 1. Lemma 3.1 asserts that the subspace
L1 is uniquely. Then from the definition of stabilizer we get that SB(U1) =
U1 ⊂ BT (U) ⊂ B(U) and, by virtue of uniqueness of B(U1) in B(U), we have
SB(U1) ⊂ B(U1). Further, from the uniqueness B(U1) and that U1 = B−1(L1)
is the complete prototype L1 in U, it follows that the subspace U1 is a unique in
U. It means that T (U1) ⊂ U1. In addition, we have

S(X1) = S
n−1∑
i=1

AiB(U1) =
n−1∑
i=1

AiSB(U1) =
n−1∑
i=1

AiBT (U1) ⊂
n−1∑
i=1

AiB(U1) ⊂ X1.

The proof for case i = 1 is finished.
Now we lead an induction on i. Assume that for some i < r

(S, T ) · (A|Xi , B|Ui) ∈ (A|Xi , B|Ui).

Consider the factor-system (A|Xi/Xi−1
, B|Ui/Ui−1

). Then the proof of inclusion
(3.2) at i = 1 word for a word is carried on the proof of inclusion

(S, T ) · (A|Xi/Xi−1
, B|Ui/Ui−1

) ∈ (A|Xi/Xi−1
, B|Ui/Ui−1

).

Taking into account the supposition of induction, we get the inclusion (S, T ) ·
(A|Xi+1 , B|Ui+1) ∈ (A|Xi+1 , B|Ui+1). It completes the proof of Lemma 3.2. �

Lemma 3.3. Let (A,B) be a complete controllable system of type (n,m), n ≥
m, rankB = m, and all nonzero vectors of space B(U) have the same minimal
polynomial f(λ). Then StabSL(A,B) ∼= SL(m,C).

Proof. We prove that system (A,B) is the direct sum of m copies the irreducible
subsystems. (We remind that the system (A,B) is called irreducible if it contains
only trivial subsystems (0, 0) and (A,B) [44].)
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At m = 1 the assertion of Lemma 3.3 is obvious. Assume that it is correctly
for all k ≤ m−1. Now we have to prove that (A,B) is the direct sum of equivalent
irreducible subsystems for k = m.

Let l = deg f(λ). Choose in B(U) an arbitrary base b1, ..., bm. Denote by the
symbol Xi = {bi, Abi..., Al−1bi} ⊂ X a cyclic with respect to action of operator A
subspace in X [15]. (It is clear that dimXi = l, i = 1, ...,m.)

Since the system (A,B) is the complete controllable, then we have X = X1 +
... + Xm. On the supposition of induction the last sum can be rewritten as X =
X1 ⊕ ...⊕ Xm−1 + Xm ≡ X̃ + Xm. We will prove that this sum is direct.

Assume that the space P ≡ X̃∩Xm 6= ∅. It is clear that the space P is a proper
cyclic subspace in Xm and X̃.

Let h(λ) be the minimal polynomial of space P (note that deg h(λ) < deg f(λ)).
In this case there exists the vector α1b1 + ...+αm−1bm−1 ∈ X̃ and the polynomial
g(λ) = f(λ)/h(λ) such that g(A)(α1b1 + ...+ αm−1bm−1) ∈ P, and g(A)bm ∈ P.

Here two following cases are possible.
(i) g(A)(α1b1 + ...+ αm−1bm−1) = g(A)(αmbm). Then the polynomial g(λ) is

minimal for the nonzero vector α1b1 + ...+ αm−1bm−1 − αmbm. Since deg h(λ) <
deg f(λ), then this situation is impossible.

(ii) Let the space Q = {g(A)b1, ..., g(A)bm} ∈ P be spanned on the vectors
g(A)b1, ..., g(A)bm; it will be at least 2-dimensional. It is known that in any cyclic
space of dimension k there exist cyclic spaces of all dimensions less than k [15].

Therefore, if P1 ⊂ P is a cyclic space of dimension degC h(λ)−1, then P1∩Q =
g(A)b 6= ∅, where b ∈ B(U) is a nonzero vector. From here it follows that there
exists the polynomial h1(λ) such that h1(A)g(A)b = 0. (Here degC h1(λ)g(λ) <
deg f(λ).) Again we get that the situation (ii) is impossible.

Thus, we have to have P = ∅ and X = X1 ⊕ ... ⊕ Xm. In addition, B(U) =
X1∩B(U)⊕ ...⊕Xm∩B(U) = b1⊕ ...⊕ bm. Consequently, there exist bases of the
spaces X and U, in which the matrices A and B can be represent in the following
form:

A =

 A1 0
. . .

0 A1

 , B =

 B1 0
. . .

0 B1

 , (3.3)

where A1 = A|Xi , B1 = bi; i = 1, ...,m. Now the statement of Lemma 3.3 follows
from representation (3.3). �

Denote by X \ X1 a complement of X1 with respect to whole space X. (Note
that dimCX \ X1 = dimCX/X1, where dimCX/X1 is a dimension of factor-space
X/X1.)

We choose the bases of spaces U and X in accordance with Lemmas 3.1, 3.2,
and 3.3. More precisely, the base B(U) is formed by the bases of spaces

B(U) ∩ X1, B(U) ∩ (X2 \ X1), ..., B(U) ∩ (Xm \ Xm−1), (3.4)

and the base X is formed by the bases of spaces

X1,X2 \ X1, ...,Xm \ Xm−1, (3.5)
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where each of bases Xi+1 \ Xi, i = 0, 1, ...,m − 1(X0 = 0) it is an association of
bases of nonintersecting isomorphic cyclic spaces. Then matrices of operators A
and B in bases (3.4) and (3.5) can be represented in the following forms:

A =

 A11 A1r

. . .
0 Arr

 , B =

 B11 0
. . .

0 Brr

 , (3.6)

where

Aii =

 Ai 0
. . .

0 Ai

 , Aij =


A

(11)
ij . . . A

(1,mj)
ij

... . . .
...

A
(m1,1)
ij . . . A

(mi,mj)
ij

 ,

Ai =


0 0 a

(i)
li

1 0
...

. . .
...

0 1 a
(i)
1

 , A
(pq)
ij =

 0 . . . 0 ∗
... . . .

...
...

0 . . . 0 ∗

 ,

Bii =

 Bi 0
. . .

0 Bi

 , Bi =


1
0
...
0

 .

Here mi is a multiple of including of block Ai in Aii (Bi in Bii); the matrix
Ai has sizes li × li, and matrix Bi has sizes li × 1; p = 1, ...,mi; q = 1, ...,mj ;
i, j = 1, ..., r; i < j. (In addition, in matrices A(pq)

ij only the last column is not
equal to zero.)

Let (3.6) be the matrix represent of system (A,B). Denote by N = NX × NU
a subset of group SL, which determined as follows:

NX ⊂ SL(n,C), NU ⊂ SL(m,C);

NU =

 SL(m1,C) Γij
. . .

0 SL(mr,C)

 ,Γij =


γ

(11)
ij . . . γ

(1,mj)
ij

... . . .
...

γ
(m1,1)
ij . . . γ

(mi,mj)
ij

 ;

NX =

 SL(m1,C)⊗ El1 Lij
. . .

0 SL(mr,C)⊗ Elr

 .
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Here m1 + ... + mr = m; Lij = γ
(pq)
ij · (Bi, ..., A

lj−1
i Bi); γ

(pq)
ij are arbitrary

parameters; Eli are identity matrices of orders li; m1l1 + ... + mrlr = n; p =
1, ...,mi; q = 1, ...,mj ; i < j; , j = 1, ..., r. In this case it is easy to show that the
following assertion takes place.

Lemma 3.4. There exist bases of the spaces X and U, in which StabSL(A,B) ⊂ N.

There are a lot of different variants of canonical forms for pair matrices (A,B)
(see, for example [20], [33], [45] – [47], [50]). In order to build the stabilizer of
system (A,B), we represented own variant (3.6) of such canonical form.

4. Actions of group SL on space S

Denote by S/SL a set of orbits all points from the space S = Cn×n × Cn×m
with respect to action (2.3) of group SL.

It is known that for a successful solution of invariant description of system
(2.1) it is necessary to supply the space S (or some suitable subset W ⊂ S) by
a projective variety structure [40], [45] – [47]. The points of this set are called
stable. An exact definition of the set of stable points is such.

Definition 4.1. The system (A,B) ∈ S is called stable with respect to action
(2.3) of group SL, if there exists an open projective SL-invariant set W ⊂ S such
that (A,B) ∈W and orbits of all systems from W are closed in W. A set Fs ⊂ S
consisting of all stable points is called stable.

Definition 4.2. The point (A,B) is called regular if the dimension of orbit
OSL(A,B) of this point is maximal in S.

Further, orbits of all points from Fs have the equal (maximal) dimension.
Consequently, the stabilizers of these points must have the minimal dimension.
Since for regular points is just the equality dimC StabSL(A,B) = 0, then on the
role of stable systems can pretended regular systems only [32, 35, 44]. (We note
that the dimension of space of orbits OG(S) is given by the formula

dimCOSL(S) = n2+nm−dimC SL(n,C)−dimC SL(m,C) = m(n−m)+2.) (4.1)

Theorem 4.1. Let (A,B) be a system of type (n,m), n > m. Suppose that at
least one of the following conditions is fulfilled:

(i) m = 1 and (A,B) does not contain nontrivial subsystems;
(ii) m > 1 and for an arbitrary nontrivial subsystem (A|Xi , B|Ui) ∈ (A,B) of

type (ni,mi), ni > mi, where i ∈ N and N is a set of indexes, the inequality

ni
mi

>
n

m
(4.2)

takes place. Then the system (A,B) is regular.
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Corollary. Assume also that the numbers n and m are coprime. Then under the
conditions of Theorem 4.1, the system (A,B) ∈ Fs.

Proof. The proof of this theorem is based on Lemmas 3.1 – 3.4. In essence, it is a
modification of the proof proposed in [3]. �

The following example shows an importance of concept of coprime numbers.
Consider the set S of systems of type (4, 2). Let (A,B) be an arbitrary system
from this set. Denote by f(A,B) = det(B,AB) an invariant polynomial of system
(A,B). Really, if (S, T ) ∈ SL, then we have

f(S−1AS, S−1BT ) = det(S−1BT, S−1ABT )

= ((detT )2/ detS) det(B,AB) = f(A,B).

Consider the following system of type (4, 2):

A =


0 d2 0 c1

1 d1 0 c2

0 0 0 d2

0 0 1 d1

 , B =


1 0
0 0
0 1
0 0

 , (4.3)

where c1, c2, d1, d2 ∈ C, and c1 6= 0, c2 6= 0. In this case, we get

StabSL(A,B) = {(S, T )} =


1 0 α 0
0 1 0 α
0 0 1 0
0 0 0 1

× ( 1 α
0 1

)
, α 6= 0.

Thus, we have f(A,B) = 1 6= 0 and dimC StabSL(A,B) = 1. Therefore, system
(4.3) is not stable.

5. Invariant description of null-forms for system (A,B)

In Section 2 the existence conditions of null-forms were got in terms of some
special subspaces in X and U. However, for a description of ring of invariants
C[S]SL, it is necessary to get these conditions in invariant terms of matrix pair
(A,B) with respect to action (2.3) of group SL.

Consider the matrix

R(A,B) = (B,AB, ..., An−1B) ∈ Cn×nm. (5.1)

Then action (2.3) of group SL on space Cn×(n+m) induces an action of the same
group on space Cn×nm by the following formula:

R(S−1AS, S−1BT ) = S−1 ·R(A,B) ·

 T 0
. . .

0 T

 = S−1 ·R(A,B) ·
n⊕
i=1

T.

(5.2)
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Many questions of search of invariants for linear control systems may be related
to problem of decomposability of polyvectors, which are constructed from vectors
of linear space Cn. The investigation relationships between polyvectors of Cn,
alternating multilinear forms on Cn, hyperplanes of projective Grassmannians
and regular spreads of projective spaces, it were represented in [10]. We use some
constructions of this article in our own researches.

