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On the Landau-Kolmogorov inequality
between || f'|[oc, ||.f]loc and [|f"}1

Kiiacuyna 3aga4da Teopii HaAGAM>KeHHSI PO 3HAXOA2KEHHSI TOYHUX HepiBHOCTel st
HOpPM mMoOXiZHUX YHKIN BIlepille BUHUKAE Ha I04YaTKy XX cTopiuds B pobdorax
E. Jlannay, K. Apamapa, I.T. Tapai, Jx.I. JlitaByma. Imn6Goki nociimkeHHst i€l
3aJa4i IMpOBOAMJIM OaraTo BU3HAYHUX MaTeMaTukiB, cepen akmx A.M. Komamoropos,
C. B. Creukin, E. M. Creiin, JI. B. Taiikos, FO. I. JIro6iuy, M. I1. Kymos, I. Ixx. IIlouGepr,
C. Kapuaiu, A. ITliakyc, B. ®. Babenko, B. B. Apecros, C. O. ITiuyros, B. O. Kodauos,
B. /1. BosauoB Ta iuirii. IIpore mns ¢ymkIiili, BU3Ha4eHUX Ha CKiHYEHHOMY BiApi3ky, Iist
3a/1a4a 3aJIUIIAETHCI MAaJIo/I0CIi>KEeHOIO.

3agavya MOpo 3HAXOAXKEHHSI TOYHHX HEepiBHOCTEeH /Mg HOPM IOXigHUX YHKIIiH,
BU3HAYEHUX HA CKIHYEHHOMY BiApi3Ky, HazuBaeThcs 3agadvero Jlangay-Kosmoroposa ta
Ma€e aBi, B3arajii KaxKyu4m, pi3Hi mocrtaHoBKu. OaHa 3 HUX MOJISATA€E B 3HAXOMXKEHHI
MHOXXHMHE Bcix map (A, B) HeBig’emMHux 4mcesi, JJisi SIKUX BHKOHYETHCS TOYHA aJUTHUBHA
HepiBHICTb Hf(k)Hq < Allfll, + B||f7,, f € Lj,. Inma, 6iaem 3arampHa MOCTaHOBKA,
MoJISiTa€ y BiAIIyKaHHI MOMyJIsl HellepepBHOCTI onepaTropa nudepenniosanas DF L,— L,
Ha MHOXKuHI W] dyukuiit f, ana akmx Hf(T)HS <L

B pamiit pobori 3amaua Jlamgmay-KosamoropoBa posB’sizaHa y curyarii p = ¢ =
o, s = 1, Kk = 1 ma r = 3. Hua i1 po3p’s3aHHs 3acCTOCOBAaHO BioMmii MeTOx
CreykiHa mPOMIXKHOTIO HaDJMXKEHHsI olleparopa Au(epeHIiloBaHHs 3a JIOIOMOTO0
JiuifiHnx ob6mexkeHux omeparopiB. st mboro 6yJio moby/10BaHO CKiHYE€HHO-Pi3HUIEBU
obmexxkenmnii orepatop Sy : Lo, — Loo. Obpannii MmeTos moBeAeHHS J03BOJIMB PO3B’si3aTH
cropigHeHi 3agadi 1mpo Halikpailile HabJM»KeHHs1 oreparopa audepeHIiifoBaHHS IePIIoTro
nopaaky D! nimifinumu obMexkeHuMu omeparopaMu Ha MHOXKHHI W} Ta mpo Haiikpartie
BifiHOBJIeHHs oneparopa D! Ha eslementax muoxkunu W3, ki 3a1an0 3 moxubKoro.

Kaowosi  caosa: 3adavwa  Jlanday-Koamozoposa, 3adawa Cmeurina, watixkpawe 6i0H0BAEHHA
onepamopa, Mo0yAs Henepeperocmi ONePamopa.

Pemtena 3agaua Jlangay-KosimoropoBa o HaXOXXAeHHM TOYHBIX AAAUTUBHBIX HeEpa-
BEHCTB, oneHnBarmuX || f'|l. depes ||fllw u ||f"||1. Takke pereHbl pOACTBEHHBbIE 33/1a4N
0 HAWIydIleM MNpuOIM>KeHHHn omeparopa auddepeHnrpoBanns mnepsoro mnopsaka D!
JIMHEHHBIMU OTPAHMYEHHBIMU 1 HAIJIYYIIIeM BOCCTAHOBJIEHNN onepaTropa D! Ha sjgeMeHTax
KJlacca, 33JJaHHbIX C OLINOKOIA.

