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On generalized characteristics of smoothness
of functions and on average r-widths in the

space Lo(R)

Hexait 9t — kiiac kommuiekcHo3HaYyHuUX byskuiit w : R — C, gusa akux w(0) = 0 i
|w|? € nemepepBHOIO, o6MexkeHo0 Ha R dhyHKIi€0, aKka BiaMinHa Bif Hyssa Maiike Bciou;
lw(t.)|*> = sup{|w(z)|? : 0 < z < oo}. SKIIO BepxHs MeXKa JOCATAETbCS OiNbIN HiXK NpuU
OJHOMY 3Ha4YeHHi apryMeHTy, TO y fAKOCTi t, OepeMo HaliMeHIne 3 Hux. Oyukniga w € M
3a/10BOJIbHSIE BJIACTUBICTb A, Ko dYHKIif |w|? € MOHOTOHHO 3POCTAIOY0I0 HA CEerMeHTi
[0,t.]. Hexait A}’ : Ly(R) — L2(R), h € R, € ysaranbHeHHM audepeHIiaJbHIM OIEePATOPOM
ansa f € Lo(R) i

xt

Ap(fa) = i [ S

ne F(f,t) e nepersopennam Pyp’e dynkuii f. 3a gomomoroio Bemmunnu A} (f) ngasa f €
Ly(R) BusHa4YeHO y3arajbHeHMI Moayib HermepepBHOCTI w™ (f,t) = sup{||A}Y(f)]|: 0 < h < t},
t > 0. CumBosiom W7 (w®,¥), r € N, nosnavaerbca kiac pyskuiit [ € Li(R), aas KoxxHOT
3 Akux Mae micme HepiBaicTs W (f() 1) < U(t), 0 < t < oo. Tyt ¥(t), 0 < t < oo, —
HerepepBHAa, 3pocraoua dyHKIisd, Taka, mo V(0) = 0 (MmaxkopaHTa).

JdoBeneHo, mio KoJsinu KoMmieKCHO3Ha4YHa yHKIiss w : R — C Hamexxkuts kjacy N i
KBaapar i1 MoayJis 3a40BOJIbHsIE BiacTuBocTi A, U € moBLIbHOIO MaXkopaHTOIO, v € (0, 00),
r € N, a II,(-) € 6yAb-IKUM 3 cepeJiHiX V/-TIONePEeYHUKIB: KOJIMOTOPiBCHKUM, JIiHIHHUM,
OEepHIITEeHOBCHLKMUM, TO MalOTh Micile HepiBHOCTI:

(vm) " inf { () /Juw(tom)| 0 < t <t/ (vm) } <TL (W7 (@, ); La(R)) <

< Apr (W (W, 0)) < (v1) ™" m{xp(t)/m(mn 04 }

Bkazano ymoBy st MaxkopanTtu VU, KOJIM BJAETHCS OOYUCIUTH TOYHI 3HAYEHHS
cepenHix v-mionepedHuKiB kiacy W' (w"¥, V) Ta HaBeJeHO HU3KY HPUKJIALIB Ma>kKOPAHT,

AJId AKX 3a3Ha1veHa yMOBa BUKOHYETDLCA.

Kmowosi caosa: yzazasvrhenuts Mooyss HENEPEPSHOCTNE, MAHCOPAHMA, UG GYHKYIA, cepednit V-

nonepeunur, nepemseoperns Pyp’e.

Estimates above and estimates below have been obtained for Kolmogorov, linear and

Bernshtein average v-widths on the classes of functions W"(w*,¥), where r € N, w"(f)
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ON GENERALIZED CHARACTERISTICS OF SMOOTHNESS ...

is the generalized characteristic of smoothness of a function f € Ly(R), ¥ is a majorant.
Exact values of the enumerated extremal characteristics of approximation, following from

the one condition on the majorant were obtained too.