Denote by M a linear space spanned on minors of order n of matrix (5.1).
Then in virtue of (5.2) SL(M) ⊂ M. On the space M group SLn acts by
the multiplication on scalar detS = 1, and group SLm acts in accordance with

representation
∧n(

n⊕
i=1

T ). It is known [35, 37] that for search of all homogeneous

polynomial invariants substantially depending on B, it is necessary to find a
decomposition of the indicated representation on irreducible components. In obe-
dience to the known result of representation theory of groups an arbitrary irredu-
cible representation of group SLm(C) is a tensor product of polyvector represen-
tations [10,19]. Then the decomposition on irreducible components have the form:

∧n

(
n⊕
i=1

T

)
=

⊕
ω=(n1,...,nd)

rω ∧n1 T ⊗ ∧n2T ⊗ ...⊗ ∧ndT,

where the summation is taken over all multiindexes ω = (n1, ..., nd) such that
n1 + ... + nd = n and m ≥ n1 ≥ ... ≥ nd ≥ 1; rω is a multiple of appropriate

irreducible representation in representation
∧n(

n⊕
i=1

T ).

Below, we construct some examples of invariants for systems of type (n,m).

5.1. Invariants of systems of type (4, 2)

In future by a character Ij(A,B); j ∈ J, we will designate an invariant of
system (A,B), where J is a set of indexes.

1) ω = (n1, n2) = (2, 2); rω = 1; T = SL(2,C), and we consider the
representation T → (∧2T ) ⊗ (∧2T ). In this case, Ij(A,B) = det(Ai1B,Ai2B),
where i1, i2 are positive integers.

2) ω = (n1, n2, n3) = (2, 1, 1); rω = 1; T = SL(2,C), and we consider the
representation T → (∧2T )⊗ T . In this case

Ij(A,B) = det

(
det(B,Ai1b1, A

i2b1) det(B,Ai1b1, A
i2b2)

det(B,Ai1b2, A
i2b1) det(B,Ai1b2, A

i2b2)

)
,

where (b1, b2) are columns of matrix B, and i1, i2 are positive integers.

5.2. Invariants of systems of type (5, 2)

1) ω = (n1, n2, n3) = (2, 2, 1); rω = 1; T = SL(2,C), and we consider the
representation T → (∧2T )⊗ (∧2T )⊗ T . In this case

Ij(A,B) = det

(
det(B,Ai1B,Ai2b1) det(B,Ai1B,Ai2b2)
det(B,Ai1B,Ai3b1) det(B,Ai1B,Ai3b2)

)
,
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where (b1, b2) are columns of matrix B, and i1, i2, i3 are positive integers.

5.3. Invariants of systems of type (5, 3)

1) ω = (n1, n2) = (3, 2); rω = 1; T = SL(3,C), and we consider the
representation T → (∧3T )⊗ (∧2T ). In this case

Ij(A,B)

= det

 det(B,Ai1b1, A
i1b2) det(B,Ai1b1, A

i1b3) det(B,Ai1b2, A
i1b3)

det(B,Ai2b1, A
i2b2) det(B,Ai2b1, A

i2b3) det(B,Ai2b2, A
i2b3)

det(B,Ai3b1, A
i3b2) det(B,Ai3b1, A

i3b3) det(B,Ai3b2, A
i3b3)

 ,

where (b1, b2, b3) are columns of matrix B, and i1, i2, i3 are positive integers.
2) ω = (n1, n2, n3) = (3, 1, 1); rω = 1; T = SL(3,C), and we consider the

representation T → (∧3T )⊗ T ⊗ T . In this case

Ij(A,B)

= det

 det(B,Ai1b1, A
i2b1) det(B,Ai1b1, A

i2b2) det(B,Ai1b1, A
i2b3)

det(B,Ai1b2, A
i2b1) det(B,Ai1b2, A

i2b2) det(B,Ai1b2, A
i2b3)

det(B,Ai1b3, A
i3b1) det(B,Ai1b3, A

i3b2) det(B,Ai1b3, A
i3b3)

 ,

where (b1, b2, b3) are columns of matrix B, and i1, i2, i3 are positive integers.

Now we can begin to construct null-forms for systems of type (n,m). Denote
by ai(A), i = 1, ..., n, the coefficients of characteristic polynomial of matrix A. In
addition, by the symbol W◦(n,m) we will denote a variety of all null-forms of
space S with respect to action (2.3) of group SL.

5.4. Null-forms of systems of type (m+ 1,m), m > 1

Construct the following matrix:

R(A,B) =

 det(B,Ab1), ... ,det(B,Abm)
... ...

...
det(B,Amb1), ... , det(B,Ambm)

 ∈ Cm×m. (5.3)

Consider the invariant I1(A,B) = detR(A,B) of matrix (5.3).

Theorem 5.1. Let n = m+ 1, m ≥ 1. Then

W◦(m+1,m) = {(A,B) ∈ Cn×(n+m) | a1(A) = ... = an(A) = 0 and I1(A,B) = 0}.

Proof. Assume that equality I1(A,B) = 0 takes place. Then form (5.3) of matrix
R(A,B) allows to assert that columns of this matrix are linearly dependent. In
other words, there exist numbers α1, ..., αm ∈ C not all equal to zero such that det(B,A(α1b1 + ...+ αmbm))

...
det(B,Am(α1b1 + ...+ αmbm))

 = 0. (5.4)
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It is possible to consider that rankB = m. (Otherwise the system (A,B) is
the null-form.) Then from (5.4) it follows that Ai(α1b1 + ...+αmbm) ∈ B(U), i =
1, ..., n− 1, and, consequently, the space B(U) contains the invariant subspace V
spanned on the vectors

(α1b1 + ...+ αmbm), A(α1b1 + ...+ αmbm), ..., An−1(α1b1 + ...+ αmbm).

It is known that an arbitrary invariant space of matrixA contains an eigenvector
of this matrix [15]. Thus, there is a nonzero vector b ∈ V ⊂ B(U) such that
Ab = λb, where λ is an eigenvalue of matrix A. It means that in the system (A,B)
there exists the subsystem of type (1, 1). In addition, if a1(A) = ... = an(A) = 0,
then in accord to Theorem 2.2 the system (A,B) is the null-form. �

5.5. Null-forms of systems of type (2m,m), m > 1

Denote by α1, ..., αn eigenvalues of matrix A and let

disc(A) = (α2 − α1)2(α3 − α1)2 · ... · (αn − α1)2 · ... · (αn − αn−1)2

be a discriminant of this matrix.
Let

Bin(η, ξ) =

(
η
ξ

)
=

η!

ξ!(η − ξ)!
≡ η · (η − 1) · ... · (η − ξ + 1)

1 · ... · ξ

be a binomial coefficient. Here η, ξ are positive integers, 0 ≤ ξ ≤ η; 0! = 1! = 1.
Introduce the invariants

Ij(A,B) = det(B,Aj−1B), (5.5)

where j = 1, ..., Bin(2m,m)/2. (Note that I1(A,B) ≡ 0.)

Theorem 5.2. Let n = 2m, m ≥ 1. Then

W◦(2m,m) = {(A,B) ∈ Cn×(n+m) | a1(A) = ... = an(A) = 0 and Ij(A,B) = 0},

where Ij(A,B) are invariants (5.5).

Proof. Denote by M an open set in Cn×(n+m) is given by the condition:

M = {(A,B) ∈ Cn×(n+m) | disc(A) 6= 0}.

Let (A,B) ∈ M be an arbitrary system. Then it is possible to consider that
in a suitable base of space X the matrix A = diag (()α1, ..., α2m).

Denote by ∆j1...jm a minor located in the rows 1 ≤ j1 < ... < jm ≤ 2m of
matrix B.

Let γ1 = α1 · ... ·αm, δ1 = αm+1 · ... ·α2m, ..., γk = αii · ... ·αim , δk = αj1 · ... ·αjm ,
where i1, ..., im, j1, ..., jm ∈ {1, 2, ..., 2m}; 1 ≤ i1 < ... < im ≤ 2m, 1 ≤ j1 < ... <
jm ≤ 2m, and (i1, ..., im) ∩ (j1, ..., jm) = ∅; k = Bin(2m,m)/2.
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Construct the matrix

Q(α1, ..., α2m) =


2 · · · 2 · · · 2

γ1 + δ1 · · · γi1 + δj1 · · · γk + δk
γ2

1 + δ2
1 · · · γ2

i1
+ δ2

j1
· · · γ2

k + δ2
k

... · · ·
... · · ·

...
γk−1

1 + δk−1
1 · · · γk−1

i1
+ δk−1

j1
· · · γk−1

k + δk−1
k

 ∈ Ck×k.

Taking into account the matrix Q(α1, ..., α2m), the conditions Ij(A,B) = 0
may be rewritten as I1

...
Ik

 = Q(α1, ..., α2m) ·

 ∆1...m ·∆m+1...2m
...

∆i1...im ·∆j1...jm

 . (5.6)

Assume that detQ(α1, ..., α2m) 6= 0. It is clear that if I1 = ... = Ik = 0,
then for all indicated above possible collections of indexes i1...im, j1...jm such
that {i1...im}∩{j1...jm} = 0, system (5.6) has the trivial solutions only: ∆i1...im ·
∆j1...jm = 0.

Further, invariant (5.5) can be written as:

det(B,Aj−1B) =

k∑
i=1

(−1)ifij(α1, ..., α2m)∆i1...ik ·∆j1...jk , (5.7)

where {i1, ..., im, j1...jm} = {1, ..., 2m}, 1 ≤ i1 < ... < im ≤ 2m; 1 ≤ j1 < ... <
jm ≤ 2m.

From (5.7) it follows that equalities ∆i1...im ·∆j1...jm = 0 take place if and only
if the matrix (B,B) has the following form:

(B,B) =



∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗


∈ C2m×2m,

where N ∈ C(2m−2l+1)×l is the zero submatrix of matrix B and the symbol ∗
designates a nonzero element of matrix B; l = m− 1,m− 2, ..., 1.

It means that the space B(U) intersects with the invariant subspace V ⊂
C2m(AV ⊂ V) such that dimCV ≤ 2l − 1 and dimCB(U) ∩ V = l, where l =
m−1, ..., 1. Consequently, the system (A,B) of type (2m,m) contains a subsystem
of type (2l − 1, l); l ∈ {m − 1, ..., 1}. Thus, we have (2l − 1)/l < 2m/m = 2 for
l > 0.
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Denote by K an open set in Cn×(n+m) is given by the following condition:

K = {(A,B) ∈ Cn×(n+m) | detQ(α1, ..., α2m) · disc(A) 6= 0}.

It is known [44] that if the regular function Ij(A,B) = 0 on the open set
K ⊂ Cn×(n+m), then this function is equal to zero everywhere on Cn×(n+m). Now
we add conditions Ij(A,B) = 0, j = 2, ..., k, by conditions ai(A) = 0, i = 1, ..., 2m.
Then according to Theorem 2.2, we obtain that (A,B) is the null-form. �

5.6. Null-forms of systems of type (pm,m), p > 2, m > 1

In this subsection the results of previous subsection will be generalized.
Introduce the invariants

Ij(A,B) = det(B,AB, ..., Ap−2B,AjB), (5.8)

where j = p− 1, ..., Bin(pm,m).

Theorem 5.3. Let n = pm, p > 2, m ≥ 1. Then

W◦(pm,m) = {(A,B) ∈ Cn×(n+m) | a1(A) = ... = an(A) = 0 and Ij(A,B) = 0},

where Ij(A,B) are invariants (5.8).

Proof. A proof of this theorem almost word for a word repeats the proof of
Theorem 5.2. It is necessary only to specify some details.

Let detQ(α1, ..., αpm) 6= 0. Then equations (5.6), (5.7), and the matrix (B,B)
are replaced accordingly by equations I1

...
Ir

 = Q(α1, ..., αpm) ·

 ∆1...m · ... ·∆(p−1)m+1...pm
...