Kaouesvie caosa: 3adava Jlanday-Koamozoposa, 3adauwa Cmeukuna, HausyuLee 60CCMAHOBACHUE
onePamopa, Mo0YAL HENPEPLIBHOCNU ONEPATNOPG.

We solve the Landau-Kolmogorov problem on finding sharp additive inequalities that
estimate ||f'||o in terms of | f| and || f"||;. Simalteneously we solve related problems of
the best approximation of first order differentiation operator D! by linear bounded ones
and the best recovery of operator D! on elements of a class given with error.
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1. Introduction

Let k,r € N,r >k, and 1 < p,q,s < 0o. By L, we denote the space of measurable
functions f : [0,1] — R endowed with the standard norm

1 1/p
1fll» = (/O |f(t)|pdt) : 1< p < oo,
esssup{|f(t)| : t € [0,1]}, p = oo.

Let L be the space of (r — 1)-times differentiable functions f : [0,1] — R having
absolutely continuous on [0, 1] derivative f (=1 and () e L,,. Inequalities of the form

1F®, < Allflln + B £, (1.1)

that hold true for every function f € L with constants A, B > 0 independent of f, are
called additive Kolmogorov type inequalities. First investigations of inequalities (1.1)
appeared in pioneer works of E. Landau [21]|, J. Hadamard [16], G. Hardy and
J. Littlewood [17]. Naturally, the problem of finding sharp additive Kolmogorov type
inequalities presents the most interest.

Problem 1. Find the set I' (D¥; L7) =T (D*: L, — Lg; LT) of all pairs (A, B) of
non-negative numbers satisfying conditions:
1) inequality (1.1) holds true for every function f € L’;
2) for every £ > 0, there exists a function f. € L’ such that

£, > AL, + (B =) [[£7]], -

The above problem is usually called the Landau-Kolmogorov problem. Its more
general setting (see [26, 5|) consists in finding the modulus of continuity of
differentiation operator D* : L, — L, on the class

W= (e s 10, <1},

Problem 2. For every d > 0, find

Q (6 D% W) = sup {[| /9], 11, <6,

£, <1},

At present, the Landau-Kolmogorov problem is solved completely in the following
situations:

l.r=2k=1,p=g=s=o00—E. Landau [21], C. Chui and P. Smith [14];
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2.r=3,k=1,2,p=q=s=o00— M. Sato [25], A. Zviagintsev and A. Lepin [31];
3.r=4,k=1,2,3,p=q=s=o00— A. Zviagintsev [30], N. Naidenov [24];
4. reN\{1lh k=r—1,¢g=00,1<p< oo, s=1-V.Burenkov [12];

5. r=2k=1,p=q=00,1<s < oco~- Yu Babenko [6, 7|, V. Burenkov and
V. Gusakov [13];

6. r=2,k=1p=s=o00,1< ¢ <00~ N. Naidenov [23].

Partial solutions of Problems 1 and 2 can be found in the papers [11, 18, 26, 4, 15,
10, 27|. For the overview of other results in this and closely related directions we refer
the reader to books [20, 5| and surveys [2, 26]. In this paper we will solve Problems 1
and 2 inthecase k=1, r=3,p=qg=o0 and s = 1.

Let us now consider several extremal problems of Approximation Theory that are
closely related to the Landau-Kolmogorov problem.

The Markov-Nikolskii problem. For n € N, let P, be the set of algebraic
polynomials of degree at most n. Inequality of the form

QW] < M-, (1.2)

that holds true for every polynomial ) € P,, with some constant M > 0 independent of
Q, is called the Markov-Nikolskii inequality. The smallest possible constant M = M ,f”z
in (1.2) is called the Markov-Nikolskii constant. Detailed overview of cases when sharp
constant in inequality (1.2) is known can be found in books [19, 22| and references
therein.

In [5, Theorem 4.6.2] it was proved that M}? | coincides with the smallest possible
constant A in inequality (1.1). More rigorously, there holds true the following statement.

Proposition 1. Let 1 < p,q,s < oo and k,r € N, r > k. Then, for every A >
My}, there exists B = B(A) such that (A, B) € T' (D*; L?). Moreover,

Mpe =inf{A:(A,B) el (D" L)}

Also, for convenience, we recall that M5™ = 8 (see, e.g. [19, 22]).