Key words: generalized modulus of continuity, majorant, entire function, average v-width, Fourier
transform.
MSC2010: Pr1 41A35, SEC 41A44, 42A38, 30D20

The beginning of research related to the approximation of functions defined on
the whole real axis by entire functions of exponential type was laid down in the
work of S. N. Bernstein [1]. This direction was developed in the subsequent works
of N.I. Akhiezer, A.F.Timan, M.F.Timan, S.M.Nikolsky, [.I.Ibragimov, F.G.Nasibov,
V.G.Ponomarenko, V.Yu.Popov, G.G.Magaril-1I'yaev, A.G.Babenko, S.N. Vasiliev and
others (see, for example, [2] —[20]). In order to further generalize a number of the results
we have mentioned S.N.Vasilyev, S.Yu.Artamonov, S.B.Vakarchuk which proposed a
number of approaches that allowed him to come to one degree or another to solve
this problem (see, for example, [13], [21] — [23]). In this article, which is a natural
continuation of papers [22] — 23], the distribution of the results obtained in [19] to the
more general case is given.

Further we shall formulate necessary concepts and definitions.

Let Ly(R), where R = {x : —0o < z < oo}, is the space of all measurable functions
f given on all real axis R, the square of the module of which is Lebesgue integrable on
any finite interval and the norm is defined by the formula

1= { [ e} < .

—0o0

The following statement takes place.
Plancherel’s theorem. (3, ch. III, point 3.11.21| For any function f € Ly(R) the
integral

—zt:v -1

m/f e

has the final derivative almost everywhere on R

ﬂﬁ~%§ﬁ e )

7|f(f,w)|2dl'= 7|f(fv)l2dl“, (2)
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and almost everywhere on R

f(x) —%—di/ff,

In addition, when k — oo

k

7 ’}"(f, x) — \/%_ﬂ/f(t)emdtrdx — 0, (4)

7 ‘f(x) - J%TT /f(f, t)emdt‘zdx 0. (5)

Function (1) is called the Fourier transform for f € Ly(R) and formulas (1) and
(3) are called the inversion formulas. If in (1) and (3) one can change the operations of
differentiation and integration, then these formulas go into the usual Fourier transform.

Relations (4), (5) show that the Fourier transform in Ls(R) can be defined as the
limit in the average. On this basis we writing the inversion formulas for f € Ly(R) in
the form

F(f,r)= \/%_W / fe ™dt u  f(z)= \/%_ﬂ /f(f, t)eitdt.

We specifically stipulate that the integrals are understood to converge in the average
square, i.e. that relations (4) and (5) hold respectively.

According to [22] by G we denote the set of all continuous, non-negative, even
functions ¢ bounded on R which are non-zero almost everywhere on R and such that
©(0) = 0. Since in parity of functions from the set G it is enough to consider them only
on the semi-axis of R, . Then for an arbitrary element ¢ € G we denote by t, € (0, 00)
the value of the argument x for which

o(t) = sup{p(r) : 0 <z < oo}.

If the upper bound is reached with more than one argument value, then the smallest
of them is considered as t,. Obviously, the value of ¢, depends of ¢.

We say that a function ¢ € G satisfies the property A if on the segment [0, t,] it
is monotonically increasing [22|. For an arbitrary element ¢ € G satisfying property A
we set

oe(x) :=={p(x) if 0 <z <ty @(t) if t, <z < o0}

By symbol 9t we shall designate a class all complex-valued functions w: R — C,
for which |w|* € G.
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Let f € La(R); F(f) be the Fourier transform of the function f in Ls(R); w € 9M;
h € R. Using (2) we write ||F(f, )w(h-)| < ||w|lem)||f]| < oo, that is F(f,z)w(hx) €
Ly(R). We consider the generalized differences operator A} : Lo(R) — Lo(R) which is
defined by relation

Ap(fa) = o=a [ FU e

almost everywhere on R [22].
According to formulas (3) and (6) for f € Ly(R) we have almost everywhere on R

