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FOURIER PROBLEM FOR WEAKLY NONLINEAR
EVOLUTION INCLUSIONS WITH FUNCTIONALS

MykolaM. Bokalo∗, IrynaV. Skira†

Abstract. The Fourier problem or, in other words, the problem without initial conditions
for evolution equations and inclusions arise in modeling different nonstationary processes
in nature, that started a long time ago and initial conditions do not affect on them in
the actual time moment. Thus, we can assume that the initial time is −∞, while 0 is
the final time, and initial conditions can be replaced with the behaviour of the solution
as time variable turns to −∞. The Fourier problem for evolution variational inequalities
(inclusions) with functionals is considered in this paper. The conditions for existence and
uniqueness of weak solutions of the problem are set. Also the estimates of weak solutions
are obtained.

Key words: Fourier problem, problem without initial condition, evolution inclusion,
subdifferential of functional.

2010 Mathematics Subject Classification: 26D10, 47J20, 47J22, 49J40.

Communicated by Prof. P. I. Kogut

1. Introduction

In this paper we consider problem without initial conditions, or, in other
words, the Fourier problem for evolution variational inequalities (inclusions) with
functionals. Let us introduce an example of the problem being studied here.

Let Ω be a bounded domain in Rn (n ∈ N), ∂Ω be the boundary of Ω, which
is piecewise surface. We put Q := Ω × (−∞, 0], Σ := ∂Ω × (−∞, 0], Ωt :=
Ω × {t} ∀ t ∈ R. For an arbitrary measurable set F ⊂ Rk, where k = n or
k = n + 1, let L2(F ) be the standard Lebesgue space. Let L2

loc(Q) be the space
of functions defined on Q such that their restrictions on any bounded measurable
set Q′ ⊂ Q belong to L2(Q′). Denote by H1(Ω) the standard Sobolev space, e.i.,
H1(Ω) = {v ∈ L2(Ω) | vxi ∈ L2(Ω), i = 1, n} with scalar product (v, w)H1(Ω) =´

Ω[∇v∇w + vw] dx, where ∇u := (ux1 , . . . , uxn), ∇w := (wx1 , . . . , wxn).
Let K be a convex closed set in H1(Ω) which contains 0. Let us consider

the problem of finding a function u ∈ L2
loc(Q) such that uxi ∈ L2

loc(Q), i = 1, n,
ut ∈ L2

loc(Q), and, for a.e. t ∈ (−∞, 0], u(·, t) ∈ K andˆ
Ωt

{
ut(v − u) +∇u∇(v − u) + u(v − u) + (v − u)

ˆ
Ω
b(x, y, t)u(y, t) dy

}
dx

≥
ˆ

Ωt

f(v − u) dx ∀ v ∈ K, (1.1)
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lim
t→−∞

||u(·, t)||L2(Ω) = 0, (1.2)

where f ∈ L2
loc(Q), b ∈ L∞(Ω× Ω× (−∞, 0)).

As it will be shown in the sequel, if

f ∈ L2(Q), ess sup
(x,y,t)∈Ω×Ω×(−∞,0]

|b(x, y, t)|
√

mesnΩ < K,

where K > 0 is a constant from inequality K‖v‖L2(Ω) ≤ ‖v‖H1(Ω), ∀v ∈ H1(Ω),
then this problem, which we call problem (1.1),(1.2), has unique solution.

We remark that problem (1.1),(1.2) can be written in more abstract way.
Indeed, after appropriate identification of functions and functionals, we have con-
tinuous and dense imbedding

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))′,

where (H1(Ω))′ is dual toH1(Ω) space. Clearly, for any h ∈ L2(Ω) and v ∈ H1(Ω)
we have 〈h, v〉 = (h, v), where 〈·, ·〉 is the notation for scalar product on dual pair
[(H1(Ω))′, H1(Ω)], and (·, ·) is the scalar product in L2(Ω). Thus, we can use the
notation (·, ·) instead of 〈·, ·〉.

Now, we denote S := (−∞, 0], V := H1(Ω), H := L2(Ω) and define an
operator A : V → V ′ as follows

(Av,w) =

ˆ
Ω

[
∇v∇w + vw

]
dx, v, w ∈ V.

For all t ∈ S define an operator B(t, ·) : H → H as follows

B(t, v)(·) =

ˆ
Ω
b(·, y, t)v(y) dy, v ∈ H.

Then problem (1.1),(1.2) can be rewritten as following: find a function u ∈
L2

loc(S;V ) such that u′ ∈ L2
loc(S;H), condition (1.2) holds, and, for a.e. t ∈ S,

u(t) ∈ K and

(u′(t) +Au(t) +B(t, u(t)), v − u(t)) ≥ (f(t), v − u(t)) ∀ v ∈ K. (1.3)

Here f ∈ L2
loc(S;H) is a given function.

We remark that variational inequality (1.3) can be written as a subdifferential
inclusion. For this purpose we put IK(v) := 0 if v ∈ K, and IK(v) := +∞ if
v ∈ V \K, and also

Φ(v) =
1

2

ˆ
Ω

(
|∇v|2 + |v|2

)
dx+ IK(v), v ∈ V.

It is easy to verify that the functional Φ : V → R ∪ {+∞} is convex and semi-
lower-continuous. By the known results (see, e.g., [22, p. 83]) it follows that
the problem of finding a solution of variational inequality (1.3) can be written
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as such subdifferential inclusion: to find a function u ∈ L2
loc(S;V ) such that

u′ ∈ L2
loc(S;H), condition (1.2) holds and, for a.e. t ∈ S, u(t) ∈ D(∂Φ) and

u′(t) + ∂Φ(u(t)) +B(t, u(t)) 3 f(t) in H. (1.4)

The aim of this paper is to investigate problems for inclusions of type (1.4).
Problem without initial conditions or, in other words, the Fourier problem

for evolution equations and inclusions arise in modeling different nonstationary
processes in nature, that started a long time ago and initial conditions do not affect
on them in the actual time moment. Thus, we can assume that the initial time
is −∞, while 0 is the final time, and initial conditions can be replaced with the
behaviour of the solution as time variable turns to −∞. Such problem appear in
modeling in many fields of science such as ecology, economics, physics, cybernetics,
etc. The research of the problem without initial conditions for the evolution
equations and variational inequalities were conducted in the monographs [16, 18,
22], the papers [3,6–8,13,15,17,19,21], and others. In particular, R.E. Showalter
in the paper [21] proved the existence of a unique solution u ∈ e2ω·H1(S;H),
where H is a Hilbert space, of the problem without initial condition

u′(t) + µu(t) +A
(
u(t)

)
3 f(t), t ∈ S,

for ω + µ > 0 and f ∈ e2ω·H1(S;H), in case when A : H → 2H is maximal
monotone operator such that 0 ∈ A(0). Moreover, if A = ∂ϕ, where ϕ : H →
R∪{+∞} is proper, convex and lower-semi-continuous functional such that ϕ(0) =
0 = inf {ϕ(v) : v ∈ H}, then this problem is uniquely solvable for each µ > 0,
f ∈ L2(S;H) and ω = 0.