∆i1...im · ... ·∆j1...jm

 , (5.9)

det(B,AB, ..., Ap−1B,Aj−1B) =

r∑
i=1

(−1)ifij(α1, ..., αpm)∆i1...i1 · ... ·∆j1...jk ,

(5.10)
where r = Bin(pm,m); {i1, ..., im, ..., j1, ..., jm} = {1, ..., pm}; 1 ≤ i1 < ... <
im ≤ pm;...;1 ≤ j1 < ... < jm ≤ pm, and the matrix

(B, ..., B)︸ ︷︷ ︸
pm

=



∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗


∈ Cpm×pm.
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In order that I1 = ... = Ir = 0, it is necessary that ∆i1...im · ... ·∆j1...jm = 0.
Then from (5.9), (5.10), and the representation of matrix (B, ..., B) it follows
that the space B(U) intersects with the invariant subspace V ⊂ Cpm(AV ⊂ V)
such that dimCV ≤ pl − 1 and dimCB(U) ∩ V = l, where l = m − 1, ..., 1.
Consequently, the system (A,B) of type (pm,m) contains a subsystem of type
(pl − 1, l); l ∈ {m− 1, ..., 1}. Thus, we have (pl − 1)/l < pm/m = p for l > 0. �

5.7. Null-forms of systems of type (pm+ 1,m), p ≥ 2, m > 1

Let B = (b1, ..., bm). Introduce the matrix R1(A,B) ∈ C(pm−m+1)×m, where

R1(A,B)

=

 det(B, ..., Ap−1B,Apb1) · · · det(B, ..., Ap−1B,Apbm)
... · · ·

...
det(B, ..., Ap−1B,Apmb1) · · · det(B, ..., Ap−1B,Apmbm)

 . (5.11)

Introduce the invariants I1j(A,B), which are all minors of degree m of matrix
R1(A,B); j = 1, ..., Bin(pm,m).

Theorem 5.4. Let n = pm+ 1, p ≥ 2, m > 1. Then

W◦(pm+ 1,m) = {(A,B) ∈ Cn×(n+m)

| a1(A) = ... = an(A) = 0; I1j(A,B) = 0, j = 1, ..., Bin(pm,m)}.

Proof. Assume that equalities I1j(A,B) = 0, j = 1, ..., Bin(pm,m), take place.
Then from (5.11) it follows that columns of matrixR1(A,B) are linearly dependent.
Consequently, there exist numbers α1, ..., αm ∈ C not all equal to zero such that det(B,AB, ..., Ap−1B,Ap(α1b1 + ...+ αmbm))

...
det(B,AB, ..., Ap−1B,Apm(α1b1 + ...+ αmbm))

 = 0. (5.12)

Equalities (5.12) can be rewritten as ∧pm+1(B,AB, ..., Ap−1B,Ajb) = 0, where
b = α1b1 + ...+αmbm = (∆1, ...,∆pm+1)T , ∆1, ...,∆pm+1 are coordinates of vector
b, j = p, ..., pm.

Thus, we have

I1j(A,B) =
k∑
i=1

(−1)ifij(α1, ..., αpm+1)∆i1...im · ... ·∆j1...jm · ... ·∆l1...lm ·∆i, (5.13)

where {i1, ..., i2, ..., j1, ..., jm, ..., l1, ..., lm, i} = {1, ..., pm+ 1}; k = Bin(pm,m).
From (5.13) it follows that equalities ∆i1...im · ... ·∆j1...jm · ... ·∆l1...lm ·∆i = 0

take place if and only if the matrix (B, ..., B, b) has the form

(B, ..., B, b)︸ ︷︷ ︸
pm+1
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=



∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗
...
∗
0
...
0


∈ C(pm+1)×(pm+1),

where N ∈ C(pm−pl+1)×l is the zero submatrix of matrix B and the symbol ∗ is
a nonzero element of matrix B; l = m− 1,m− 2, ..., 1. In addition, the column b
has pm− pl + 1 zero coordinates.

In order that I11 = ... = I1r = 0, it is necessary that ∆i1...im · ... ·∆j1...jm · ... ·
∆l1...lm ·∆i = 0. Then from the representation of matrix (B, ..., B, b) it follows that
the space B(U) intersects with the invariant subspace V ⊂ Cpm+1(AV ⊂ V) such
that dimCV ≤ pl and dimCB(U) ∩ V = l, where l = m − 1, ..., 1. Consequently,
the system (A,B) of type (pm + 1,m) contains a subsystem of type (pl, l); l ∈
{m − 1, ..., 1}. Thus, we have pl/l = p < (pm + 1)/m for l > 0. Then according
to Theorem 2.2, we obtain that (A,B) is the null-form. �

5.8. Null-forms of systems of type (pm− 1,m), p ≥ 2, m > 1

LetB = (b1, ..., bm). Introduce the matrixRm−1(A,B) ∈ C(pm−m+1)×m, where

Rm−1(A,B)

=

 det(B, ..., Ap(b1, ..., bm−1)) · · · det(B, ..., Ap(b2, ..., bm))
... · · ·

...
det(B, ..., Apm(b1, ..., bm−1)) · · · det(B, ..., Apm(b2, ..., bm))

 . (5.14)

Introduce the invariants Im−1,j(A,B); j = 1, ..., Bin(pm,m), which are all
minors of degree m of matrix Rm−1(A,B).

Theorem 5.5. Let n = pm− 1, p ≥ 2, m > 1. Then

W◦(pm− 1,m) = {(A,B) ∈ Cn×(n+m)

| a1(A) = ... = an(A) = 0; Im−1,j(A,B) = 0, j = 1, ..., Bin(pm,m)}.

Proof. Assume that equalities Im−1,j(A,B) = 0, j = 1, ..., Bin(pm,m), take
place. Then from (5.14) it follows that columns of matrix Rm−1(A,B) are linearly
dependent. Consequently, there exist numbers α1, ..., αm ∈ C not all equal to zero
such that det(B,AB, ..., Ap−1B,α1A

p(b1, ..., bm−1) + ...+ αmA
p(bm−1, ..., bm))

...
det(B,AB, ..., Ap−1B,α1A

pm(b1, ..., bm−1) + ...+ αmA
p(bm−1, ..., bm))

 = 0.

(5.15)
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According to the known result of external algebra [10,19] any (m−1)-polyvector
built from m − 1 vectors of m-dimensional space B(U) is simple. In considered
case it means that there exist numbers α1, ..., αm ∈ C not all equal to zero such
that

∧m−1(α1(b1, ..., bm−1) + ...+ αm(bm−1, ..., bm)) = ∧m−1(q1, ..., qm−1),

where qi ∈ B(U), i = 1, ...,m− 1.
Without loss of generality, it is possible to consider that b1 = q1, ..., bm−1 =

qm−1. Then equalities (5.15) can be rewritten as

∧pm−1(B,AB, ..., Ap−1B,Aj(b1, ..., bm−1)) = 0,

where j = p, ..., pm.
Thus, we have

Im−1,j(A,B) =

k∑
i=1

(−1)ifij(α1, ..., αpm−1)∆i1...im · ...∆j1...jm ·∆l1...lm−1 , (5.16)

where {i1, ..., im, ..., j1, ..., jm, l1, ...., lm−1} = {1, ..., pm−1}, k = Bin(pm,m), and
∆l1...lm−1 are minors of matrix (b1, ..., bm−1) of order m− 1.

From (5.16) it follows that equalities ∆i1...im · ... ·∆j1...jm ·∆l1...lm−1 = 0 take
place if and only if the matrix (B, ..., B, b1, ..., bm−1) has the form:

(B, ..., B, b1, ..., bm−1)︸ ︷︷ ︸
pm−1

=



∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ ∗ · · · ∗
... · · ·

...
... · · ·

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
... N

...
... · · ·

...
0 · · · 0 ∗ · · · ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗
... · · ·

...
∗ · · · ∗
0 · · · 0
... N

...
0 · · · 0


∈ Cr×r,

where r = pm− 1, N ∈ C(pm−pl+1)×l is the zero submatrix of matrix B, and the
symbol ∗ is a nonzero element of matrix B; l = m− 1,m− 2, ..., 1.

In order that Im−1,1 = ... = Im−1,k = 0, it is necessary that ∆i1...im ·...·∆j1...jm ·
∆l1...lm−1 = 0. Then from the representation of matrix (B, ..., B, b1, ..., bm−1) it
follows that the space B(U) intersects with the invariant subspace V ⊂ Cpm−1

(AV ⊂ V) such that dimCV ≤ pl and dimCB(U) ∩ V = l, where l = m− 1, ..., 1.
Consequently, the system (A,B) of type (pm−1,m) contains a subsystem of type
(pl − 1, l); l ∈ {m − 1, ..., 1}. Thus, we have (pl − 1)/l < (pm − 1)/m for l > 0.
Then according to Theorem 2.1, we obtain that (A,B) is the null-form. �
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6. Stability criterions for system (A,B)

Now we explain an importance of stability concept. Denote by C[A,B]SL the
ring of all invariants of space Cn×(n+m) with respect to action (2.3) of group SL.
Assume that

a1 = a1(A), ..., an = an(A), I1 = I1(A,B), ..., Ir = Ir(A,B)

is a set of homogeneous polynomial generators of ring C[A,B]SL. (Since the group
SL is reductive, then the set of generators is finite [35].) Thus, it is possible to
write C[A,B]SL = C[a1, ..., an, I1, ..., Ir].

Consider two systems (A1, B1), (A2, B2) ∈ Cn×(n+m), which are determined
by the same set of invariants: a1, ..., an, I1, ..., Ir. (In other words we have to have:
a1(A1) = a1(A2), ..., an(A1) = an(A2), I1(A1, B1) = I1(A2, B2), ..., Ir(A1, B1) =
Ir(A2, B2).) Are there matrices S ∈ GL(n,C) and T ∈ GL(m,C) such that
A2 = S−1A1S and B2 = S−1B1T? The example of system (4.3) shows that the
answer on this question is negative.

In [35, 45] it is shown that the set of invariants a1(A), ..., an(A), I1(A,B), ...,
Ir(A,B) determines a unique SL-orbit (or GL-orbit) of system (A,B) if and only
if (A,B) ∈ Fs. This circumstance explains the importance of stability concept.

The following theorem specifies Theorem 4.1.
Assume that n = (p − 1)m + s, 1 < s < m, where s is a natural number.

Consider in the representation
∧n(

n⊕
i=1

T ) simplest components of kind ∧mT⊗(p−1)⊗

∧sT = det(T )p−1 ⊗ ∧sT.
Introduce the invariant fs(A,B) = det(z1, ..., zl), l = Bin(m, s), where all

vectors zi belong to different submodules of kind ∧mT⊗(p−1)⊗∧sT = det(T )p−1⊗
∧sT. For the systems (A,B) of type (n,m) indicated invariant is fs(A,B) =
detG(A,B), and elements of square matrix G(A,B) of order l = Bin(m, s) are:

gij = det(B,AB, ..., Ap−1B,Aj(bi1 , ..., bis)), j ≥ p.

Theorem 6.1. Let number n and m be coprime numbers and fs(A,B) = det(z1,
..., zl) be an invariant substantially depending on B. We will assume that vectors

z1, ..., zl belong to different components of representation
∧n(

n⊕
i=1

T ), which are

isomorphic to (detT )p−1 ⊗ ∧sT . If fs(A,B) 6= 0, then system (A,B) is stable.

Proof. Since fs(A,B) 6= 0, then the matrix G(A,B) = (z1, ..., zl) is not singular.
If (S, T ) ∈ StabSL(A,B), then

G((S, T ) ◦ (A,B)) = (detS−1)q(detT )p−1G(A,B) · ∧sT = G(A,B).

By virtue of invertibility of the matrix G(A,B), we get that ∧sT = λEs, where
Es is the identity matrix of order l = Bin(m, s). Note that the homomorphism
T → ∧sT has the identity core {ζsEm}, where ζs = s

√
1. Therefore, λ = ζs,
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S = ζsEn and StabSL(A,B) consists of the finite number s of pairs matrices
(ζsEn, ζsEm). Therefore, all points of the invariant set Mfs ∈ Cn×(n+m) such that
fs(A,B) 6= 0 are regular and, consequently, its points are stable. �

Theorem 6.2. Let disc(A) 6= 0. Suppose also that A = diag (()λ1, ..., λn) is the
diagonal matrix in some base of space Cn, and in the same base of space Cn all
minors of matrix B are distinct from zero. Then system (A,B) is stable.