F(AR (), x) = F(f, )w(hz). (7)

Let us demonstrate by several examples that the formula (6) can indeed be
considered as a kind of generalization of the concept of finite difference in the space
Ly(R). '

Let w(x) = wy(z) == (¢ — 1)™, m € N. Obviously, w,, € M. Using the formula
(3) we obtain almost everywhere on R

itx

— Lo (6)

AV (f2) = \/gd /]—'ftwm(ht) il
:\/L_di/Fft -1 (?)eij"t)eitz—t_ldt:

i(z+jh)t _ ( ijht _ 1) 1

- =% / (Y ey (M) e ai -

o 3=0
S m—j [T 1 d r ei(a;—i—jh)t —1 _
:jZ:;(_l) (j >E£ /]:(fﬂf)Tdt—
_ Z<_1)mj(7;7)f(x +jh) = A7 (f,@). (8)
=0

In formula (8) the value AT(f,z) is the usual m'-order finite difference of function
f € Ly(R) with step h € R defined almost everywhere on R.

We further assume that w(x) = w,,(z) := (sinc (z) — 1)™, m € N, where sinc (z) :=
{sin(z)/z if x # 0; 1if x = 0}. It’s easy to make sure that w,, € M. By virtue of (6)
we write for almost all z € R and f € Ly(R)

it

dt =

A1) = = [ FUT)
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1 d [ = rm eltr — 1
= t —1)m ht dt =
| (e (T neion) =
- Xm:(—l)mJ'(m / F(f,t)sinc (ht) < 1dt. 9)
par j \/% dr it
We write the Steklov function for f € Ly(R)
] z+h
S0 =5 [ S0 ce R, (10)
z—h

where h > 0. For h — 0+ we have S,(f,z) — f(z) almost everywhere on R. Also we
suppose Spo(f) = f, Sn;(f) == Su(Shj-1(f)), 7 € N. The Steklov function (10) can
be represented as a convolution of two functions f € Ly(R) and ¢ € L;(R) , where
q(z) :=={1/(2h) if |x| < h; 0 if |z| > h}, ie.

=/ﬂmu—ww (11)

Since (see, for example, |24, ch.I1, §2.3|)
S0 = [ F.0F@O

the product 27 F(f,z)F(q,x) is the Fourier transform of convolution (11).
Considering that almost everywhere on R

h

1 1 i,  sinc(hz)
]:(q,ﬁ)—ﬁhﬁ@ dt = Jon

(see, for example, |2, ch.III, point 67]) we have
F(Su(f), ) = V21 F(f,2)F(g,x) = F(f,x)sinc (hz). (12)

Then according to relations (3) and (12) we write for f € Ly(R) and for almost all
S LQ(R)

it

S(f. z) = \/L_di / F(f, t)sine (ht) dt. (13)
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Using the method of mathematical induction and (13) it can be shown that in the
general case almost everywhere on R the relation holds

xt

1 d T o et —1
Sh,j(f,x)zﬁa/}"(f,t)smc (ht) . dt, (14)

where j € Nand 7 > 2
Proceeding from (9) and (14) we get

Ms

A" (f,2) (") Snalf.w) = (S1 =" (f0) = (S 2), mEN, (15)

J=0

for f € Ly(R) and for almost all x € Ly(R). Here I is the unit operator in the space
Ly(R). Recall that earlier special finite differences ﬁ?]( f,x) for f € Ly(R), m € N,
were considered in [17].