As is well known the uniqueness of the solutions of problem without initial
conditions for linear parabolic equations and variational inequalities is possible
only under some restrictions on the behavior of solutions as time variable terns to
−∞. For the first time it was strictly justified by A.N. Tikhonov [23] in the case
of heat equation. However, as it was shown by M.M. Bokalo [3], problem without
initial conditions for some nonlinear parabolic equations has a unique solution in
the class of functions without behavior restriction as time variable terns to −∞.
Similar result for evolutionary variational inequalities were also obtained in the
paper [4].

Note that in inclusion (1.4) the unknown function can enter both in the differ-
ential part and in functional part. Previously, the Fourier problem for evolution
integro-differential equations were studied in [5,9,10] (see also references therein).
Let us note that problems without initial conditions for variational inequalities
or inclusions with functionals have not been considered in the literature, and this
serves as one of the motivations for the study of such problems.

The outline of this paper is as follows. In Section 2, we give notation, defini-
tions of needed function spaces and auxiliary results. In Section 3, we formulate
the problem and main result. We prove the main result in Section 4.
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2. Preliminaries

Set S := (−∞, 0]. Let V and H be separable Hilbert spaces with the scalar
products (·, ·)V , (·, ·) and norms ‖ · ‖, | · |, respectively. Suppose that V ⊂ H with
dense, continuous and compact injection, i.e., the closure of V in H coincides with
H, and there exists a constant λ > 0 such that

λ|v|2 ≤ ‖v‖2 for all v ∈ V, (2.1)

and for every sequence {vk}∞k=1 bounded in V there exist an element v ∈ V and
a subsequence {vkj}∞j=1 such that vkj −→

j→∞
v strongly in H.

Let V ′ and H ′ be the dual spaces to V and H, respectively. We suppose (after
appropriate identification of functionals), that the space H ′ is a subspace of V ′.
Identifying the spaces H and H ′ by the Riesz-Fréchet representation theorem, we
obtain dense and continuous embeddings

V ⊂ H ⊂ V ′ . (2.2)

Note that in this case 〈g, v〉V = (g, v) for every v ∈ V, g ∈ H, where 〈·, ·〉V is the
scalar product for the duality [V ′, V ]. Therefore, further we can use the notation
(·, ·) instead of 〈·, ·〉V .

We introduce some spaces of functions and distributions. Let X be an ar-
bitrary Hilbert space with the scalar product (·, ·)X and the norm ‖ · ‖X . By
C(S;X) we mean the linear space of continuous functions defined on S with val-
ues in X. We say that wm −→

m→∞
w in C(S;X) if for each t1, t2 ∈ S, t1 < t2,

we have max
t∈[t1,t2]

‖w(t)−wm(t)‖X −→
m→∞

0.

Denote by L2
loc(S;X) the linear space of measurable functions defined on S

with values inX, whose restrictions to any segment [t1, t2] ⊂ S belong to the space
L2(t1, t2;X). We say that a sequence {wm} is bounded (respectively, strongly,
weakly or ∗-weakly convergent to w) in L2

loc(S;X), if for each t1, t2 ∈ S, t1 < t2,
the sequence of restrictions of {wm} on the segment [t1, t2] is bounded (respec-
tively, strongly, weakly or ∗-weakly convergent to the restriction of w on this
segment) in L2(t1, t2;X).

Let ν ∈ R. Put by definition

L2
ν(S;X) :=

{
f ∈ L2

loc(S;X)
∣∣∣ ˆ

S
e2νt‖f(t)‖2X dt <∞

}
.

This space is a Hilbert space with the scalar product

(f, g)L2
ν(S;X) =

ˆ
S
e2νt(f(t), g(t))X dt

and the corresponding norm

‖f‖L2
ν(S;X) :=

(ˆ
S
e2νt‖f(t)‖2X dt

)1/2
.
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Also we introduce the space

L∞ν (S;X) := {f ∈ L∞loc(S;X) | ess sup
t∈S

[
eνt‖f(t)‖X

]
<∞}.

By D′(−∞, 0;V ′) we mean the space of continuous linear functionals on
D(−∞, 0) with values in V ′w (hereafterD(−∞, 0) is space of test functions, that is,
the space of infinitely differentiable on (−∞, 0) functions with compact supports,
equipped with the corresponding topology, and V ′w is the linear space V ′ equipped
with weak topology). It is easy to see (using (2.2)), that spaces L2

loc(S;V ),
L2

loc(S;H), L2
loc(S;V ′) can be identified with the corresponding subspaces of

D′(−∞, 0;V ′). In particular, this allows us to talk about derivatives w′ of func-
tions w from L2

loc(S;V ) or L2
loc(S;H) in the sense of distributions D′(−∞, 0;V ′)

and belonging of such derivatives to L2
loc(S;H) or L2

loc(S;V ′).
Let us define the spaces

H1
loc(S;H) := {w ∈ L2

loc(S;H)
∣∣w′ ∈ L2

loc(S;H)},

W2,loc(S;V ) := {w ∈ L2
loc(S;V )

∣∣w′ ∈ L2
loc(S;V ′)}.

From known results (see., for example, [14, pp. 177–179]) it follows that

H1
loc(S;H) ⊂ C(S;H) and W2,loc(S;V ) ⊂ C(S;H).

Moreover, for every w in H1
loc(S;H) or W2,loc(S;V ) the function t → |w(t)|2 is

absolutely continuous on any segment of the interval S and the following equality
holds

d

dt
|w(t)|2 = 2(w′(t), w(t)) for a.e. t ∈ S. (2.3)

Denote
H1
ν (S;H) := {w ∈ L2

ν(S;H)
∣∣w′ ∈ L2

ν(S;H)}, ν ∈ R. (2.4)

In this paper we use the following well-known facts.

Lemma 2.1 (Cauchy-Schwarz inequality [14, p. 158]). Suppose that t1, t2 ∈ R,
t1 < t2, and X is a Hilbert space with the scalar product (·, ·)X . Then, for
v, w ∈ L2(t1, t2;X), we have (w(·), v(·))X ∈ L1

(
t1, t2

)
and

ˆ t2

t1

(w(t), v(t))X dt ≤ ‖w‖L2(t1,t2;X)‖v‖L2(t1,t2;X).

Lemma 2.2 ( [27, pp. 173,179]). Let Y be a Banach space with the norm ‖ · ‖Y ,
and {vk}∞k=1 be a sequence of elements of Y , which is weakly or ∗-weakly conver-
gent to v in Y . Then lim

k→∞
‖vk‖Y ≥ ‖v‖Y .