Proof. In the case (n,m) = (4, 2) this theorem was proved in [24].
(a) Let φ : Cn×(n+m) → Cn×(n+m) be a morphism of algebraic manifolds,

which satisfies to the following condition:

∀(S, T ) ∈ GL and ∀(A,B) ∈ Cn×(n+m) φ(S−1AS, S−1BT ) = (S, T ) ◦ φ(A,B).
(6.1)

Show that system (A,B) is stable if and only if the system φ(A,B) is stable.
Let the system φ(A,B) be stable. Then there is an invariant opened set Mf

is defined by an invariant f(A,B) such that f(φ(A,B)) 6= 0 and action of group
GL on Mf is closed. Then the invariant φ(f) determines the invariant open set
Mφ(f) ⊂ Cn×(n+m), on which GL acts with closed orbits. The inverse assertion
can be got if instead of the isomorphism φ to consider the inverse morphism φ−1.

(b) Now we consider an automorphism φλ : Cn×(n+m) → Cn×(n+m), which is
given by the rule: φλ(A,B) = (A+ λE,B), where E is the identity matrix. (It is
easily to check that φλ satisfies to condition (6.1).)

It is obvious that A+λE = diag (()λ1 +λ, ..., λn +λ) and disc(A+λE) 6= 0.
Then there is a number λ ∈ C such that det(A + λE) 6= 0. (It is enough to take
λ 6= −λi, i = 1, ..., n.)

Let a system (∧mA,∧mB) be an m-exterior degree of the system (A,B).
Assume that for the system (∧mA,∧mB) the following condition

rank(∧mB,∧m(AB), ...,∧m(An−1B)) < Bin(n,m)

is fulfilled. (The system (∧mA,∧mB) is not complete controllable.)
It means that under the conditions of Theorem 6.2 there exist collections of

indexes (i1, ..., im) and (j1, ..., jm), where 1 ≤ i1 < ... < im ≤ n and 1 ≤ j1 < ... <
jm ≤ n such that

{(i1, ..., im)} ∩ {(j1, ..., jm)} = ∅ and λi1 · ... · λim = λj1 · ... · λjm . (6.2)

Then there exists a number λ ∈ C such that for the matrix A + λE condition
(6.2) is not fulfilled.

Indeed, otherwise for all λ

(λi1 + λ) · ... · (λim + λ) = (λj1 + λ) · ... · (λjm + λ). (6.3)

Equality (6.3) means that

hk(λi1 , ..., λim) = hk(λj1 , ..., λjm)
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for any elementary symmetric polynomials hk(λi1 , ..., λim), k = 1, ...,m [15].
However, it is impossible since λi 6= λj at i 6= j.

Further, since the set of all numbers λ such that

disc(∧m(A+ λE)) 6= 0 and detA 6= 0 (6.4)

is open in the Zariski topology and the Euclidean topology of space C [44], then
their intersection is not empty. Consequently, there will be numbers λ ∈ C, for
which both conditions (6.4) are valid simultaneously. Then the system φλ(A,B)
is stable and, in obedience to the item (a), the system (A,B) will be also stable.
It completes proof of item (b) and all Theorem 6.2. �

Theorem 6.3. System (A,B) of type (n,m) is stable with respect to action (2.3)
of group GL if and only if it is stable with respect to action (2.3) of group SL.

Proof. We will consider the morphism of algebraic manifolds:

φ : Cn×(n+m) → Cn×n × CN , N = Bin(n,m),

φ(A,B) = (A,∧mB).

Notice that the image of morphism φ is a close variety in space Cn×n × CN
and orbits of group SL the morphism φ transfers in the orbits of group GL(n,C)
in space Cn×(n+m) at action

SL(n,C)× Cn×n × CN → Cn×n × CN ,

(S,A,∧mB) = (S−1AS,∧m(S−1B)).

It completes the proof. �

6.1. Stability of systems of type (4, 2)

In this subsection we show difficulties, which can arise up at construction of
the set of all stable systems in case if m is a divisor of n (see [24]).

First of all, we show that if system (A,B) is stable then the matrix A is
cyclic [15]. For this purpose we present the various Jordan formes of noncyclic
matrix of order 4:

a)


α1 0

α1

α2

0 α3

 , b)


α1 1 0

α1

α1

0 α2

 , c)


α1 1 0

α1

α1 1
0 α1

 ,

d)


α1 1 0

α1 1
α1

0 α1

 , e)


α1 0

α1

α1

0 α2

 , f)


α1 0

α1

α1

0 α1

 .
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Thus, there are six such forms.
Consider, for example, the system (A,B) of type (4, 2), for which matrix

A looks like a) and matrix B is arbitrary. Apply to (A,B) the transformation
(S, T ) ∈ GL, where

S =


α β 0
γ δ

ν
0 µ


and numbers α, β, γ, δ, µ, and ν satisfy a unique condition: detS 6= 0. Then system
(A,B) can be transformed to the following system:

S−1AS =


α1 0

α1

α2

0 α3

 , S−1BT =


0 ∗
1 ∗
1 ∗
0 ∗

 ,

where by character ∗ arbitrary numbers are marked.
From here it follows that the system (A,B) contains a subsystem of type

(2, 1). Consequently, according to Theorem 4.1, the system (A,B) is nonstable.
By applying the same arguments to one of matrices b) - f), we obtain a similar
result: the conditions of Theorem 4.1 are not valid.

We reduce the matrix A of system (A,B) to triangular form [15]. Then analysis
of all possible Jordan forms of A results in the conclusion: if the system is not
stable then there exists a minor of the second order of matrix B, which equal to
zero. Otherwise, if the system (A,B) is stable, then there is even one nonzero
minor of the second order of matrix B.

Denote by I0 = det(B,B) ≡ 0, I1 = det(B,AB), I2 = det(B,A2B), a1, ..., a4

invariants of system (A,B).

Theorem 6.4. Let (A,B) be a system of type (4, 2). Then the set Fs of all SL-
stable systems with respect to action (2.3) is determined by the condition:

Fs = {(A,B) ∈ C4×6 | fs(A,B) 6= 0},

where the polynomial invariant

fs(A,B) = (a1a2a3 − a2
3 − a2

1a4)I3
1 − (a1a3 + a2

2 − 4a4)I2
1I2 + 2a2I1I

2
2 − I3

2

has degree 24 with respect to elements aij and bik of matrices A and B.

Proof. Assume that for the matrix A, we have disc(A) 6= 0. In this case the system
(A,B) of type (4, 2) may be transformed to the following aspect:

A =


α1 0

α2

α3

0 α4

 , B =


b11 b12

b21 b22

b31 b32

b41 b42

 .
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Denote by ∧2B = (∆12,∆13,∆14,∆23,∆24,∆34)T a bivector of matrix B;
here ∆ij = bi1bj2 − bi2bj1 are minors of matrix B; i, j = 1, ..., 4; i < j. Then the
invariants I0, I1, and I2 of system (A,B) are given by the formulas 0

I1

I2

 =

 2 2 2
α1α2 + α3α4 α1α3 + α2α4 α1α4 + α2α3

α2
1α

2
2 + α2

3α
2
4 α2

1α
2
3 + α2

2α
2
4 α2

1α
2
4 + α2

2α
2
3

 ·
 ∆12∆34

−∆13∆24

∆14∆23

 .

(6.5)
The elementary computations show that

det

 2 2 2
α1α2 + α3α4 α1α3 + α2α4 α1α4 + α2α3

α2
1α

2
2 + α2

3α
2
4 α2

1α
2
3 + α2

2α
2
4 α2

1α
2
4 + α2

2α
2
3

 = 2 (disc(A))1/2.

Let p1 = α1α2 + α3α4, p2 = α1α3 + α2α4, and p3 = α1α4 + α2α3. Since we
consider that disc(A) 6= 0, then from (6.5) we have ∆12∆34

−∆13∆24

∆14∆23

 =

 2 2 2
α1α2 + α3α4 α1α3 + α2α4 α1α4 + α2α3

α2
1α

2
2 + α2

3α
2
4 α2

1α
2
3 + α2

2α
2
4 α2

1α
2
4 + α2

2α
2
3

−1

·

 0
I1

I2



=
1

(2 disc(A))1/2

 0.5p2p3(p2 − p3) (p2
2 − p2

3) (p2 − p3)
0.5p1p3(p1 − p3) (p2

1 − p2
3) (p1 − p3)

0.5p1p2(p1 − p2) (p2
1 − p2

2) (p1 − p2)

 ·
 0

I1

I2



=
1

(2 disc(A))1/2

 −(p2 − p3)(p2 + p3)I1 + (p2 − p3)I2)
−(p1 − p3)(p1 + p3)I1 + (p1 − p3)I2)
−(p1 − p2)(p1 + p2)I1 + (p1 − p2)I2)

 .

From the last relations we get

∆12∆13∆14∆23∆24∆34

= − 1

8 disc(A)
(−(p2 + p3)I1 + I2)(−(p1 + p3)I1 + I2)(−(p1 + p2)I1 + I2)

= −−(p1 + p2)(p1 + p3)(p2 + p3)I3
1

8 disc(A)

−((p1 + p3)(p2 + p3) + (p1 + p3)(p1 + p2) + (p1 + p2)(p2 + p3))I2
1I2

8 disc(A)

+
2(p1 + p2 + p3)I1I

2
2 − I3

2

8 disc(A)

= −−(a1a2a3 − a2
3 − a2

1a4)I3
1 + (a1a3 + a2

2 − 4a4)I2
1I2 − 2a2I1I

2
2 + I3

2

8 disc(A)
. (6.6)
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Above it was noted that the system (A,B) would be not stable if either even
one minor ∆ij = 0 or disc(A) = 0. Then from (6.6) it follows that (A,B) is
SL-stable if the invariant

fs(A,B) = (a1a2a3 − a2
3 − a2

1a4)I3
1 − (a1a3 + a2

2 − 4a4)I2
1I2 + 2a2I1I

2
2 − I3

2 6= 0.

Consider the cyclic matrix
α1 0

α2

α3

0 α4

 . (6.7)

Apply to this matrix the transformation

S =


1 1/(α1 − α2) 0

1
1

0 1

 ;

then, we have

S−1AS =


α1 1 0

α2

α3

0 α4

 .

Let T = E be the identity matrix of order 2. Then

fs(S
−1AS, S−1BT ) = (detS)lS (detT )lT fs(A,B) = fs(A,B).

Since we have

lim
(α1−α2)→0

S−1AS =


α1 1 0

α1

α3

0 α4

 ,

then even if (α1 − α2)→ 0 the invariant polynomial fs(A,B) is saved.
Applying similar methods, it is possible to get from matrix (6.7) an arbitrary

cyclic matrix A, for which disc(A) = 0. (Note that if matrix (6.7) is noncyclic,
then the last assertion is incorrect.) Consequently, the polynomial fs(A,B) saves
and for cyclic matrices A such that disc(A) = 0.

Finally, we note that for noncyclic matrices A system (A,B) type (4, 2) is not
stable. The proof is finished. �

6.2. Stability of systems of type (m+ 1,m), m > 1

(a)m = 2. LetA = diag (()α1, α2, α3), ∧2B = (∆12,∆13,∆23)T , and disc(A) 6=
0. We take advantage of Theorems 5.1 and 6.1.
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Consider the invariant I(A,B) = detR(A,B), where R(A,B) is matrix (5.3)
at n = 3 and m = 2. Then we have

I(A,B)

= det

(
α1∆23b11 − α2∆13b21 + α3∆12b31 α1∆23b12 − α2∆13b22 + α3∆12b32

α2
1∆23b11 − α2

2∆13b21 + α2
3∆12b31 α2

1∆23b12 − α2
2∆13b22 + α2

3∆12b32

)
= (α1α2(α1 − α2)− α1α3(α1 − α3) + α2α3(α2 − α3))∆12∆13∆23

= (α1 − α2)(α1 − α3)(α2 − α3)∆12∆13∆23.