The Stechkin problem. Following [28, 29|, we remind the statement of the
problem on the best approximation of operators by linear bounded ones. Let X,Y
be Banach spaces, A: X — Y be unbounded operator with domain D(A), W C D(A)
be some class. For every linear bounded operator S : X — Y denote the error of
approximation of operator A by operator S on the class W

U(A,S; W) :=sup ||[Ax — Sz||y.
zeW

For N > 0, let L(NN) be the space of linear bounded operators S : X — Y.
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Problem 3. For every N > 0, find the error of the best approximation of operator
A by linear bounded operators on the class W

Ex (A W) = inf Az — L.
N (AW) = nfsup Az — Szl (1.3)

and find extremal operators S* € L(N) (if any exists) for which the infimum in the
right hand part of (1.3) is achieved.

In [29, §2] S.B. Stechkin established simple but powerful lower bound for (1.3)
in terms of modulus of continuity of the operator A on the class W. Good overview
of known results on the problem of the best approximation of unbounded operators
by linear bounded ones as well as discussion of related problems can be found in
surveys [3, 2] and book [5].

For spaces X = L,, Y = L,, differential operator A = D* and class W = W7,
Problem 3 was solved in the following situations: (1) r = 2, k = 1, ¢ = s = o0,
I1<p<oo-—in[8;(2)r=3,k=1,2,p=qg=s=o00—1in[9].

For convenience, we formulate the following simple corollary from [29, §2]|
establishing the relation between the Stechkin and Landau-Kolmogorov problems.

Proposition 2. Let 1 < p,q,s < oo and k,r € N, r > k. Then, for every (A, B) €
r (Dk; L;’), we have B < Ey (Dk; W;”)

In this paper we will solve Problem 3 for operator A = D* and class W = W/ in
thecaser =3, k=1, p=g=o0c and s = 1.

Problem of the best recovery of operators. Let X, Y be Banach spaces.
Following [1] (see also [2] and [5, §7.1]), we consider the problem of the best recovery
of operator A : X — Y with domain D(A) on the class W C D(A). For recovery of
operator A we will use the set R of operators (or single-valued mappings) S : X — Y.
Usually one of the following sets is considered as the choice of the set R: the set
O = O(X,Y) of all linear operators acting from X to Y, the set £ = L(X,Y) of
all linear operators acting from X to Y, the set B = B(X,Y) of all linear bounded
operators acting from X to Y.

For ¢ > 0 and operator S € R, we define

Us (A, S; W) :=sup{||Az — Snlly : x e W, ne X, |z —nl|x <}

Problem 4. For every § > 0, find the error of the best recovery of operator A with
the help of the set of operators (called methods of recovery) R on the elements of the
class W given with the error 4:

E (R A W) = élel%Ug (A, S; W), (1.4)

and the best methods of recovery S* € R (if any exists) delivering the infimum in the
right hand part of (1.4).
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The detailed survey of existing results on the problem of the best recovery of
operators on elements given with an error and further references can be found in |2, 5].

The following statement is a corollary from Theorem 7.1.2 in [5] for the case when
X =1L, Y =1L, A= DFand W = W/ and establishes the relation between the
Stechkin, the Landau-Kolmogorov problems and Problem 4.

Proposition 3. Let 1 < p,q,s < oo and k,r € N, r > k. Then, for every 6 > 0,
Q(6; D W) < & (O; D WY) < & (B; DY W)) = & (£; DN WY)
< inf (Ex (D*;W]) + NJ) .

N>0

The rest of the paper is organized as follows. In the next section we present main
results. We devote section 3 to the proof of auxiliary lemmas and section 4 to the proof
of main results.

2. Main results

We start with formulating the solution to Problem 1.

Theorem 1. For o € (0,1/2] and f € L3, there holds true sharp inequality

2 o
/ <— o - " . 21
10 < 57 Mo + 3757 17 21)
Furthermore,
N+4—,/N(N —-38)
I'(D': Lo — Lo; L3) = N N> : 2.2
( ~ L L) {( TSN ) ) 8} (2:2)

The solution to Problem 2 is given by the following consequence from Theorem 1.