Lemma 2.3 (Aubin theorem [1], [2, p. 393]). Let q > 1, r > 1, t1, t2 ∈ R, t1 < t2,
and W,L,B are Banach spaces such that W

c
⊂L 	 B (here

c
⊂ means compact

embedding, and 	 means continuous embedding). Then

{w ∈ Lq(t1, t2;W) | w′ ∈ Lr(t1, t2;B)}
c
⊂
(
Lq(t1, t2;L) ∩ C([t1, t2];B)

)
. (2.5)
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Note that, we understand embedding (2.5) as follows: if a sequence {wm}
is bounded in the space Lq(t1, t2;W) and the sequence {w′m} is bounded in the
space Lr(t1, t2;B), then there exist a function w ∈ C([t1, t2];B)∩Lq(t1, t2;L) and
a subsequence {wmj} of the sequence {wm} such that wmj −→

j→∞
w in C([t1, t2];B)

and strongly in Lq(t1, t2;L).

Lemma 2.4. If a sequence {wm} is bounded in the space L2
loc(S;V ) and the

sequence {w′m} is bounded in the space L2
loc(S;H), then there exist a function

w ∈ L2
loc(S;V ), w′ ∈ L2

loc(S;H), and a subsequence {wmj} of the sequence {wm}
such that wmj −→

j→∞
w in C(S;H) and weakly in L2

loc(S;V ), and w′mj −→j→∞w
′ weakly

in L2
loc(S;H).

Proof of Lemma 2.4. Lemma 2.3 for q = 2, r = 2, W = V , L = B = H and re-
flexiveness of Hilbert spaces yield, for every t1, t2 ∈ S, t1 < t2, from the sequence
of restrictions of the elements {wm} to the segment [t1, t2] one can choose a sub-
sequence which is convergent in C([t1, t2];H) and weakly in L2(t1, t2;V ), and the
sequence of derivatives of the elements of this subsequence is weakly convergent
in L2(t1, t2;H). For each k ∈ N we choose a subsequence {wmk,j}∞j=1 of the given
sequence which is convergent in C([−k, 0];H) and weakly in L2(−k, 0;V ) to some
function ŵk ∈ C([−k, 0];H)∩L2(−k, 0;V ), and the sequence {w′mk,j}

∞
j=1 is weakly

convergent to the derivative ŵ′k in L
2(−k, 0;H).Making this choice we ensure that

the sequence {wmk+1,j
}∞j=1 was a subsequence of the sequence {wmk,j}∞j=1. Now,

according to the diagonal process we select the desired subsequence as {wmj,j}∞j=1,
and we define the function w as follows: for each k ∈ N we take w(t) := ŵk(t) for
t ∈ (−k,−k + 1].

3. Statement of the problem and main result

Let Φ : V → R∞ := (−∞,+∞] be a proper functional, i.e.,

dom(Φ) := {v ∈ V : Φ(v) < +∞} 6= ∅,

which satisfies the conditions:

(A1) Φ
(
αv + (1− α)w

)
≤ αΦ(v) + (1− α)Φ(w) ∀ v, w ∈ V, ∀α ∈ [0, 1],

i.e., the functional Φ is convex,

(A2) vk −→
k→∞

v in V =⇒ lim
k→∞

Φ(vk) ≥ Φ(v),

i.e., the functional Φ is lower semicontinuous.
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Recall that the subdifferential of functional Φ is a mapping ∂Φ : V → 2V
′ ,

defined as follows

∂Φ(v) := {v∗ ∈ V ′ | Φ(w) ≥ Φ(v) + (v∗, w − v) ∀ w ∈ V }, v ∈ V,

and the domain of the subdifferential ∂Φ is the setD(∂Φ) := {v ∈ V | ∂Φ(v) 6= ∅}.
We identify the subdifferential ∂Φ with its graph, assuming that [v, v∗] ∈ ∂Φ if
and only if v∗ ∈ ∂Φ(v), i.e., ∂Φ = {[v, v∗] | v ∈ D(∂Φ), v∗ ∈ ∂Φ(v))}. R.
Rockafellar in paper [20, Theorem A] proves that the subdifferential ∂Φ is a
maximal monotone operator, that is,

(v∗1 − v∗2, v1 − v2) ≥ 0 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂Φ,

and for every element [v1, v
∗
1] ∈ V × V ′ we have the implication

(v∗1 − v∗2, v1 − v2) ≥ 0 ∀ [v2, v
∗
2] ∈ ∂Φ =⇒ [v1, v

∗
1] ∈ ∂Φ.

Let, for each t ∈ S, B(t, ·) : H → H be an operator which satisfies the
condition:

(B) for any v ∈ H the mapping B(·, v) : S → S is measurable, and there exists
a constant L ≥ 0 such that following inequality holds

|B(t, v1)−B(t, v2)| ≤ L|v1 − v2| (3.1)

for a.e. t ∈ S, and for all v1, v2 ∈ H; in addition, B(t, 0) = 0 for a.e. t ∈ S.

Remark 3.1. From the condition (B) it follows that for a.e. t ∈ S, and for every
v ∈ H the following estimate is valid:

|B(t, v)| ≤ L|v|. (3.2)

Let us consider the evolutionary variational inequality

u′(t) + ∂Φ
(
u(t)

)
+B(t, u(t)) 3 f(t), t ∈ S, (3.3)

where f : S → V ′ is a given measurable function and u : S → V is an unknown
function.

Definition 3.1. Let conditions (A1), (A2), (B) hold, and f ∈ L2
loc(S;V ′). The

solution of variational inequality (3.3) is a function u : S → V that satisfies the
following conditions:

1) u ∈W2,loc(S;V );

2) u(t) ∈ D(∂Φ) for a.e. t ∈ S;
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3) there exists a function g ∈ L2
loc(S;V ′) such that, for a.e. t ∈ S, g(t) ∈

∂Φ
(
u(t)

)
and

u′(t) + g(t) +B(t, u(t)) = f(t) in V ′.

For variational inequality (3.3) consider the problem: find its solution which
satisfies the condition

lim
t→−∞

eγt|u(t)| = 0, (3.4)

where γ ∈ R is given.
The problem of finding a solution of variational inequality (3.3) (for given

Φ,B,f) satisfying the condition (3.4) for given γ, is called the Fourier problem or,
in other words, the problem without initial conditions for the evolution variational
inequality (3.3). This problem, in short, be called the problem P(Φ, B, f, γ), and
the function u is called its solution.

Additionally, assume that the following conditions hold:

(A3) there exists a constant K1 > 0 such that

(v∗1 − v∗2, v1 − v2) ≥ K1|v1 − v2|2 ∀ [v1, v
∗
1], [v2, v

∗
2] ∈ ∂Φ;

(A4) there exists a constant K2 > 0 such that

Φ(v) ≥ K2‖v‖2 ∀ v∈dom(Φ);

moreover, Φ(0) = 0.

Remark 3.2. Condition (A4) implies that Φ(v) ≥ Φ(0) + (0, v− 0) ∀v ∈ V , hence
[0, 0] ∈ ∂Φ. From this and condition (A3) we have

(v∗, v) ≥ K1|v|2 ∀ [v, v∗] ∈ ∂Φ. (3.5)

Now we shall formulate the main result.