Based on the work [22| we write the generalized modulus of continuity w®, w € I,
for a function f from the space Lo(R). From the definition of class 9t it follows that
the function |w|? is even. When writing the value of w* we will take into account that
the following relation takes place

IAR (O = IFAR DI = / F(f.OF [w(ht)]*dt

on the basis of (2) and (6) — (7). From this equality it follows that only positive values
of h can be considered, i.e.

w(f,t) == sup{[[AF (/)| : 0 < h <t} £>0. (16)

It is obvious that w"(f,¢) — 0 under ¢t — 0+ for any w € 9.
Believing, for example, w = w,,, m € N, and taking into account (8), (16) we obtain
the usual modulus of continuity of m™ order for f € Ly(R)

wi(ft) = W (f, 1) = sup{[[AF"(F)]| : 0 < h < t}, £ >0, (17)

which was used in many of the works listed above.
In the case when w = w,,, m € N, on the basis of (15) - (16) we have the smoothness
characteristic for f € Ly(R)

Qun(f,1) = ™ (f,1) = sup{ [AR(f)I| : 0 < h <}, £ >0, (18)

which was considered, for example, in papers [17], [22].

It should be noted that since |w,,(z)|> = 2™(1 — cosx)™ and |w,(x)]* = (1 —
sinc (z))*™, the functions |w,,|* and |w,,|* satisfy the property A. At the same time
te = to(|wn|?) = 7 and t, = t.(Jw.|?) € (4,49;4,51) [17].
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By symbol B, 2, 0 € (0, 00), we denote the subspace consisting of entire functions of
exponential type not exceeding o whose extractions on R belong to the space Lo(R). For
an arbitrary function f € Ly(R) by A, (f), o € (0, 00), we denote its best average square
approximation by elements of the subspace B, o, i.e. A,(f) =inf{||f —g|| : g € By2}.

In [6] was showed by I.I.Ibragimov and F.G.Nasibov that for an arbitrary function
[ € Ly(R) the entire function

1 |
L,(f,x)=— [ F(f,t)e"dt, o€ (0,00), 19
() = o= [ F( (0,00 (19
belongs to the subspace B, 5 and gives the least deviates from f in Lo(R), i.e.
5 12
Aol =1f = LD = { [ 1R} (20)
[t|=o

Here F(f) € Ly(R) is the Fourier transform of f in the sense of the space La(R).

Let @ is a set of functions from Ly(R). Then we assume A, (Q) := sup{A,(f) : f €
o},

We next consider a series of extremal approximation characteristics introduced by
G.G.Magaril-I'yaev in papers [10] — [11] and based on the use of the concept of average
dimension. This made it possible to determine the asymptotic characteristics of the
subspaces similar to ordinary diameters when the average dimension was used as the
dimension.

Let BLy(R) be the unit ball in Ly(R). Let Lin(L2(R)) be the set of all linear
subspaces in Ly(R);

Lin,(Ls(R)) :={L € Lin(Ly(R)) : dimL < n};n € Zy,
and let
A(Q, A, Ly(R)) = sup{int{[lz — y]| -y € A} : 2 € Q}

be the best approximation of a set @ C Lo(R) by the set A C Lo(R). By Az, where
T > 0, we denote the restriction of a set A C Ly(R) to the closed interval [—7', 7], and
by LincLs(R) we denote the set of such subspaces £ € Lin(Ly(R)) for which the set
(£ N BLy(R))r is precompact in Ly([—7,T]) for any 7' > 0.

If £ € Linc(La(R)) and T',e > 0, then there exist n € Z; and M € Lin,(Ls(R)),

for which
d((L N BLy(R))r, M, Ly([-T,T))) < €.

Let be
DT, L, Ly(R)) := min{n € Z, : IM € Lin,(Lo([-T,T1])),

d((£LN BLy(R))r, M, Lo([-T,T1)) < e}

This function is nondecreasing in 7" and nonincreasing in €. The quantity

dim(L, Ly(R)) := lim{lim inf{ D.(T, £, Ls(R))/(2T) : T — 00} : & — 0},

20
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where £ € Lingc(L2(R)), is called the average dimension of the subspace £ in Ly(R).
It was shown in [10]
o

dim(B,2; L2(R)) = (21)

—

Let @ be a centrally symmetric subset from Ls(R) and let v > 0 be an arbitrary
number. Then by the average Kolmogorov v-width of a set @) in Ly(R) we understand
the quantity

d,(Q, La(R)) = inf{sup{inf{|[f — ¢l| : p € L} : f € Q} :
. L € Ling(Ly(R)), dim(L, Ly(R)) < v}.