It is clear that I(A,B) is GL-invariant, but it is not SL-invariant. Therefore,
we have to take the invariant

I2(A,B) = disc(A)∆2
12∆2

13∆2
23.

Now we must show that if the matrix A is noncyclic then I2(A,B) = 0. It can
be checked by the methods of subsection 6.1.

Thus, the set of all SL-stable systems (A,B) of type (3, 2) is given by the
condition

Fs = {(A,B) ∈ C3×5 | I2(A,B) 6= 0}.

(b) m > 2. A proof of this case word for a word repeats the previous proof. In
this case we get

I2(A,B) = disc(A) ∆2
1...m · ... ·∆2

2...m+1︸ ︷︷ ︸
m+1

.

Therefore, the set of all SL-stable systems (A,B) of type (m + 1,m) is given by
the condition

Fs = {(A,B) ∈ C(m+1)×(2m+1) | I2(A,B) 6= 0}.

7. Description of ring of invariants for system (A,B)

7.1. Structure of invariants of group SL for system (A,B)

Denote by a1, ..., an the coefficients of the characteristic polynomial of matrix
A. Let f(A,B) ∈ C[A,B]SL be an invariant of group SL = SL(n,C)× SL(m,C)
with respect to action (2.3). Let also the vector (∆1, ...,∆r)

T = ∧m(B) be the
exterior degree of matrix B; r = Bin(n,m).

Theorem 7.1. Any polynomial SL-invariant of group SL is a function of elements
a1, ..., an, ∆1, ...,∆r.
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Proof. We represent the polynomial f(A,B) in the following form:

f(A,B) =
r∑
i=1

gi(A)⊗ vi(B),

where gi(A) (vi(B)) are polynomials depending only on the elements of matrix
A (the elements of matrix B) and the polynomials gi(A) it is possible to choose
linearly independent.

Further, ∀T ∈ SL(m,C), we have

r∑
i=1

gi(A)⊗ vi(B) = f(A,B) = f(A,BT ) =
r∑
i=1

gi(A)⊗ vi(BT ).

Consequently, from here it follows that
r∑
i=1

gi(A)⊗ [vi(B)− vi(BT )] = 0.

By virtue of the linear independence of polynomials gi(A) over C, we get that
∀i and for all T ∈ SL(m,C) vi(B) = vi(BT ). In other words, the inclusion vi(B) ∈
C[B]SL(m,C) = C[∆1, ...,∆r] takes place. Consequently, f(A,B) = h(A,∆1, ...,∆r)
is a polynomial of elements of matrix A and coordinates of polyvector ∧mB. Thus,
∀(S, T ) ∈ SL we have

(S, T ) ◦ f(A,B) = (S−1AS, S−1BT ) = h(A,∧m(S−1BT )) = h(A,∆1, ...,∆r),

where h(...) is a homogeneous polynomial of elements of matrix A and ∆1, ...,∆r.
Besides, if we take into account that any SL(n,C)-invariant of matrix A is a
polynomial of elements a1, ..., an, then the invariant f(A,B) is the function of
a1, ..., an,∆1, ...,∆r. �

7.2. Ring of invariants for system (A,B) of type (2p, 2), p > 1

Theorem 7.2. Let I1(A,B), ..., I2p−2(A,B) be invariants (5.8). Then the following
equality

C[A,B]SL = C[a1, ..., a2p, I1, ..., I2p−2]

takes place. Moreover, the number 4p − 2 of generators of ring C[A,B]SL is
minimal.

Proof. (a) p = 2. In this case the proof easily can be got from the proofs of
Theorems 5.2 and 6.4.

(b) p = 3. Let A = diag (()α1, α2, α3, α4, α5, α6), B = (b1, b2) ∈ C5×2, ∧2B =
(∆12,∆13, ...,∆56)T , and disc(A) 6= 0.

Represent the equivalence det(B,B,B) ≡ 0 in the following form:

det(B,B,B) = ∆12∆34∆56 −∆13∆25∆46 + ∆14∆26∆45

−∆15∆24∆36 + ∆16∆35∆24 ≡ 0.
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Construct invariants (5.8):
I0 = det(B,AB,AB)
I1 = det(B,AB,A2B)
I2 = det(B,AB,A3B)
I3 = det(B,AB,A4B)
I4 = det(B,AB,A5B)

 = Q(α1, ..., α6) ·


∆12∆34∆56

−∆13∆25∆46

∆14∆26∆45

−∆15∆24∆36

∆16∆35∆24

 , (7.1)

where I0 ≡ 0 and
Q(α1, ..., α6)

= α1 · ... · α6 ·


1

α3α4
+ 1

α1α2
+ 1

α5α6
· · · 1

α2α4
+ 1

α3α5
+ 1

α1α6
... · · ·

...
α4
5α

4
6

α3α4
+

α4
3α

4
4

α1α2
+

α4
1α

4
2

α5α6
· · · α4

3α
4
5

α2α4
+

α4
1α

4
6

α3α5
+

α4
2α

4
4

α1α6

 ∈ C5×5.

Assume that detQ(α1, ..., α6) 6= 0. Let also I1 = ... = I4 = 0. Then from (7.1) it
follows that

∆12∆34∆56 = ∆13∆25∆46 = ∆14∆26∆45 = ∆15∆24∆36 = ∆16∆35∆24 = 0.
(7.2)

Researches of system (7.2) result in one of systems of equations: either ∆12 =
∆13 = ∆14 = ∆23 = ∆24 = ∆34 = 0 or ... or ∆34 = ∆35 = ∆36 = ∆45 =
∆46 = ∆56 = 0. According to Theorem 5.3 it means that there exists a subsystem
of type (2, 1) of system (A,B). If it is assertion to complement by conditions
a1 = ... = a6 = 0, then we get that the system (A,B) is the null-form.

Now we suppose that g(A,B) ∈ C[A,B]SL is the homogeneous polynomial
invariant such that g(A,B) = 0 in all roots of polynomials a1, ...., a6, I1, ..., I4.
Then by the known Hilbert theorem [35] there exists an integer number d ≥ 1 such
that gd(A,B) ∈ C[a1, ...., a6, I1, ..., I4]. Assume that for the polynomial invariant
g(A,B) such that g(A,B) = 0, we have d > 1. (In other words, g(A,B) /∈
C[a1, ...., a6, I1, ..., I4].) It is clear that the invariants I1, ..., I4 are polynomials
of degree 3 with respect to ∆12, ...,∆56. In addition, degree 3 is the minimal
degree with respect to ∆12, ...,∆56 of all invariants depending on B in the ring
C[A,B]SL. Therefore, there exists the invariant g(A,B) such that d = 1, and
therefore, C[a1, ...., a6, I1, ..., I4] = C[A,B]SL.

(c) p > 3. Let A = diag (()α1, ..., α2p), ∧2B = (∆12,∆13, ...,∆2p−1,2p)
T , and

disc(A) 6= 0.
A proof of the case p > 3 repeats the proof of Theorem 7.2 for case p = 3.

It is necessary only to do some generalizations. For p > 3 system (7.1) has such
form: 

I0

I1
...

I2p−2

 = Q(α1, ..., α2p) ·


∆12∆34 · ... ·∆2p−1,2p

−∆13∆25 · ... ·∆2p−2,2p
...

(−1)l∆i1i2∆j1j2 · ... ·∆k1k2


︸ ︷︷ ︸

p factors

, (7.3)
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where I0 ≡ 0, Q(α1, ..., α2p) ∈ C(2p−1)×(2p−1), 1 ≤ i1 < i2 ≤ 2p, ..., 1 ≤ k1 <
k2 ≤ 2p, l = 1, ..., 2p − 1, and permutations (i1, i2),...,(k1, k2) are satisfied to
the condition (i1, i2, ..., k1, k2) ∈ {1, 2, ..., 2p − 1, 2p}. There are all (2p − 1)!! =
1 · 3 · 5 · ... · (2p− 1) permutations.

Further, let I1 = ... = I2p−2 = 0. If detQ(α1, ..., α2p) 6= 0, then from (7.3) it
follows that ∆12∆34 · ... ·∆2p−1,2p = ... = ∆i1i2∆j1j2 · ... ·∆k1k2 = 0. It means that
there exists a submatrix Bp−1 ∈ C(p−1)×2 of matrix B such that ∧2Bp−1 = 0. A
further algorithm of proof is obvious.

Let us compute the dimension of space of orbits for system of type (2p, 2).
From formula (4.1) it follows that for the system of type (2p, 2) we have dimC
OSL(S) = 4p− 2. It means that in Theorem 7.2 the number of generators of ring
C[A,B]SL is minimal.�

7.3. Ring of invariants for system (A,B) of type (2p+ 1, 2), p ≥ 1

Theorem 7.3. Let

Iij(A,B) = det

(
det(B,AB, ..., Ap−1B,Aib1) det(B,AB, ..., Ap−1B,Aib2)
det(B,AB, ..., Ap−1B,Ajb1) det(B,AB, ..., Ap−1B,Ajb2)

)
,

p ≤ i < j ≤ 2p+ 1, be invariants (5.11). Then the following equality

C[A,B]SL = C[a1, ..., a2p+1, Ip,p+1, ..., Ip,2p︸ ︷︷ ︸
p

, Ip+1,p+2, ..., Ip+1,2p︸ ︷︷ ︸
p−1

]

takes place. Moreover, the number 4p of generators of ring C[A,B]SL is minimal.

Proof. (a) p = 2. Let A = diag (()α1, α2, α3, α4, α5), B = (b1, b2) ∈ C5×2, ∧2B =
(∆12, ...,∆45)T , and disc(A) 6= 0.

Represent the functions det(B,B, b1) ≡ 0 and det(B,B, b2) ≡ 0 in the following
forms:

det(B,B, b1)

= 2b11(∆23∆45 −∆24∆35 + ∆25∆34)− 2b21(∆13∆45 −∆14∆35 + ∆15∆34)

+2b31(∆12∆45 −∆14∆25 + ∆24∆15)− 2b41(∆12∆35 −∆13∆25 + ∆23∆15)

+2b51(∆12∆34 −∆13∆24 + ∆23∆34) ≡ 0

and
det(B,B, b2)

= 2b12(∆23∆45 −∆24∆35 + ∆25∆34)− 2b22(∆13∆45 −∆14∆35 + ∆15∆34)

+2b32(∆12∆45 −∆14∆25 + ∆24∆15)− 2b42(∆12∆35 −∆13∆25 + ∆23∆15)

+2b52(∆12∆34 −∆13∆24 + ∆23∆34) ≡ 0.
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Taking into account the structure of functions det(B,B, b1), det(B,B, b2), we
form the following zero (2× 2)-matrix:

R0 = 2

(
1 −1 1 −1 1
1 −1 1 −1 1

)

×


b11(∆23∆45 −∆24∆35 + ∆25∆34) b12(∆23∆45 −∆24∆35 + ∆25∆34)
b21(∆13∆45 −∆14∆35 + ∆15∆34) b22(∆13∆45 −∆14∆35 + ∆15∆34)
b31(∆12∆45 −∆14∆25 + ∆24∆15) b32(∆12∆45 −∆14∆25 + ∆24∆15)
b41(∆12∆35 −∆13∆25 + ∆23∆15) b42(∆12∆35 −∆13∆25 + ∆23∆15)
b51(∆12∆34 −∆13∆24 + ∆23∆34) b52(∆12∆34 −∆13∆24 + ∆23∆34)

 .