Theorem 3.1. Let conditions (A1) – (A3), (B) hold, and γ ∈ R is such that

γ < K1 − L. (3.6)

Then the problem P(Φ, B, f, γ) has at most one solution.

Theorem 3.2. Let conditions (A1) – (A4), (B) hold, and

(F) f ∈ L2
γ(S;H),

where γ ∈ R satisfies inequality (3.6). Then the problem P(Φ, B, f, γ) has a unique
solution, it belongs to the space L∞γ (S;V )∩L2

γ(S;V )∩H1
γ(S;H) and satisfies the

estimate:

e2γσ‖u(σ)‖2 +

ˆ σ

−∞
e2γt‖u(t)‖2 dt+

ˆ σ

−∞
e2γt|u′(t)|2 dt

+

ˆ σ

−∞
e2γtΦ(u(t))dt ≤ C1

ˆ σ

−∞
e2γt|f(t)|2 dt, σ ∈ S, (3.7)

where C1 is a positive constant depending on K1, K2, L and γ only.
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Remark 3.3. The problem P(Φ, B, f, γ) can be replaced by the following problem.
Let K be a convex and closed set in V , A : V → V ′ be a monotone, bounded
and semi-continuous operator such that (A(v), v) ≥ K̃1‖v‖2 ∀v ∈ V , where
K̃1 = const > 0. The problem is to find a function u ∈ W2,loc(S;V ) satisfying
the condition (3.4) and, for a.e. t ∈ S, u(t) ∈ K and

(u′(t) +A(u(t)) +B(t, u(t)), v − u(t)) ≥ (f(t), v − u(t)) ∀ v ∈ K.

4. Proof of the main result

Proof of the Theorem 3.1. Assume the contrary. Let u1, u2 be two solutions
of the problem P(Φ, B, f, γ). Then for every i ∈ {1, 2} there exists function
gi ∈ L2

loc(S;V ′) such that, for a.e. t ∈ S, gi(t) ∈ ∂Φ
(
ui(t)

)
and

u′i(t) + gi(t) +B(t, ui(t)) = f(t) in V ′. (4.1)

We put w(t) := u1(t) − u2(t), t ∈ S. From equalities (4.1) for a.e. t ∈ S we
obtain

w′(t) + g1(t)− g2(t) +B(t, u1(t))−B(t, u2(t)) = 0 in V ′. (4.2)

From (3.4) it follows that the following condition holds

e2γt|w(t)|2 → 0 as t→ −∞. (4.3)

Let σ1, σ2 ∈ S be arbitrary numbers such that σ1 < σ2. Multiplying equality
(4.2) by w(t)e2γt, and integrating from σ1 to σ2 we obtain
ˆ σ2

σ1

e2γt(w′(t), w(t)) dt+

ˆ σ2

σ1

e2γt(g1(t)− g2(t), u1(t)− u2(t))dt

+

ˆ σ2

σ1

e2γt
(
B(t, u1(t))−B(t, u2(t)), w(t)

)
dt = 0. (4.4)

By condition (A3) and the fact that gi(t) ∈ ∂Φ(ui(t)), i = 1, 2, for a.e. t ∈ S we
have the inequality

(g1(t)− g2(t), u1(t)− u2(t)) ≥ K1|w(t)|2. (4.5)

Consider the last term from left-hand side of equality (4.4). Using (3.1) and
the Cauchy–Schwarz inequality, we have∣∣∣ˆ σ2

σ1

e2γt
(
B(t, u1(t))−B(t, u2(t)), w(t)

)
dt
∣∣∣

≤
ˆ σ2

σ1

e2γt
∣∣B(t, u1(t))−B(t, u2(t))

∣∣|w(t)| dt

≤ L
ˆ σ2

σ1

e2γt |w(t)|2 dt. (4.6)
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By (2.3), (4.5), (4.6), from (4.4) we obtain the following inequality

1

2

ˆ σ2

σ1

e2γtd|w(t)|2

dt
dt+

(
K1 − L

) ˆ σ2

σ1

e2γt|w(t)|2dt ≤ 0. (4.7)

Using the integration-by-parts formula, from (4.7) we have

e2γt|w(t)|2
∣∣∣σ2
σ1

+ 2
(
K1 − L− γ

) ˆ σ2

σ1

e2γt|w(t)|2 dt ≤ 0. (4.8)

Since condition (3.6) holds, from (4.8) we obtain

e2γσ2 |w(σ2)|2 ≤ e2γσ1 |w(σ1)|2. (4.9)

Let us fix an arbitrary σ2 in (1.1), and pass to the limit as σ1 → −∞. Accord-
ing to condition (4.3), the the right side of inequality (1.1) turns to 0. Thus, we
get the equality e2γσ2 |w(σ2)|2 = 0. Since σ2 ∈ S is an arbitrary number, we have
w(t) = 0 for a.e. t ∈ S, this contradicts our assumption. Therefore, a solution of
the problem P(Φ, B, f, γ) is unique. �

Proof of the Theorem 3.2. We divide the proof into five steps.
Step 1 (auxiliary statements). Under assumptions (A1), (A2) we define

the functional ΦH : H → R∞ by the rule: ΦH(v) := Φ(v), if v ∈ V , and
ΦH(v) := +∞ otherwise. Note that conditions (A1), (A2), Lemma IV.5.2 and
Proposition IV.5.2 of the monograph [22] imply that ΦH is a proper, convex and
lower-semi-continuous functional on H, dom(ΦH) = dom(Φ) ⊂ V and ∂ΦH =
∂Φ ∩ (V ×H), where ∂ΦH : H → 2H is the subdifferential of the functional ΦH .

The following statements will be used in the sequel.

Lemma 4.1 ( [22, Lemma IV.4.3]). Let −∞ < a < b < +∞, w ∈ H1(a, b;H),
and there exists g ∈ L2(a, b;H) such that g(t) ∈ ∂ΦH

(
w(t)

)
for a.e. t ∈ (a, b).

Then the function ΦH

(
w(·)

)
is absolutely continuous on the interval [a, b] and for

any function h : [a, b] → H such that h(t) ∈ ∂ΦH

(
w(t)

)
the following equality

holds
d

dt
ΦH

(
w(t)

)
= (h(t), w′(t)) for a.e. t ∈ (a, b).