The subspace on which the lower bound is attained is called extremal.
By the average linear v-width of a set @ in Ly(R) we understand the quantity

0,(Q, Ly(R)) = inf{sup{[|f = V(f)Il : f € @} : (X, V)},

where the lower bound is taken over all pairs (X, V) such that X is a normed space
directly embedded in Ls(R); V' : X — Lo(R) is a continuous linear operator for which
ImV € Ling(Ly(R)) and the following inequality holds dim(ImV, Ly(R)) < v; Q C X.
Here ImV is the image of the operator V. The pair on which the lower bound is attained
is called extremal.

The quantity

b,(Q, Ly(R)) := sup{sup{p > 0: LN pBLy(R) C Q} :

: L € Ling(Ly(R)), dim(L, Ly(R)) > v,d, (LN BLy(R), Ly(R)) = 1}

is called the average Bernstein v-width of a set @ in Ls(R). The last condition imposed
on L in calculating the outer upper bound means that we consider only subspaces
for which the analog of Tihomirov’s theorem on the width of the ball is valid. This
requirement is satisfied, for example, for the subspace B, if 0 > v, i.e. E,,(IB%U,Q N
BLy(R), Ly(R)) = 1.

For a set Q C Lo(R) between its extremal characteristics indicated above the
following inequalities hold

b(Q, L2(R)) < dy(Q, Lx(R)) < 6,(Q, L2(R)). (22)

By the symbol L5(R), » € N, we denote the class of functions f belonging to
the space Ly(R) in which the (r — 1) order derivatives fU—1 (f(© = f) are locally
absolutely continuous and the r** order derivatives f) € Ly(R). Note that L5(R)
becomes a Banach space if the norm in it is defined as || f|| + ||f™]|.

Let ¥(¢), t € [0,00), be a continuous increasing function such that ¥(0) = 0, which
we will further call majorant. By W7 (w®, ¥), r € N, we denote the class of functions,
consisting of the elements f € Li(R) for each of which for any value ¢ € (0,00) the
inequality w®(f,t) < ¥(t) holds. Here w € M.
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Theorem 1. Suppose that a complex-valued function w : R — C belongs to the class

M and the square of its module satisfies the property A; V is an arbitrary majorant;

€ (0,00); 7 € N; I1,(+) is any of the considered average v-widths. Then the following
relation holds:

. v (t)
oy { w(tvr)]

£y —
0<t< —} <TL (W7 (w?, 0): Ly(R)) <
120

1 —— U
(vm)rt=0+ |w(tvm)|’

< A (W (w®, 1)) <

(23)
where t, = t.(Jw|?).

Proof. Let f be an arbitrary function from the class Lj(R). For it by virtue of [6]
— 7] we have

1
Aolf) < & AL (1), 21

where ¢ € (0,00). Based on (20) we obtain
AZ(F0) / | F(fO, 1) at. (25)

‘t|>0'

Based on the formula (21) we calculate the average dimension of the subspace B, > in
Ly(R) when o = v, i.e. dim(B,,2; Lo(R)) = v. Using (25) for an arbitrary j € N we
write the relation

/!f(f(’"),t)V dt = / FO O dt+ ey (26)

[t|zvm vr<|t|<(j+1)vr

where ¢; ¢ > 0. If a function f is not integer, then the set of numbers {¢; };en forms
a non-increasing sequence of positive numbers such that €; ; — 0 for j — oo. In the
case when f is an entire function of exponential type o¢ € (jovm, (jo + 1)vwl, jo € N,
then for jo > 1 the sequence {¢; s },en will have non-increasing positive values ¢; > 0
for 1 < 7 < jo — 1 and zero values €y = 0 for all j > jy. In the case when j, = 1 we
will have €; y = 0 for any j € N. Since the course of the proof of theorem is almost the
same for each of these two cases, we will not separate them in the following arguments.