Corollary 1. For every 6 > 0, let o be a unique solution to the equation 46(1 +
0)%(1 — 20) = 0*(1 — 0)? on the interval (0,1/2). Then

o(l—o—0c?)
(1+0)%(1—20)

To formulate the results on the solution to the Stechkin problem of the best
approximation of differentiation operator by linear bounded ones, we first start with
the construction of approximation operator Sy. Consider the set IT = [0,1/2] X [8, +00)
and subdivide it into two non-intersecting parts:

Q(0;D" : Log = Lo} WY) =

I={(tN)ell : Nt>1}, J={tN)ell : Nt<1land N >8}.

For every (t, N) € II, we denote

(2.3)

€7,

+ %, (t,N)
1
2 N t
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and define the functional S; 5 : Lo, — R with the help of the rule: for every f € L,

s (F(p) = f(2t = p)), (t,N) € I,
— L2 1(0) + 2 fp) — 22 f(1), (t,N) € J.

P p(1—p) P

St,]\[f = (24)

Next, for a function f : [0,1] — R, we set f(-) := f(1 — -), and define the operator
SN : Lso — L as follows: for every f € L., set

L St,Nf7 0<
vl = { SN/, % <

t< g,
t< 1.

The solution to Problem 3 is given by the following proposition.
Theorem 2. For every N > 8, the operator Sy is the extremal operator in the

problem of the best approximation of operator D' : L., — L by linear bounded
operators on the class W3. Moreover,

N +4—/N(N=3)
=
Ey (D% WY) = 8(N +1) N2
+00, N € (0,8).

Finally, combining Corollary 1 and Theorem 2 we can formulate the result giving the
solution to the problem of the best recovery of differentiation operator D! : Ly, — Lo
on elements of the class W} given with an error.

Theorem 3. For every 6 > 0, let o be a unique solution to the equation 46(1 +
0)%(1 — 20) = 0*(1 — 0)? on the interval (0,1/2). Then

o(1—0—0?)

Es (B; D Wf) =& (E; D*; Wls) =& (O; D' W13> = 1+ 0)2(1—20)

3. Auxiliary results

We start with estimating the deviation of the first order differentiation functional
D} at the point ¢ from the functional S; x defined by (2.4) on the class W3.

Lemma 1. Let (t,N) € Z and p = p(t,N) be defined by relation (2.3). Then
|Se.n]| = N and

U (D}, Sens W) = [[tenl.

where
1

4(p—1)

(p—t—lt—ul)®, welo]
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Proof. Evidently, equality ||S; y|| = N follows immediately from definition (2.4). Next,
since (t, N) € Z, we have 2t — p =t — % >0and p=t+ % < 2t < 1. Hence, using
the Taylor expansion formula of the second order for a function f € L3 at the point ¢
with the remainder in the integral form, we obtain

o ([omrrwan [T - wrer )
= 0+ [ vt = 0+ [ vt

St,Nf = f/(t)+

Hence, we conclude that

U (Dg,St,N;Wf’) = sup |f'(t) — Sinf| = sup
fews fews

[ st du

= [[9enll »

which finishes the proof.

Lemma 2. Let (t,N) € J and p = p(t,N) be defined by relation (2.3). Then
|Sen|| = N and
U (Dtl7St,N;W13) = ||¢t,N||OO>

where

1+§;2t' u?, u € 0,1,
Yin(u) = (3.1)
2171(132) (= u)i - 2’()1_—2:))(1 —u)?, we 1]

Proof. The validity of equality ||S: x| = N is clear. Next, we observe that for every
(t,N) € J, we have t < 1/N < 1/8. Hence,

1 1 sS1—20) 1 1 1 (1—4b)
o1 s L A8 =2t = - — _ o
P=5735 N 2 2 $(1-2t)t =3 2 !

The rest of the proof is similar to the proof of Lemma 1.

Let us show that L.,-norm of function v, x achieves its maximum on variable ¢ at
the point ¢ = 0. More accurately, there holds true the following proposition.

Lemma 3. For every (t, N) € II,

el oo < [%on |l - (3.2)

Proof. For convenience, we fix an arbitrary point (¢, N) € II, and use notations:
p=p(t,N) and o = p(0, N). Straightforward computations show that

o o
||7/’0,N||OO = —@/JO,N (1+0) = 2(1+0).
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First, we consider the case (t, N) € Z. By definition (2.3) and Lemma 1, we have