Lemma 4.2 ( [11, Proposition 3.12], [22, Proposition IV.5.2]). Let T > 0, f̃ ∈
L2(0, T ;H) and w0∈dom(Φ). Then there exists a unique function

w ∈ C([0, T ];H) ∩H1(0, T ;H)

such that w(0) = w0 and, for a.e. t ∈ (0, T ], w(t) ∈ D(∂ΦH) and

w′(t) + ∂ΦH

(
w(t)

)
3 f̃(t) in H. (4.10)
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Lemma 4.3. Let t0 < 0, f̃ ∈ L2(t0, 0;H), and w0 ∈ dom(Φ). Then there exists
a unique function w ∈ C([t0, 0];H) ∩H1(t0, 0;H) such that w(t0) = w0 and, for
a.e. t ∈ (t0, 0], w(t) ∈ D(∂ΦH) and

w′(t) + ∂ΦH

(
w(t)

)
+B(t, w(t)) 3 f̃(t) in H, (4.11)

that is, there exists g̃ ∈ L2(t0, 0;H) such that, for a.e. t ∈ (t0, 0], we have
g̃(t) ∈ ∂ΦH(w(t)) and

w′(t) + g̃(t) +B(t, w(t)) = f̃(t) in H. (4.12)

Proof of Lemma 4.3. Let α > 0 be an arbitrary fixed number and set

M := {w ∈ C([t0, 0];H) | w(t0) = w0}.

Consider M with the metric

ρ(w1, w2) = max
t∈[t0,0]

[
e−α(t−t0)|w1(t)− w2(t)|

]
, w1, w2 ∈M.

It is obvious that the metric space (M,ρ) is complete. Now let us consider an
operator A : M →M defined as follows: for any given function w̃ ∈M , it defines
a function ŵ ∈ M ∩ H1(t0, 0;H) such that, for a.e. t ∈ (t0, 0], ŵ(t) ∈ D(∂ΦH)
and

ŵ′(t) + ∂ΦH(ŵ(t)) 3 f̃(t)−B(t, w̃(t)) in H. (4.13)

Clearly, variational inequality (4.13) coincides with variational inequality (4.10)
after replacing [0, T ] by [t0, 0], f̃(t) by f̃(t)−B(t, w̃(t)), the condition w(0) = w0

by the condition ŵ(t0) = w0. Thus, using Lemma 4.2, we get that operator A is
well-defined. Let us show that the operator A is a contraction for some α > 0.
Indeed, let w̃1, w̃2 be arbitrary functions from M and ŵ1 := Aw̃1, ŵ2 := Aw̃2.
According to (4.13) there exist functions ĝ1 and ĝ2 from L2(t0, 0;H) such that for
every k ∈ {1, 2} and for a.e. t ∈ (t0, 0] we have ĝk(t) ∈ ∂ΦH(ŵk(t)) and

ŵ′k(t) + ĝk(t) = f̃(t)−B(t, w̃k(t)), (4.14)

while ŵk(t0) = w0.
Subtracting identity (4.14) for k = 2 from identity (4.14) for k = 1, and, for

a.e. t ∈ (t0, 0], multiplying the obtained identity by ŵ1(t)− ŵ2(t), we get(
(ŵ1(t)− ŵ2(t))′, ŵ1(t)− ŵ2(t)

)
+ (ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t))

= −(B(t, w̃1(t))−B(t, w̃2(t)), ŵ1(t)− ŵ2(t)) for a.e. t ∈ (t0, 0], (4.15)
ŵ1(t0)− ŵ2(t0) = 0. (4.16)

We integrate equality (4.15) by t from t0 to σ ∈ (t0, 0], taking into account that
for a.e. t ∈ (t0, 0] we have(

(ŵ1(t)− ŵ2(t))′, ŵ1(t)− ŵ2(t)
)

=
1

2

d

dt
|ŵ1(t)− ŵ2(t)|2.
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As a result we get the equality

1

2
|ŵ1(σ)− ŵ2(σ)|2 +

ˆ σ

t0

(ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) dt

= −
ˆ σ

t0

(
B(t, w̃1(t))−B(t, w̃2(t)), ŵ1(t)− ŵ2(t)

)
dt. (4.17)

By condition (A3), for a.e. t ∈ (t0, 0] we have the inequality

(ĝ1(t)− ĝ2(t), ŵ1(t)− ŵ2(t)) ≥ K1|ŵ1(t)− ŵ2(t)|2. (4.18)

Taking into account condition (B) and the Cauchy inequality, for a.e. t ∈ (t0, 0]
we obtain∣∣(B(t, w̃1(t))−B(t, w̃2(t)),ŵ1(t)− ŵ2(t)

)∣∣
≤
∣∣B(t, w̃1(t))−B(t, w̃2(t))

∣∣ · ∣∣ŵ1(t)− ŵ2(t)
∣∣

≤ L|w̃1(t)− w̃2(t)| · |ŵ1(t)− ŵ2(t)|

≤ ε|ŵ1(t)− ŵ2(t)|2 +
L2

4ε
|w̃1(t)− w̃2(t)|, (4.19)

where ε > 0 is an arbitrary.
From (4.17), according to (4.18) and (4.19), we have

|ŵ1(σ)− ŵ2(σ)|2 + 2(K1 − ε)
ˆ σ

t0

|ŵ1(t)− ŵ2(t)|2 dt

≤ (2ε)−1L2

ˆ σ

t0

∣∣w̃1(t)− w̃2(t)
∣∣2dt. (4.20)

Choosing ε = 2−1K1, from (4.20) we obtain

|ŵ1(σ)− ŵ2(σ)|2 ≤ C2

ˆ σ

t0

|w̃1(t)− w̃2(t)|2 dt, σ ∈ (t0, 0], (4.21)

where C2 > 0 is the constant.
After multiplying inequality (4.21) by e−2α(σ−t0) we obtain

e−2α(σ−t0)|ŵ1(σ)− ŵ2(σ)|2

≤ C2e
−2α(σ−t0)

ˆ σ

t0

e2α(t−t0)e−2α(t−t0)|w̃1(t)− w̃2(t)|2 dt

≤ C2e
−2α(σ−t0) max

t∈[t0,0]

[
− eα(t−t0)|w̃1(t)− w̃2(t)|

]2 ˆ σ

t0

e2α(t−t0) dt

=
C2

2α

(
1− e−2α(σ−t0)

)[
ρ(w̃1, w̃2)

]2 ≤ C2

2α

[
ρ(w̃1, w̃2)

]2
, σ ∈ (t0, 0]. (4.22)

From (4.22) it easily follows that

ρ(ŵ1, ŵ2) ≤
√
C2/(2α)ρ(w̃1, w̃2).
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From this, choosing α > 0 such that inequality C2/(2α) < 1 holds, we obtain
that operator A is a contraction. Hence, we may apply the Banach fixed-point
theorem [12, Theorem 5.7] and deduce that there exists a unique function w ∈M
such that Aw = w, i.e., we have proved Lemma 4.3.

Step 2 (solution approximation). We construct a sequence of functions which,
in some sense, approximate the solution of the problem P(Φ, B, f, γ).