Now we use the structure of matrix R0 for computation of invariants. Then
we have:

Iij(A,B) = det

(
det(B,AB,Aib1) det(B,AB,Aib2)
det(B,AB,Ajb1) det(B,AB,Ajb2)

)

= det
[( αi1 −αi2 αi3 −αi4 αi5

αj1 −αj2 αj3 −αj4 αj5

)
×

diag (() (α2α3 + α4α5)∆23∆45 − (α2α4 + α3α5)∆24∆35 + (α2α5 + α3α4)∆25∆34,

(α1α3 + α4α5)∆13∆45 − (α1α4 + α3α5)∆14∆35 + (α1α5 + α3α4)∆15∆34,

(α1α2 + α4α5)∆12∆45 − (α1α4 + α2α5)∆14∆25 + (α2α4 + α1α5)∆24∆15,

(α1α2 + α3α5)∆12∆35 − (α1α3 + α2α5)∆13∆25 + (α2α3 + α1α5)∆23∆15,

(α1α2+α3α4)∆12∆34−(α1α3+α2α4)∆13∆24+(α2α3+α3α4)∆23∆34)·B
]
. (7.4)

We represent system (7.4) in such aspect:

0
...
0
I23

I24

I34


= ∧2




1 −1 1 −1 1
α1 −α2 α3 −α4 α5

α2
1 −α2

2 α2
3 −α2

4 α2
5

α3
1 −α3

2 α3
3 −α3

4 α3
5

α4
1 −α4

2 α4
3 −α4

4 α4
5

 ·D ·B
 , (7.5)

where D = diag (() d1, ..., d5) is the diagonal matrix from system (7.4).
In order that system (7.5) had trivial solution only, it is necessary that I23 =

I24 = I34 = 0. Indeed, since disc(A) 6= 0, then from (7.5) it follows that ∧2(D·B) =
0. The last equality is possible if and only if

didj∆ij = 0; 1 ≤ i < j ≤ 5. (7.6)

The following variants are here possible.



Equivalence of Linear Control Systems 81

(a1) d1 6= 0, ..., d5 6= 0. Then we have ∧2B = 0. It means ∆ij = 0; 1 ≤ i <
j ≤ 5.

(a2) d1 = 0, d2 6= 0,...,d5 6= 0. Then ∧2B1 = 0, where B1 is the submatrix of
matrix B without the first row.

(a3) d1 = d2 = 0, d3 6= 0,...,d5 6= 0. Then ∧2B12 = 0, where B12 is the
submatrix of matrix B without the first and second rows.

In all other cases system (7.6) does not have solutions. From here it follows
that in the space X there exists the space X1 such that dimX1 ∩ B(U) = 1 and
dimX1/1 < 5/2. It means that the system (A,B) is the null-form, which is defined
by the invariants a1, ..., a5, I23, I24, I34(see Theorems 2.2 and 5.4).

(b) p > 2. In order that to generalize the proof of Theorem 7.3 in this case,
it is necessary to do alterations in the structure of diagonal matrix D only. The
diagonal elements of this matrix will be have the form

di =

2p−1∑
j=1

(−1)ifij(α1, ..., α2p+1) ∆i1i2 · ... ·∆j1j2︸ ︷︷ ︸
p

,

where {i1, i2, ..., j1, j2} = {1, ..., 2p + 1}; 1 ≤ i1 < i2 ≤ 2p + 1,..., 1 ≤ j1 < j2 ≤
2p+ 1; i = 1, ..., 2p+ 1.

In order that the conditions of Theorem 2.1 were satisfied, it is necessary the
equality to zero of Bin(p+ 1, 2) = p(p+ 1)/2 invariants (5.11). However, among
these invariants there exist (p− 1)(p− 2)/2 syzygies [37,44].

Invariants (5.11) are coordinates of bivector

∧2

 det(B,AB, ..., Ap−1B,Apb1) det(B,AB, ..., Ap−1B,Apb2)
...

...
det(B,AB, ..., Ap−1B,A2pb1) det(B,AB, ..., Ap−1B,A2pb2)

 .

Thus, among generators of the ring C[A,B]SL there must be p(p+ 1)/2− (p−
1)(p− 2)/2 = 2p− 1 algebraically independent invariants (5.11). These invariants
are indicated in Theorem 7.3.

Now we compute the dimension of space of orbits for system of type (2p+1, 2).
From formula (4.1) it follows that for the system of type (2p + 1, 2) we have

dimCOSL(S) = 4p. It means that in Theorem 7.3 the number of generators of ring
C[A,B]SL is minimal. �

7.4. Ring of invariants for system (A,B) of type (n,m), n > m

As regards of a description of rings of invariants for systems of arbitrary types,
we can state the following reasons.

Denote by W◦ ⊂ S an algebraic variety of all null-forms of space S with respect
to action (2.3) of group SL. Let also f1(·), ..., fk(·) be homogeneous invariant
polynomials defining the variety W◦. (The last means that if Wmax is the maximal
subvariety in S such that ∀y ∈ Smax f1(y) = 0, ..., fk(y) = 0, then Wmax = W◦.)
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We will denote by C[f1, ..., fk] a ring of invariants generating subvariety W◦. Then
the following theorem holds true.

Theorem 7.4. (See [35]). C[S]SL = C[f1, ..., fk], where the symbol C[f1, ..., fk]
means the integer closure of the ring C[f1, ..., fk] ⊂ C[S]SL in the ring C[S]SL.

Now we return to the equivalence problem. From Theorem 7.4 it follows
that although rings C[f1, ..., fk] and C[S]SL do not coincide, but their quotient
fields coincide: C(f1, ..., fk) = C(S)SL. It means that invariants f1(·), ..., fk(·)
define a point (A,B) ∈ S to within a birational equivalence, and consequently,
their knowledge completely gives the solution of equivalence problem for systems
(A1, B1) ∈ Fs ⊂ S and (A2, B2) ∈ Fs ⊂ S.

Since in general case the set Fs of stable systems is unknown, for the solution
of the equivalence problem an open subset in Fs, which is defined by the conditions
of Theorem 6.2, it can be used.

For the decision of equivalence problem Theorem 7.4 can be used as follows.
Assume that the homogeneous invariants a1(A), ..., an(A), I1(A,B), ..., Ir(A,B)
define the manifold W◦ ⊂ S of null-forms (A,B) of type (n,m). It means that
polynomials a1(A), ..., an(A), I1(A,B), ..., Ir(A,B) are generators of the quotient
field C(A,B)SL of ring C[A,B]SL.

Let I = C[a1, ..., an, I1, ..., Ir] ⊂ C[A,B] be an ideal, which is generated
by the polynomials a1, ..., an, I1, ..., Ir in the ring of polynomials from elements
a11, ..., ann, b11, ..., bnm of matrices A and B.

Let g(A,B) be an polynomial in C[A,B]. Assume that there exists an integer
k such that from the condition gk(A,B) ∈ I it follows that g(A,B) ∈ I.

Definition 7.1. (See [35, 44]). The ideal I ∈ C[A,B] is called a radical ideal if
from the condition gk(A,B) ∈ I it follows that g(A,B) ∈ I.

Thus, in generic case we have I = C[a1, ..., an, I1, ..., Ir] ⊂ C[A,B]SL. In order
that the equality I = C[a1, ..., an, I1, ..., Ir] = C[A,B]SL takes place, the ideal I
must be radical. (In this case, the conditions of Theorem 7.4 will be fulfilled.)

A verification of the last condition is a difficult problem. Therefore, in the
present paper of question about construction of ring of invariants for arbitrary
systems was not be considered. (The exception is made by the systems of types
(2p, 2) and (2p+1, 2), for which the rings of invariants were indicated in Subsections
7.2 and 7.3.)

Nevertheless, we can build the generators of quotient field C(A,B)SL for the
systems (A,B), which were considered in Section 5. Knowledge of these generators
already allows to solve the equivalence problem. (However, their number is not
minimal; it is a main lack of conception of null-forms.)

8. Description of invariants for system (2.1), (2.2)

Below, we will use the ring of invariants of matrix pair (C,A) with respect to
action of group SL. This ring can be got from algebra C[A,B]SL by replacements
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B → CT and A → AT . We will designate this ring by the symbol C[C,A]SL,
where SL = {S ×W} = SL(n,C) × SL(p,C). In addition, for system (2.1),(2.2)
we will use the designation (C,A,B). We will also call the system (C,A,B) by a
system of type (p, n,m), where numbers p, n, and m are dimensions of the output
space, state space, and input space.

Note that results of this subsection can be got from the theorem about structure
of generators of ring of invariants with respect to action (2.3) of group SL for one
(n× n)-matrix, m column vectors and p row vectors of dimension n [37].

Introduce the matrices

R1(A,B) = (B,AB, ..., An−1B) ∈ Cn×nm,

R2(C,A) = (CT , (CA)T , ..., (CAn−1)T )T ∈ Cpn×n,

R3(C,A,B) = (CB,CAB, ..., CAn−1B) ∈ Cp×mp,

R4(C,A,B) = ((CB)T , (CAB)T , ..., (CAn−1)TBT )T ∈ Cmp×m.

Then action (2.3) of group SL on the space Cn×n × Cn×m × Cp×n induce
actions of the same group on spaces Cn×nm, Cpn×n, Cp×mp, and Cmp×m, which
are given by the following formulas:

1)R1(S−1AS, S−1BT ) = S−1 ·R1(A,B) ·

 T 0
. . .

0 T

 ,

2)R2(S−1AS,WCS) =

 W 0
. . .

0 W

 ·R2(C,A) · S,

3)R3(WCS,S−1AS, S−1BT ) = W ·R3(C,A,B) ·

 T 0
. . .

0 T

 ,

4)R4(WCS,S−1AS, S−1BT ) =

 W 0
. . .

0 W

 ·R4(C,A,B) · T.

Further, as well as in Section 5, it is necessary to find decompositions of the
representations

∧n(
n⊕
i=1

T ),
∧n(

n⊕
i=1

W ),
∧p(

n⊕
i=1

T ),
∧m(

n⊕
i=1

W )
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on irreducible components. These decompositions are given by the following formulas:

∧n

(
n⊕
i=1

T

)
=

⊕
ω1=(n11,...,n1d)

rω1 ∧n11 T ⊗ ∧n12T ⊗ ...⊗ ∧n1dT,

∧n

(
n⊕
i=1

W

)
=

⊕
ω2=(n21,...,n2d)

rω2 ∧n21 W ⊗ ∧n22W ⊗ ...⊗ ∧n2dW,

∧p

(
n⊕
i=1

T

)
=

⊕
ω1=(n31,...,n3d)

rω3 ∧n31 T ⊗ ∧n32T ⊗ ...⊗ ∧n3dT,

∧m

(
n⊕
i=1

W

)
=

⊕
ω4=(n41,...,n4d)

rω4 ∧n41 W ⊗ ∧n42W ⊗ ...⊗ ∧n4dW.

(Here a meaning of denotations the same that in Section 5.)
In future we will be restricted only to the case m = p.
Introduce the following invariants of group SL:

Kj = det(CAr−1B), j = 1, ..., r = Bin(n,m). (8.1)

Theorem 8.1. Let (C,A,B) be a system of type (n,m, p), where m = p ≤ n.
Then the ring of invariants C[C,A,B]SL of this system is generated:

– by the coefficients an, ..., an of characteristic polynomial of matrix A;
– by the generators of ring C[A,B]SL essentially depending on B;
– by the generators of ring C[C,A]SL essentially depending on C;
– by invariants Kj = det(CAr−1B), j = 1, ..., r = Bin(n,m).

Proof. We assume that we know rings of invariants C[A,B]SL of system (A,B)
and C[C,A]SL of systems (C,A). Assume also that the matrix A resulted to the
diagonal form: A = diag (()α1, ..., αn). Then invariants (8.1) can be rewritten in
the form:

Kj =
∑

1≤i1<...<im≤n
(αji1 · ... · α

j
in

)BjCj , (8.2)

where Bj(Cj) are coordinates of polyvector ∧mB (of polyvector ∧mC); j = 1, ..., r.
Rewrite equations (8.2) in the matrix form:

K = H(α1, ..., αn)D, (8.3)

where H ∈ Cr×r, K = (K1, ...,Kr)
T , D = (B1C1, ..., BrCr)

T .
If disc(H(α1, ..., αn)) = 0, then we will replace the matrix A by the matrix

A + λE, where E is the identity matrix. Then by the choice λ it is possible to
obtain disc(H(α1 + λ, ..., αn + λ)) 6= 0 (see Theorem 6.2).

Thus, we can consider that disc(H(α1, ..., αn)) 6= 0. In this case the vector D is
uniquely determined from equations (8.3). Since the function disc(H(α1, ..., αn))
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is regular, then from solvability of system (8.2) we get products of coordinates Bj
and Cj ; j = 1, ..., r.