B _p_—t_i_a(l—a)
|V nll = Yen(t) = 1IN 3 <2(1+ ) = ||[Yo,n|l o

Next, we consider the case ( ) € J. It is clear that

1 1 / 1—2t 1 1

where the first inequality in the above chain was proved in Lemma 2. By definition of
the function ¢y y (see Lemma 2), we have

el = max {wt,mt); —on (L) } ~ max { Ltp=2t o (1= 20)(p—2) }

1+p—2t 2p T 214 p—20)

Applying inequalities (3.3), we see that

l+p=2t , p(l+p) _o o
)= —"t—— << o,
Yen(l) 2 8 4 7 2(1+0)
1—2t)(p— 2t 1 1 o
_%N( p ):( )(p )< < _ .
L+p—2t 2(1+p —21) 2<1+ 12t> 2(1+1) 2(1+o0)
=

Hence, [|¢n|| . < ||¥o,n||,,, which finishes the proof.

4. Proofs of main results

Proof of Theorem 1. For o € (0, 2] let N = ( 5y By Lemmas 1, 2, 3, for every
t €[0,1], we have

|f’(t)| < |St,Nf| + ‘f’(t) - St,Nf| < ‘St Nf| + U(Dtl’StN;WS) . ||f///H1
m " (4.1)
< NI+ lonla 57 = 2 e+ 5 17

a(1-0) 2(1+0)

The same upper bound as in (4.1) also holds true in the case ¢t € [%, 1}, and can be
verified by approximating f'(t) with the help of Sl_t,va, where f(-) = f(1—-). Hence,
taking supremum over ¢ € [0, 1], we obtain the desired inequality (2.1).

Now, we prove sharpness of inequality (2.1). Let us first consider the function

(t—0)> (1+0)*(1—20) o \° (1—-o0)?
> 202 '(t_1+a) 4

g(t) == € [0, 1].
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Straightforward calculations show that

ool gy = 122, g = L0 220)

o
0

For sufficiently small h > 0, we consider the Steklov average g; of function g:

gn(t) == %/tH g(u) du, t €[0,1],

where we set g(t) := @ — %, for ¢ > 1. It is not difficult to see that

n

— a4 "
Jm fgnlle = llgllee: lim {g,(0)[ =1g'(0),  Tim [lg5'll, = \/9

From this we conclude that

i M9l = Nllgnlloe < 1o 198O = Nllgnlloe _ 1900 = Nlglloe _ @
- 2(1+0)

h—0+ Hgm“1 h—0+ Hg”/||1

g//

o<+

Since M5™ = 8 (see, e.g. [19, 22]), observing that N = ﬁ attains all values on
the interval [8, +00), we conclude from above considerations and Proposition 1 that
equality (2.2).

o?(1-0)*

m increases on

Proof of Corollary 1. First, we observe that a function (o) =
(0, 5). Indeed,
20(1—0)((1—0)*+20%)

(topi—202 "

§'(o) =

Hence, for every § > 0, equation 46(1+ 0)?(1 —20) = 0?(1 — 0)? has a unique solution
0 = o5 on the interval (O, %) Then by Theorem 1, we have

' 20 o o5 (1 — 05 — 03)
Q(6: D W3) < inf = o/
(& D5 WY) < i (0(1 —) Tt 0)) (1+ 0)2(1 — 205)

On the other hand, let functions g, and g be defined in the proof of Theorem 1 and g
correspond to 0 = g4. For every € > 0, we obtain

Uy M9l 05 (1 =05 —0)
Ltensot flgfll,  (T+e)(1+0s)*(1 —205)

Q(6; D W) =
Taking supremum over £ > 0, we finish the proof of Corollary 1.
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Proof of Theorem 2. For every N > 8, let 0 = p(0, N). By definition and Lemma 3, it
is clear that

Ey (DY W}) S U (D', Sy Wi) = sup U (D}, Suwi W) < 5——.

te[O,%] ’ 2(1—|—0’)

On the other hand, by Proposition 2 and Theorem 1 we have

g

1. 1173
Ew (D W) > 2(1+0)

Combining the latter two estimates we finish the proof of Theorem 2.

Proof of Theorem 3. In Corollary 1 we have shown that, for every 6 > 0, there exists a

unique o = o5 € (0, 3) such that 46(1+¢)*(1 —20) = 6(1 — o). Then by Theorem 2,

. . 2 20 o5 (1 — 05— 02)
f (BEy (DY W3) + N§) = inf ( + ): 5 2
B (DEWE) o) = d GT=0) T oli=0)) = o 1200

Combining Corollary 1 and Proposition 3 with the later equality, we finish the proof.
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