For each k ∈ N, let f̂k(t) := f(t) for t ∈ Sk := (−k, 0] and let us consider the
problem of finding a function ûk ∈ C(Sk;H) ∩ H1(Sk;H), where H1(Sk;H) :={
w ∈ L2(Sk;H)

∣∣ w′ ∈ L2(Sk;H)
}
, such that, for a.e. t ∈ Sk, we have ûk(t) ∈

D(∂ΦH) and

û ′k(t) + ∂ΦH

(
ûk(t)

)
+B(t, ûk(t)) 3 f̂k(t) in H, (4.23)

ûk(−k) = 0. (4.24)

Inclusion (4.23) means that there exists a function ĝk ∈ L2(Sk;H) such that,
for a.e. t ∈ Sk, we have ĝk(t) ∈ ∂ΦH(ûk(t)) and

û ′k(t) + ĝk(t) +B(t, ûk(t)) = f̂k(t) in H. (4.25)

Since D(∂ΦH) ⊂ dom(ΦH) ⊂ V , thus ûk(t) ∈ V for a.e. t ∈ Sk. According
to the definition of the subdifferential of a functional and the fact that ĝk(t) ∈
∂Φ(ûk(t)) for a.e. t ∈ Sk, we have

Φ(0) ≥ Φ(ûk(t)) + (ĝk(t), 0− ûk(t)) for a.e. t ∈ Sk.

Using this and condition (A4) we obtain

(ĝk(t), ûk(t)) ≥ Φ(ûk(t)) ≥ K2‖ûk(t)‖2 for a.e. t ∈ Sk. (4.26)

Since the left side of this chain of inequalities belongs to L1(Sk), then ûk belongs
to L2(Sk;V ).

For each k ∈ N we extend functions f̂k, ûk and ĝk by zero for the entire interval
S, and denote these extensions by fk, uk and gk respectively. From the above it
follows that, for each k ∈ N, the function uk belongs to L2(S;V ), its derivative
u′k belongs to L2(S;H) and, for a.e. t ∈ S, the inclusion gk(t) ∈ ∂ΦH

(
uk(t)

)
and

the following equality (see (4.25)) hold

u′k(t) + gk(t) +B(t, uk(t)) = fk(t) in H. (4.27)

In order to show the convergence {uk}∞k=1 to the solution of the problem
P(Φ, B, f, γ) we need some estimates of the functions uk, k ∈ N.

Step 3 (estimates of solution approximations).
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Let σ1, σ2 ∈ S be arbitrary numbers such that σ1 < σ2, and k ∈ N. Multiply-
ing identity (4.27), for a.e. t ∈ S, by e2γtuk(t) and integrating from σ1 to σ2, we
obtain ˆ σ2

σ1

e2γt(u′k(t), uk(t)) dt+

ˆ σ2

σ1

e2γt(gk(t), uk(t)) dt

+

ˆ σ2

σ1

e2γt
(
B(t, uk(t)), uk(t)

)
dt

=

ˆ σ2

σ1

e2γt(fk(t), uk(t)) dt.

From this taking into account (2.3) and using the integration-by-parts formula,
we obtain

e2γt|uk(t)|2
∣∣∣σ2
σ1
− 2γ

ˆ σ2

σ1

e2γt|uk(t)|2 dt+ 2

ˆ σ2

σ1

e2γt(gk(t), uk(t)) dt

+ 2

ˆ σ2

σ1

e2γt
(
B(t, uk(t)), uk(t)

)
dt = 2

ˆ σ2

σ1

e2γt(fk(t), uk(t)) dt. (4.28)

Acccording to the definition of uk and (4.26), we obtain

(gk(t), uk(t)) ≥ Φ
(
uk(t)

)
≥ K2‖uk(t)‖2 for a.e. t ∈ S. (4.29)

Let us estimate the third term on the left-hand side of inequality (4.28). From (3.5)
and (4.29) for arbitrary δ ∈ (0, 1) we obtainˆ σ2

σ1

e2γt(gk(t), uk(t)) dt = (δ + (1− δ))
ˆ σ2

σ1

e2γt(gk(t), uk(t)) dt

≥ δK1

ˆ σ2

σ1

e2γt|uk(t)|2 dt

+ 2−1(1− δ)K2

ˆ σ2

σ1

e2γt‖uk(t)‖2 dt

+ 2−1(1− δ)
ˆ σ2

σ1

e2γtΦ
(
uk(t)

)
dt. (4.30)

Now, let us estimate the last item on the left-hand side of inequality (4.28). Using
the Cauchy-Shwarz inequality, (3.2) we have∣∣∣ˆ σ2

σ1

e2γt
(
B(t, uk(t)), uk(t)

)
dt
∣∣∣≤ˆ σ2

σ1

e2γt
∣∣B(t, uk(t))

∣∣|uk(t)| dt
≤ L
ˆ σ2

σ1

e2γt|uk(t)|2 dt. (4.31)

Using the Cauchy inequality we estimate the right-hand side of (4.28) as fol-
lowsˆ σ2

σ1

e2γt(fk(t), uk(t)) dt ≤ ε
ˆ σ2

σ1

e2γt|uk(t)|2 dt+ (4ε)−1

ˆ σ2

σ1

e2γt|fk(t)|2 dt,

(4.32)
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where ε > 0 is arbitrary.
From (4.28), taking into account (4.30), (4.31) and (4.32), we obtain

e2γt|uk(t)|2
∣∣∣σ2
σ1

+ 2[δK1 − L− γ − ε]
ˆ σ2

σ1

e2γt|uk(t)|2 dt

+ (1− δ)K2

ˆ σ2

σ1

e2γt‖uk(t)‖2 dt

+ (1− δ)
ˆ σ2

σ1

e2γtΦ
(
uk(t)

)
dt

≤ (2ε)−1

ˆ σ2

σ1

e2γt|fk(t)|2 dt, δ ∈ (0, 1), ε ∈ (0,+∞). (4.33)

SinceK1 > 0, γ satisfies (3.6), we first choose δ from (0, 1) such that δK1−L−γ >
0, and then we choose ε = 2−1[δK1 − L − γ] > 0. As a result, from (4.33) we
obtain the estimate

e2γt|uk(t)|2
∣∣∣σ2
σ1

+

ˆ σ2

σ1

e2γt
[
|u(t)|2 + ‖uk(t)‖2

]
dt+

ˆ σ2

σ1

e2γtΦ
(
uk(t)

)
dt

≤ C3

ˆ σ2

σ1

e2γt|fk(t)|2 dt, (4.34)

where C3 is a positive constant depending on K1,K2, L and γ only.
We take σ2 = σ ∈ S is arbitrary, and pass to the limit in (4.34) as σ1 → −∞.