We can consider that the solutions of system (8.3) are seeking on some open
set L ⊂ Cr such that if ∧mB ∈ L and ∧mCT ∈ L, then BjCj = Wj 6= 0;
j = 1, ..., r. From here it follows that if coordinates of vector ∧mB (or ∧mCT )
are known, then coordinates of vector ∧mCT (or ∧mB) are uniquely determined
from the system of equations BjCj = Wj 6= 0; j = 1, ..., r.

Further, in the same way as in the proof of Theorem 7.2, we use the Hilbert
theorem [35] and the method of construction of invariants (8.1). The proof is
finished. �

It is possible to specify the results of Theorem 8.1 if to take advantage of
Theorems 7.2 and 7.3. Two next theorems are the obvious corollaries of Theorem
8.1.

Denote by OG(C,A,B) ⊂ S an orbit of system (C,A,B) with respect to action
(2.3) of group SL.

Note that the dimension of space of orbits OG(S) for system of type (p, n,m)
is given by the formula:

dimCOSL(S) = n(n+m+ p)− dimC SL(n,C)− dimC SL(m,C)− dimC SL(p,C)

= n(p+m) + 3−m2 − p2.

Let (C,A,B) be a system of type (2, 2p, 2). In this case dimCOSL(S) = 8p−5.

Theorem 8.2. Let (C,A,B) be a system of type (2, 2p, 2), where p ≥ 1. Then the
ring of invariants C[C,A,B]SL of this system is generated:

– by 2p coefficients a1, ..., a2p of characteristic polynomial of matrix A;
– by 2p− 2 polynomials det(B,AB, ..., Ap−1B),...,det(B,AB, ..., A2p−2B);
– by 2p− 2 polynomials det(CT , (CA)T , ..., (CAp−1)T ),...,det(CT , (CA)T , ...,

(CA2p−2)T );
– by 2p− 1 polynomials det(CB),det(CAB), ...,det(CA2p−2B).
The number 8p− 5 of generators of ring C[C,A,B]SL is minimal.

Let (C,A,B) be a system of type (2, 2p + 1, 2). In this case dimCOSL(S) =
8p− 1.

Theorem 8.3. Let (C,A,B) be a system of type (2, 2p+1, 2), where p ≥ 1. Then
the ring of invariants C[C,A,B]SL of this system is generated:

– by 2p+ 1 coefficients a1, ..., a2p+1 of characteristic polynomial of matrix A;
– by 2p− 1 polynomials

det

(
det(B,AB, ..., Ap−1B,Aib1) det(B,AB, ..., Ap−1B,Aib2)
det(B,AB, ..., Ap−1B,Ajb1) det(B,AB, ..., Ap−1B,Ajb2)

)
,

where i = p, p+ 1 ≤ j ≤ 2p and i = p+ 1, p+ 2 ≤ j ≤ 2p;
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– by 2p− 1 polynomials

det

(
det(CT , ..., (CAp−1)T , (c1A

i)T )T det(CT , ..., (CAp−1)T , (c2A
i)T )T

det(CT , ..., (CAp−1)T , (c1A
j)T )T det(CT , ..., (CAp−1)T , (c2A

j)T )T

)
,

where i = p, p+ 1 ≤ j ≤ 2p and i = p+ 1, p+ 2 ≤ j ≤ 2p;
– by 2p polynomials det(CB), det(CAB), ...,det(CA2p−1B).
The number 8p− 1 of generators of ring C[C,A,B]SL is minimal.

Let (C,A,B) be a system of type (m,m+1,m) and let a1, ..., am+1 be coefficients
of characteristic polynomial of matrix A. In this case dimCOSL(S) = 2m+ 3.

Theorem 8.4. Let (C,A,B) be a system of type (m,m + 1,m), where m ≥ 1.
Let also R(A,B) be matrix (5.3). Then we have

C[C,A,B]SL

= C[a1, ..., am+1, detR(A,B),detR(AT , CT ),det(CB), ...,det(CA(m−1)B],

where the number 2m + 3 of generators is minimal. In addition, the set of all
SL-stable systems is given by the condition det(R(A,B) ·R(AT , CT )) 6= 0.

Proof of the last assertion follows from Subsection 6.2. Here we have

det(R(A,B) ·R(AT , CT )) = I(A,B) · I(AT , CT )

= disc(A) ∆1...m(B) · ... ·∆2...m+1(B)︸ ︷︷ ︸
m+1

∆1...m(C) · ... ·∆2...m+1(C)︸ ︷︷ ︸
m+1

6= 0.�

9. Equivalence of linear control systems

The most invariants, which considered in the present article, are described
in Theorem 6.1. It means that these invariants are minors of appropriate matrix
G(A,B) (or Ri(A,B)). From here it follows that all syzygies, which exist between
invariants, always are automatically satisfied. It facilitates the search of minimal
base of invariants (see Theorems 8.2 – 8.4).

Although the problem of description of generators of ring of invariants in
general case is not solved, nevertheless the equivalence problem, which is important
for applications, got the solution. (It is here enough to know the generators of
quotient field only.)

All said before we can sum up by the following obvious theorem.
Let (C,A,B) be a system of type (p, n,m). Let also the numbers a1(A), ...,

an(A) be the coefficients of characteristic polynomial of matrix A. Denote by
Ij(A,B), j = 1, ..., rB, the generators of quotient field C(A,B)SL depending on B
and denote by Pq(C,A), q = 1, ..., rC , the generators of quotient field C(C,A)SL

depending on C. If p = m, then we denote by Kl(C,A,B) = det(CAl−1B), l =
1, ..., rBC the invariants depending on B and C.
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Theorem 9.1. Let the positive integers (n,m), where n > m, be coprime. Let
also p = m. Then two systems (C1, A1, B1) ∈ Sopen and (C2, A2, B2) ∈ Sopen of
type (p,n,m) are equivalent if and only if there exist nonzero numbers v and t such
that

a1(A1) = a1(A2), ..., an(A1) = an(A2),

Ij(A1, B1) = vIj(A2, B2), j = 1, ..., rB = rC ,

Pq(C1, A1) = tPq(C2, A2), q = 1, ..., rC = rB,

Kl(C1, A1, B1) = (vt)1/rKl(C2, A2, B2), l = 1, ..., rBC ,

where r = n · Bin(m, s), 1 < s < m, s = n − dm, d is the integer part of n/m,
and as the set Sopen the set Fs of all SL-stable systems can be taken .

Proof. We have that the numbers n and m are coprime and even one of invariants
Ij(A,B) (Pq(C,A)) is not equal to zero. Then from Theorems 6.1 and 6.3 it follows
that there exists some subset of all SL-stable systems of type (n,m) ((p, n)), for
which the equivalence problem has solution. �

For some types of systems the generators of quotient field can be taken from
Theorems 5.1, 5.4, and 5.5.

Another important problem, which was not solved, it is the search problem of
set of all SL-stable systems. (The solution was got only for systems (A,B) of types
(4, 2) and (m + 1,m).) However, it should be said that the set of all SL-stable
systems contains a subset, which is defined by the condition disc(A)

∏hB
i=1(∧mB)i ·∏hC

j=1(∧mC)j 6= 0, where (∧mB)i ((∧pC)j) are coordinates of polyvector ∧mB (of
polyvector ∧pC); hB = Bin(n,m), hC = Bin(n, p). In future the authors hope to
solve the problem of description of all SL-stable systems of type (p, n,m), n > m,
n > p.

10. Reconstruction of differential equations system on the known
multivariate time series

We assume that there are n characteristics (measurements and computations)
of some dynamic process : z1(ti), ..., zn(ti), i = 1, 2, ..., N . In addition, we also
suppose that these measurements are noisy. Thus, we have multivariate time series

z1(ti) = x1(ti) + θ1(ti), ..., zn(ti) = xn(ti) + θn(ti), (10.1)

which defined for ∀ti ∈ (t1, tN ). Here ∀i = 1, 2, ..., N , we have ti = i∆t and
∆t = (tN − t1)/N . In addition, we suppose that θ1(ti), ..., θn(ti) are Gaussian
(white) noises, unable by definition to produce statistically systematical errors [29]
– [31], [34], [49].

Finally, we assume that x1(ti), ..., xn(ti) is a discrete approximation of some
curve x(t) = (x1(t), ..., xn(t))T ∈ Rn [16], [29] – [31], [34], [49]. In the turn,
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it is assumed that the curve x(t) is a solution of some autonomous differential
equations system. (The necessity of such description is dictated by the considera-
tions resulted higher.)

Further, we use the procedure of determining unknown right-hand side of
the system of differential equations (1.3), which was suggested in [16], [29] –
[31], [34], [36], [49]. This procedure is based on the least squares method and the
fact that we know sufficient precision the components of x(t) and its derivative
ẋ(t).

In view of the fact that number N may be chosen arbitrary large, a high
precision reconstruction may be achieved. Thus, we can expect that the solution
of reconstructed system will be near the purified solution x(t).

However, it should be said that one important circumstance, which can arise
up at a reconstruction, remained outside the attention of authors of article [34],
[49]. The point is that in [34], [49] it is assumed that this interval (t1, tN ) is finite.
If the problem of long-term prediction is considered, it is necessary to assume that
tN →∞. In this case a reconstruction must be fulfilled so that system (1.3) had
the bounded solutions [2] – [6].

Now suppose that the dimension n of phase space in which the dynamic process
under study, is known. Assume also that m different variables (m < n) describing
this process, for which time series can be measured, are also known. Then the
matrices A and B of system (1.3) can be represented in the following form [5,20]:

S−1AS =

 A11 · · · A1m
... Aii

...
Am1 · · · Amm

 , S−1BT =

 B11 · · · 0
... Bii

...
0 · · · Bmm

 , (10.2)

where

Aii =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−ai,ηi−1+1 −ai,ηi−1+2 · · · −ai,ηi

 ∈ Rνi×νi ;Bii =


0
...
0
1

 ∈ Rνi ;

η0 = 0, η1 = ν1, η2 = ν1 + ν2, ..., ηi = ν1 + ...+ νi;

Aij =


0 · · · 0
...

. . .
...

0 · · · 0
−ai,δj−1+1 · · · −ai,δj

 ∈ Rνi×νj , i 6= j;

δ0 = 0, δ1 = ν1, δ2 = ν1 + ν2..., δi = ν1 + ...+ νj .

Here integer positive numbers νi accept two values: νi = k+ 1, if i = 1, ..., n−km
and νi = k, if i = n− km+ 1, ...,m, where k is the integer part of number n/m;
i, j = 1, ...,m.
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All theory described higher allows to form the following procedure of recon-
struction of differential equations system on the known multivariate time series
(1.2) of process P(t):

1. Let m be the number of measured variables. By the embedding technique
( [34, 49]) define the embedding dimension space n > m.

2. By a procedure of approximation of higher derivatives, compute a different
composition from n−m derivatives (these are missing or hidden variables) of the
complementary m known variables to the basis of the phase space (for example,
x(t) = x1, ẋ(t) = x2, ẍ(t) = x3, ...) ( [16], [36]).

3. Select the activation functions for system (1.3). After this, by the least
square method ( [7], [16], [36]) compute the indeterminate coefficients of matrices
A,B, and C of system (1.3) reconsructed from the known multivariate time series
(1.2).

4. Compose the linear control system (1.9) and by methods of Sections 5 – 9
compute the polynomial invariants a1, ..., an; I1(A,B) 6= 0, ..., Iq(A,B); P1(C,A) 6=
0, ..., Pr(C,A); K1(C,A,B) 6= 0, ...,Ks(C,A,B) of this system.