We construct by arbitrarily way a numerical sequence of positive numbers {h;} ey
so that the following conditions are satisfied: h; € (0,%./((j+1)v7)]; h; > hjiq for any
JeEN; h; = 0if 7 — oo.

For f € Li(R), proceeding from (16), we have

WO (F0) 1) = sup / IF(FD, )2 w(ht))? dt) P ocn< t},t 0. (27)
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Considering that w € 9 and w satisfies the property A, for any j € N proceeding
from (27) we write

)12
/ F D dt = / ’f(f(r)’tw% s
J

vr<|t|<(G+1)vr vr<|t|<(j+1)vr

1 / FOOPo(hit)] di <

< -
= Jw(hjrm)]?
vr<|t|<(G+1) v

Y T ) (@O, R))?
g@@;ﬂ34VU”ﬁ'mw”'“<rM@mW' 9

Proceeding from (24) — (28) for an arbitrary function f € L5(R) and for any j € N
we write

2 1 (r) 2 ] 1 (ww(f(r)7 hj))z )
< oaat [ wFunraas) < s { S an e
vr<|t|<(j+1)vr

On the basis of this relation we obtain for f € W"(w", V)

L —w(f", hy)

<
(vm)rj—oo |w(h,vm)

Aux(f) <

1 ——w(f™ 1) 1 — Ut
(VW)THH(% |w(tv)| S (Vﬂ)rtL0+\w(tVW)|'

~X

Using the relations (22) and (29), we write down the upper bounds

L, (W7 (w0, W); Ly(R)) < Aps (W7 (", ¥)) < —— T — oD

(vm)r t=0+|w(tvr)|

, (30)

where IT,(W"(w™, ¥); Ly(R)) is any of the average v-widths listed above.

Further we shall obtain the lower estimates for the considered extremal
characteristics of the class W"(w™, ¥) in the space Ly(R). Let 0 := vm(1 + £), where
e € (0,7), 7 := min(v, 1/v). Proceeding from (21) we have dim(Bg ; Lo(R)) = v(1+¢).
Putting

p = (,\1 inf{ v :O<t<t—*}, (31)

a)r |w(to)|« VT

where
lw(z)]x = {Jw(@)| if 0 <z <t wts)] if t. < 2 < oo},

we consider the set of functions Bs(p) = Bz N pBLy(R) = {g € Bs2 : ||g|| < p} and
we show that the inclusion Bs(p) C W (w®, V) is valid.
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For an arbitrary function g € Bz, the inequality ||| < ()"||g|| holds and the
representation

g(x) = \/%_ﬂ[ Flg,t)e™dt

is valid, where F(g) € Lo(—0,0) (see, for example, [24, ch. II, §2.5]). In the case when
g € Bs(p) we obtain on the basis of (27)

w( (1) / (r) 2 2 1/2 ~ (r)
o (g"x) = sup { ([ 17 0Pl Par) 20 < h <o} < @l lo"] <

< @G lgl < fw@e)].inf { D0 <t < 2] (32)

lw(to)|« s

Let first 0 < o < t,/6. Assuming on the right-hand side of the relation (32) t = z,
we write down
w(g", z) < U(x).

Let now t,/0 < x < oco. Taking into account that in this case |w(cz)|. = |w(t.)| and
assuming on the right-hand side of the relation (32) t = ¢./7, we obtain

W (g™, z) < U(t, /o) < U(x).