Taking into account (F) and the definition of uk and fk, we obtain

e2γσ|uk(σ)|2 +

ˆ σ

−∞
e2γt

[
|u(t)|2 + ‖uk(t)‖2

]
dt

+

ˆ σ

−∞
e2γtΦ

(
uk(t)

)
dt ≤ C3

ˆ σ

−∞
e2γt|fk(t)|2 dt, σ ∈ S. (4.35)

Since σ ∈ S is arbitrary, from (4.35) it follows that

the sequence {uk(·)}+∞k=1 is bounded in L∞γ (S;H), L2
γ(S;H) and L2

γ(S;V ),

(4.36)

the sequence
{
e2γ·Φ

(
uk(·)

)}+∞
k=1

is bounded in L1(S). (4.37)

Now let us find estimates of u′k, k ∈ N. For arbitrary fixed k ∈ N and almost
every t ∈ S we multiply equality (4.27) by e2γtu′k(t) and integrate the resulting
equality from σ1 to σ2, where σ1, σ2 ∈ S are arbitrary numbers, σ1 < σ2. From
this we obtainˆ σ2

σ1

e2γt|u′k(t)|2 dt+

ˆ σ2

σ1

e2γt(gk(t), u
′
k(t)) dt

=

ˆ σ2

σ1

e2γt(fk(t), u
′
k(t)) dt−

ˆ σ2

σ1

e2γt
(
B(t, uk(t)), u

′
k(t)

)
dt. (4.38)
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Since gk ∈ L2(σ1, σ2;H), Lemma 4.1 implies that the function ΦH

(
uk(·)

)
is

absolutely continuous on [σ1, σ2] and

d

dt
ΦH

(
uk(t)

)
= (gk(t), u

′
k(t)) for a.e. t ∈ (σ1, σ2). (4.39)

Taking into account (4.39), we can rewrite the second term on the left side of (2.3)
as followsˆ σ2

σ1

e2γt(gk(t), u
′
k(t)) dt =

ˆ σ2

σ1

e2γt d

dt
ΦH

(
uk(t)

)
dt

= e2γtΦH

(
uk(t)

)∣∣∣σ2
σ1
− 2γ

ˆ σ2

σ1

e2γtΦH

(
uk(t)

)
dt. (4.40)

By the Cauchy inequality and (3.2) we have∣∣∣ ˆ σ2

σ1

e2γt
(
fk(t), u

′
k(t)

)
dt
∣∣∣ ≤ ˆ σ2

σ1

e2γt|fk(t)||u′k(t)| dt

≤ 1

4

ˆ σ2

σ1

e2γt|u′k(t)|2 dt+

ˆ σ2

σ1

e2γt|fk(t)|2 dt, (4.41)

∣∣∣ ˆ σ2

σ1

e2γt
(
B(t, uk(t)), u

′
k(t)

)
dt
∣∣∣ ≤ ˆ σ2

σ1

e2γt
∣∣B(t, uk(t))

∣∣|u′k(t)| dt
≤ L
ˆ σ2

σ1

e2γt|uk(t)||u′k(t)| dt

≤ L2

ˆ σ2

σ1

e2γt|uk(t)|2dt+
1

4

ˆ σ2

σ1

e2γt|u′k(t)|2 dt.

(4.42)

From (2.3), taking into account (4.40), (4.41), (4.42), we obtain

1

2

ˆ σ2

σ1

e2γt|u′k(t)|2 dt+ e2γtΦH

(
uk(t)

)∣∣∣σ2
σ1

≤ L2̂
σ2

σ1

e2γt|uk(t)|2 dt

+ 2γ

ˆ σ2

σ1

e2γtΦH

(
uk(t)

)
dt+

ˆ σ2

σ1

e2γt|fk(t)|2 dt. (4.43)

By the definitions of uk and fk we pass to the limit in (4.43) when σ1 → −∞.
From obtained inequality, taking into account estimate (4.35), setting σ2 = σ ∈ S,
we have

e2γσΦH

(
uk(σ)

)
+

ˆ σ

−∞
e2γt|u′k(t)|2 dt ≤ C4

ˆ σ

−∞
e2γt|fk(t)|2 dt, (4.44)

where C4 is a positive constant depending on K1,K2, L and γ only.
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According to the definitions of the functional ΦH and the function fk, and
condition (A4) (recall that uk(t) ∈ V for a.e. t ∈ S), from (4.44) we obtain

e2γσ‖uk(σ)‖2 +

ˆ σ

−∞
e2γt|u′k(t)|2 dt ≤ C5

ˆ σ

−∞
e2γt|f(t)|2 dt, (4.45)

where C5 > 0 is a constant depending on K1,K2, L, and γ only.
Estimate (4.45) imply that

the sequence
{
uk
}+∞
k=1

is bounded in L∞γ (S;V ), (4.46)

the sequence
{
u′k
}+∞
k=1

is bounded in L2
γ(S;H). (4.47)

Let us show that

the sequence {gk}+∞k=1 is bounded in L2
γ(S;H). (4.48)

Indeed, using (3.2) and (4.35) we have
ˆ σ2

σ1

e2γt
∣∣∣B(t, uk(t))

∣∣∣2dt ≤ L2

ˆ σ2

σ1

e2γt|uk(t)|2 dt ≤ C6, (4.49)

where C6 > 0 is a constant independing on k ∈ N, σ1, σ2 ∈ S.
Therefore, from (4.27), (4.47), (4.49), (F) and the definition of fk we ob-

tain (4.48)
Step 4 (passing to the limit). Since V andH are Hilbert spaces, and V embeds

in H by compact injection, from (4.36), (4.46), (4.47), (4.48) and Lemma 2.4 we
have that there exist functions

u ∈ L∞γ (S;V ) ∩ L2
γ(S;V ) ∩H1

γ(S;H), g ∈ L2
γ(S;H)

and a subsequence of the sequence {uk, gk}+∞k=1 (still denoted by {uk, gk}+∞k=1) such
that

eγ·uk(·) −→
k→∞

eγ·u(·) ∗-weakly in L∞(S;V ), (4.50)

uk −→
k→∞

u weakly in L2
γ(S;V ) and weakly in H1

γ(S;H), (4.51)

uk −→
k→∞

u in C(S;H), (4.52)

gk −→
k→∞

g weakly in L2
γ(S;H). (4.53)

Note that (4.51) and (4.53) imply

uk −→
k→∞

u, u′k −→
k→∞

u′, gk −→
k→∞

g weakly in L2
loc(S;H). (4.54)

Using (3.1) and (4.52), for each σ < 0 we obtain
ˆ 0

σ

∣∣B(t, uk(t))−B(t, u(t))
∣∣2dt ≤ L2

ˆ 0

σ
|uk(t)− u(t)|2dt −→

k→∞
0. (4.55)
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Thus, we obtain

B(·, uk(·)) −→
k→∞

B(·, u(·)) strongly in L2
loc(S;H). (4.56)

Let v ∈ H,ϕ ∈ D(−∞, 0) be arbitrary. For a.e. t ∈ S we multiply equality
(4.27) by v, and then we multiply the obtained equality by ϕ and integrate in t
on S. As a result, we obtain the equality

ˆ
S

(u′k(t), vϕ(t)) dt+

ˆ
S

(gk(t), vϕ(t)) dt+

ˆ
S

(
B(t, uk(t)), vϕ(t)

)
dt

=

ˆ
S

(fk(t), vϕ(t)) dt, k ∈ N. (4.57)

We pass to the limit in (4.57) as k →∞, taking into account (4.54), (4.56) and
convergence of {fk} to f in L2

loc(S;H). As a result, since v ∈ H,ϕ ∈ D(−∞, 0)
are arbitrary, for a.e. t ∈ S we obtain the equality

u′(t) + g(t) +B(t, u(t)) = f(t) in H.