5. Repeat the steps 1 – 4 of algorithm and compute new polynomial invariants

a
′
1, ..., a

′
n; I

′
1(A

′
, B
′
) 6= 0, dots, I

′
q(A

′
, B
′
); P

′
1(C

′
, A
′
) 6= 0, . . . ,

P ′r(C
′ , A′); K

′
1(C ′ , A′ , B′) 6= 0, . . . , K ′s(C

′ , A′ , B′)

of system (1.5) reconsructed from the known multivariate time series (1.4).
6. Verify the restrictions

|ai−a
′
i| < ε, |Ik/I1−I

′
k/I

′
1| < ε, |Pj/P1−P

′
j/P

′
1| < ε, |Kl/K1−K

′
l/K

′
1| < ε, (10.3)

where i = 1, ..., n; k = 2, ..., q; j = 2, ..., r; l = 2, ..., s. (It is here taken into account
that among invariants Ik there is even one nonzero. We assumed that it is the
invariant I1. The same assumption must be satisfied for invariants Pj and Kl.) If
they are faithful, then the problem of adequacy of neural network models (1.3)
and (1.5) can considered solved.

10.1. Reconstruction of dynamic processes in a contact electric
network

In article [43] a question about construction of regulator for stabilization of
voltage in a contact network was studied. In this article the system of differential
equations for the design of behavior of current (I) and voltage (U) in the mentioned
netwowk was constructed. However, the problem of adequacy of the got model and
real dynamics of electric processes in the contact network was not investigated.

Below, we will remove the indicated lack. For this purpose we apply the method
of invariant reconstruction of differential equations to the process shown on the
following Fig.2(a1).

In most practical cases of the reconstruction of differential equations according
to the results of measurements of certain variables, it is impossible to change the
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composition of the measuring instruments. This means that the representation of
the constructed model in other variables is also impossible. Therefore, the question
of checking the adequacy of the model and the real system remains open.

In this paper, we propose the following method for checking the adequacy of
the model and the real system.

The dynamics of arbitrary autonomous system of differential equations is fully
determined by the parameters of this system.

Let K be a set of restrictions on the parameters of system (1.3), which deter-
mines its desired behavior. In the general case the restrictions are included in K
should be the functions of invariants of system (1.3). (For example, the behavior of
any linear dynamic system can be described using the coefficients of the characte-
ristic polynomial, which, in turn, are invariants with respect to changes of variables
of this system.)

At present, the construction of basis of polynomial invariants of an arbitrary
polynomial system of differential equations is an unsolved problem. Therefore,
we can use only a part of the polynomial invariants that are constructed in this
article. In this regard, we propose the following methodology for checking the
adequacy of the model and the real system.

1. Using the method of least squares to restore some system (S1) of differential
equations according to the measurement results.

2. Repeat measurements of the same dynamic characteristics of the process
under study. After that, perform a reconstruction of new system differential
equations (S2).

3. For systems (S1), (S2) check the implementation of inequalities of set K.

4. If the current-voltage characteristics of systems (S1) and (S2) are equivalent,
then it can be argued that the system reconstructed from measurement results
adequately describes the dynamics of the real process in the contact network.

We will assume that we can measure the voltage and current, and also if
it is possible other dynamic characteristics of contact electric network. We also
suppose that among these characteristics can be derivatives with respect to t from
the voltage and current. (If the derivatives can not be measured, it is assumed
that there exist smooth enough approximations of these derivatives.)

In [43] a structure of the process of represented on Fig. 2 (a2) was described
by the following system of differential equations:


ẋ1(t) = x2,
ẋ2(t) = a20 + a21x1 + a22x2 + a23x3 + a24x4 + b11x

2
1 + b12x1x2,

ẋ3(t) = x4,
ẋ4(t) = a40 + a41x1 + a42x2 + a43x3 + a44x4 + b22x

2
1 + b21x1x2.

(10.4)
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(a1) (a2)

Fig. 10.2. A current-voltage characteristic (U − I characteristic) of contact network: (a1)
experimental data; (a2) modeling after14000 measurements for system (10.5) in Kv and Ka [7,43];
here x = U, z = I.

The system got as a result of reconstruction has the following form:

ẋ(t) = y(t),
ẏ(t) = 0.0193− 0.0072x(t) + 0.0218y(t)− 0.000814z(t) + 0.0057u(t)

−0.0039x(t)y(t) + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = 0.0294− 0.0145x(t)− 0.8506y(t)− 0.0019z(t)− 0.0095u(t)

+0.2380x(t)y(t) + 0.0017x2(t).

(10.5)

For verification of conditions Theorem 9.1 we will carry beginning of coordinates
of system (10.5) in the equilibrium point (3.335950, 0,−0.027746, 0). In the total
we obtain such system:

ẋ(t) = y(t),
ẏ(t) = −0.004384x(t) + 0.008790y(t)− 0.000814z(t) + 0.005700u(t)

−0.00097(x(t) + y(t))2 + 0.00097(x(t)− y(t))2 + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = −0.003158x(t)− 0.056644y(t)− 0.0019z(t)− 0.0095u(t)

+0.05950(x(t) + y(t))2 − 0.05950(x(t)− y(t))2 + 0.0017x2.
(10.6)

Let the activation function for system (10.6) be ui = (x±y)2; i = 1, 2; u3 = x2.
In this case for system (1.9) the matrices A , B , and C have the following forms:

A =


0 1 0 0

−0.004384 0.008790 −0.000814 0.005700
0 0 0 1

−0.003158 −0.056644 −0.001900 −0.009500

 ,
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B =


0 0 0

−0.00097 0.00097 0.000422
0 0 0

0.059500 −0.059500 0.001700

 , CT =


1 1 1
0 1 −1
0 0 0
0 0 0

 . (10.7)

Note that for system (10.7) we have m = p = 3 and rankB = rankC = 2 <
3. Therefore, invariant analysis of such system cannot be performed only using
Theorem 9.1. In this case, we restrict ourselves to a visual comparison of phase
portraits (see Fig.2(a2)) of system (10.5) with real process presented on Fig.2(a1).

10.2. Example

In accordance with the results given in [7, 43], the process presented on Fig.
2(a1) can be described by the following system of differential equations:

ẋ1(t) = x2,
ẋ2(t) = a20 + a21x1 + a22x2 + a23x3 + a24x4 + b11x

2
2 + b12x

2
4,

ẋ3(t) = x4,
ẋ4(t) = a40 + a41x1 + a42x2 + a43x3 + a44x4 + b22x

2
2 + b21x

2
4.

(10.8)

Here x1 = U, x2 = U̇, x3 = I, x4 = İ.
The reconstructed system obtained from the results of 14000 measurements

can be presented in the following form:

ẋ(t) = y(t),
ẏ(t) = 0.00676− 0.0018348x(t) + 0.005384y(t)− 0.00005z(t) + 0.001827u(t)

+0.40864y2(t)− 0.02409u2(t),
ż(t) = u(t),
u̇(t) = 0.028596− 0.000646x(t)− 0.03005y(t)− 0.001789z(t)− 0.00628u(t)

−2.50578y2(t) + 0.06470u2(t).
(10.9)

Here x = x1 = U, y = x2 = ẋ = U̇, z = x3 = I, u = x4 = ż = İ.
For verification of conditions Theorem 9.1 we will carry beginning of coordinates

of system (10.9) in the equilibrium point (3.67857, 0, 0.027012, 0). In the total we
obtain such system:

ẋ(t) = y(t),
ẏ(t) = −0.0018348x(t) + 0.005384y(t)− 0.00005z(t) + 0.001827u(t)

+0.40864y2(t)− 0.02409u2(t),
ż(t) = u(t),
u̇(t) = −0.000646x(t)− 0.03005y(t)− 0.001789z(t)− 0.00628u(t)

−2.50578y2(t) + 0.06470u2(t).
(10.10)

Let the activation function for system (10.10) be ui = z2
i ; i = 1, ..., 3. In this
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case for system (1.9) the matrices A , B , and C have the following forms:

A =


0 1 0 0

−0.001835 0.005384 −0.00005 0.001827
0 0 0 1

−0.000646 −0.030050 −0.001789 −0.006280

 ,

B =


0 0

0.408640 −0.024090
0 0

−2.505780 0.064700

 , CT =


0 0
1 0
0 0
0 1

 .

System (10.9) has the following invariants:

a1 = −0.000914, a2 = 0.001367, a3 = 0., a4 = 0.; I1 = −0.001612, I2 = 0.;

P1 = 0.000003, P2 = 0.;K1 = −0.034036,K2 = K3 = K4 = K5 = 0.

Now we will consider the modeling of the dynamic process in Fig.2(a1), but
using time series only the first 10000 measurements. In this case, we get the
following system:

ẋ(t) = y(t),
ẏ(t) = 0.006− 0.0017348x(t) + 0.005784y(t)− 0.00004z(t) + 0.001927u(t)

+0.30864y2(t)− 0.02409u2(t),
ż(t) = u(t),
u̇(t) = 0.028596− 0.000546x(t)− 0.02005y(t)− 0.001789z(t)− 0.00528u(t)

−2.50578y2(t) + 0.06370u2(t).
(10.11)

For this system the equilibrium point is (3.44600, 0, 0.54672, 0). Now repeating
the procedure for system (10.9) described above in Subsection 10.2, we arrive at
such matrices of system (1.9):

A =


0 1 0 0

−0.001735 0.005738 −0.00004 0.001927
0 0 0 1

−0.000546 −0.020050 −0.001789 −0.006658

 ,

B =


0 0

0.308640 −0.024090
0 0

−2.505780 0.063700

 , CT =


0 0
1 0
0 0
0 1

 .

System (10.11) has the following invariants:

a1 = −0.000921, a2 = 0.003532, a3 = 0., a4 = 0.; I1 = −0.001657, I2 = 0.;

P1 = 0.000003, P2 = 0.;K1 = −0.034016,K2 = K3 = K4 = K5 = 0.
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(a1) (a2)

Fig. 10.3. The current-voltage characteristics of contact electric network modeling experimental
characteristic on Fig.2 at different lengths of time series: (a1) 14000 measurements for system
(10.9); (a2) 10000 measurements for system (10.11)

The verification of the inequalities (10.3) shows that they are valid at ε =
0.1 · 10−2. This circumstance means that for describing the process shown in
Fig.2 can be used any from systems (10.9) or (10.11). The last statement can be
confirmed by Fig.3 (here z = I and x = U).

11. Conclusion

The results given above allow us to draw the following conclusions.
1. The problem of description of algebraic invariants for the linear control

system is solved.
2. With the help of these invariants, the equivalence problem of two nonlinear

systems obtained from results of studies of the corresponding time series is also
solved.

Indeed, consider two nonlinear systems of 4th order:
ẋ1(t) = x2,
ẋ2(t) = a21x1 + a22x2 + a23x3 + a24x4 + v1(x1, ..., x4),
ẋ3(t) = x4,
ẋ4(t) = a41x1 + a42x2 + a43x3 + a44x4 + v2(x1, ..., x4),

(11.1)

and 
ẋ1(t) = x2,
ẋ2(t) = x3,

ẋ3(t) = a
′
31x1 + a

′
32x2 + a

′
33x3 + a

′
34x4 + v

′
1(x1, ..., x4),

ẋ4(t) = a
′
41x1 + a

′
42x2 + a

′
43x3 + a

′
34x4 + v

′
2(x1, ..., x4),

(11.2)

where v1(...), v2(...) and v′1(...), v
′
2(...) are nonlinear functions.
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Invariants of systems (11.1) and (11.2) in accordance with Theorem 7.2 look
like: a1, ..., a4, I1 = −1, I2 = −a22a44 + a24a42, and a

′
1, ..., a

′
4, I

′
1 = 0, I

′
2 = −a′34.

Since I1 6= I
′
1, then these systems are not equivalent for any nonlinearities

within them. From here it follows that the structure of any system of differential
equations obtained as a result of reconstruction is uniquely determined by the
embedding dimension space n and the number of independent measured variables
m (n > m) [7]. This structure is represented by matrices A and B (see (10.2)).

3. Note that using the invariants of system (1.9), it is impossible to fully
describe system (1.3). (For this purpose, it is necessary to find the basis of all
polynomial invariants of this system.) However, information about the behavior
of measured variables already contains information about non-linearities that
determine real process in the contact electric network. Therefore, the matrices
A,B and C of system (1.9) determine the linear part and the structure of the
nonlinear part of system (1.3).

4. As the considered examples show, the invariant reconstruction method is
also suitable when we are dealing with chaotic processes taking place in the contact
network.
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