Consequently, the set Bs(p) belongs to the class W (w®, U).
Proceeding from the definition of the average Bernstein v-width, we write down the
chain of inequalities

Z_)V(Wr(wwa \D)> LZ(R)) = Bu(Bﬁ(p)7 LQ(R)) 2 p- (33)
Putting
Kori(e) = (1+e) |w(tvr(l+¢))l|. (34)
from (33) and (31) we get
n T, W . 1 : ‘Ij<t) . t*
W (", W) La(R)) 2 o ind {KV’M(@ 0<t< V—W}. (35)

It follows from (34) that for fixed values of the quantities v, r, ¢ the function IC,, +(¢) is
monotonously increasing from ¢ and lim{/C, ,;(¢) : ¢ = 04} = |w(tvm)|. Then on the
basis of (35) we write down

BW (@, ) La(R) > T nf {0 <t < = ie 0 ) >
= (mlr)r lim{inf{lcyi((tl)/n) 0<t< ﬁ} ‘n— oo} =

24
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L inf{’w\fi10<t<t—*}. (36)

- (v tvr)| 1z

Using relations (22), (29) and (36), we obtain the required result (23). Theorem 1
is proved.

Corollary 1. Let v € (0,00); r € N; a majorant ¥ satisfies the condition
w(t)

w(t 1 -
inf{Lzoag—}:hm— (37)
|w(tv)] v t—=0+ |w(tvm)|

and the remaining requirements of Theorem 1 are satisfied. Then the following equalities
hold:

IL, (W' (w", W); La(R)) = Ay (W' (w", ¥)) =
1

(vm)r

— sup{[lf — Lon(F)] - f € WT(w®, W)} = mf{mq(’(“ o<t @)

tvm)| 1z

where TL,(WT(w®, ¥); Ly(R)) is any of the average n-widths considered earlier.
Moreover a pair of (L5(R), L,r), where the operator L, is defined by formula (19) for
o = v, is extremal for the average linear v-width 6, (W™ (w", ¥); Ly(R)); the subspace
B, 2 will be extremal for the average Kolmogorov v-width d, (W7 (w™,¥); Ly(R)).

Let us give several examples of the implementation of the results obtained in
Corollary 1. Further let £(¢), 0 < ¢t < oo, be an arbitrary continuous non-decreasing
function such that £(0) > 0.

At first we assume that w = w,,, m € N. Then |w,(z)] = 2™|sin(xz/2)|™ and
t, = t.(Jwn,|?) = 7. We consider the majorant W,,(£,t) := t™&(t), 0 < t < oo. It can
be shown that condition (37) will be satisfied, since

. (t/2" _ 1 _ (t/2)" _
inf {sinm(tmr/Q)s(t) <t ;} B t—lgisinm(tl/ﬁﬂ)g( )= (vm)m

Then by virtue of (38) we have

I, (W (@i, U (€)); L2(R)) = Ape (W (W, ¥ (£))) =

£(0)

(vm)r+m’

= sup{[[f = Lox(NI : f € W (wm, Ym(£))} = (39)

In the case when £(t) = 1 from (39) we obtain one of the results of the authors’ work
[19].

Now let w = w,,, m € N. It can be shown that the condition (37) holds for the
majorant Wy, (&, 1), since

mf{( e 5(t):0<t<t_*}:

1 — sinc (tvm))™ VT
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t2m 6

= lim E(t) =

t—=0+ (1 — sinc (tvm))™

——£(0).
(1/7T)2m§( )
Here t, = t.(|W,,|?). Then on the basis of (38) we write down

ﬁu(Wr<ﬁma \IIZm(f))a L2(R)) = AVW<WT(§WH \Ij2m<€))) =

—sup{[f — Lon(P)] : f € W (€. Do (6))} = wﬁ%sm).

From the given examples it follows that there is a wide class of majorants satisfying
the condition (37). This condition was not as rigid as the conditions imposed on the
majorants in the 2m-periodic case or as the restrictions imposed on the majorants in
the case of analytic functions in the unit circle (see, for example, [28] — [29]).
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