Step 5 (completion of proof ). In order to complete the proof of the theorem
it remains only to show that u(t) ∈ D(∂Φ) and g(t) ∈ ∂Φ

(
u(t)

)
for a.e. t ∈ S.

Let k ∈ N be an arbitrary number. Since uk(t) ∈ D(∂ΦH) and gk(t) ∈
∂ΦH

(
uk(t)

)
for every t ∈ S \ S̃k, where S̃k ⊂ S is a set of measure zero, applying

the monotonicity of the subdifferential ∂ΦH , we obtain that for every t ∈ S \ S̃k
the following equality holds

(gk(t)− v∗, uk(t)− v) ≥ 0, ∀ [v, v∗] ∈ ∂ΦH . (4.58)

Let σ ∈ S, h > 0 be arbitrary numbers. We integrate (4.58) on (σ − h;σ):
ˆ σ

σ−h
(gk(t)− v∗, uk(t)− v) dt ≥ 0, ∀ [v, v∗] ∈ ∂ΦH . (4.59)

Now according to (4.52) and (4.53) we pass to the limit in (4.59) as k → ∞. As
a result we obtainˆ σ

σ−h
(g(t)− v∗, u(t)− v) dt ≥ 0, ∀ [v, v∗] ∈ ∂ΦH . (4.60)

The monograph [27, Theorem 2, p. 192] and (4.60) imply that for every
[v, v∗] ∈ ∂ΦH there exists a set R[v,v∗] ⊂ S of measure zero such that for all
σ ∈ S \R[v,v∗] we have

0 ≤ lim
h→+0

1

h

ˆ σ

σ−h

(
g(t)− v∗, u(t)− v

)
dt =

(
g(σ)− v∗, u(σ)− v

)
. (4.61)

Let us show that there exists a set of measure zero R ⊂ S such that

∀σ ∈ S \R :
(
g(σ)− v∗, u(σ)− v

)
≥ 0, ∀[v, v∗] ∈ ∂ΦH . (4.62)
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Since V and H are separable spaces, there exists a countable set F ⊂ ∂ΦH ⊂
V × H which is dense in ∂ΦH . Let us denote R := ∪

[v,v∗]∈F
R[v,v∗]. Since the

set F is countable, and any countable union of sets of measure zero is a set of
measure zero, R is a set of measure zero. Therefore, for any σ ∈ S \R inequality(
g(σ) − v∗, u(σ) − v

)
≥ 0 holds for every [v, v∗] ∈ F . Let [v̂, v̂∗] be an arbitrary

element from ∂ΦH . Then from the density F in ∂ΦH we have the existence of a
sequence {[vl, v∗l ]}∞l=1 such that vl → v̂ in V , v∗l → v̂∗ in H and

∀σ ∈ S \R : (g(σ)− v∗l , u(σ)− vl) ≥ 0 ∀ l ∈ N. (4.63)

Thus, passing to the limit in this equality as l→∞, we get (g(σ)−v̂∗, u(σ)−v̂) ≥ 0
∀σ ∈ S \R. Therefore, inequality (4.62) holds. From this, according to maximal
monotonicity of ∂ΦH , we obtain that [u(t), g(t)] ∈ ∂ΦH for a.e. t ∈ S.

Estimate (3.7) of the solution of the problem P(Φ, B, f, γ) follows directly
from (4.35), (4.45), (4.50), (4.51) and (4.52), Lemma 2.2, Fatou’s Lemma and the
fact that ΦH is lower semicontinuous in H.

From (4.35) we have

e2γσ|u(σ)|2 ≤ C3

ˆ σ

−∞
e2γt|f(t)|2 dt.

This inequality and condition (F) imply that u satisfies condition (3.4). Thus
Theorem 3.2 is proved. �
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Abstract. A new autonomous 4D nonlinear model with two nonlinearities describing
the dynamics of change of voltage and current in the contact railway electric network is
offered. This model is a connection of two 2D oscillatory circuits for current and voltage
in the contact electric network. In the found system for the defined values of parameters
an existence of limit cycles is proved. By introduction of new variables this system can
be reduced to 5D system only with one quadratic nonlinearity. The constructed model
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1. Introduction

The modern stage of functioning of railways is conditioned by the necessity
of providing competitiveness with other types of transport. The decision of this
problem supposes introduction of high-speed passenger transport as well as heavy
freight trains. For this purpose on the railways measures on the increase of speed
of movement are carried out, new electric locomotives of large power are cre-
ated, different ways of strengthening traction power supply are applied (see, for
example, [1]).

The traction power system of the electrified section of the railway (TPS)
is a set of territorially dispersed and operating electric power stations. This
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system can include traction substations, sectionalizing stations, parallel connec-
tion points, contact network devices and power transmission lines between them,
united by a common purpose and intended for processing and transmission of qual-
itative electric energy to electric rolling stock (ERS). The peculiarities of electric
power transmission through the traction network is the change in the position of
ERS and the change in their operating modes, the restrictions imposed by trains
on each other depending on their relative location, as well as the restrictions as-
sociated with the technology of the transportation process as a whole. One of the
main indicators of the quality of transmitted electrical energy to ERS is the level
of voltage on the current collectors of electric locomotives, and the nature of the
factors affecting on this level, which are nonlinear and non-stationary.

Ensuring the stable and reliable operation of any technical system is an im-
portant task that requires its solution. Voltage resilience is the ability of the
power system to maintain stable and acceptable voltage levels on all bus systems
(BS) in both normal and post-emergency and repair modes. The criterion for the
stability of the power system in terms of voltage is that, in the current mode, the
value of reactive power on the same BS should increase at each BS with increasing
voltage. Dynamic voltage stability is associated with the evaluation and support
of the voltage within 1 – 2 seconds immediately after a large disturbance. Static
voltage stability belongs to the form of stability, determined mainly by the static
characteristics of the load and network parameters.

The existent system of traction electric supply of direct current not always
is able to provide the transmission electric power of necessary capacity for speed
trains. In this connection there can be the following limitations: lowering of
voltage in the contact network is below than normal level 2.7 kV for ordinary
motion (below than level 2.9 kV for high speed motion) and heatings of wires
of contact network, that will promote in the loss of their mechanical durability.
Lowering of voltage in the receiver of current diminishes the speed of movement
of trains. Thus, the saving of level of consumable power results in the increase of
current of electric locomotive and loss of electric power in the contact network.

Since the dynamical state of any technical system is described by a system
of differential equations, the study of the problem of the stability of its motion
reduces to the study of the stability of solutions of differential equations. To calcu-
late the static stability of the power system, it is necessary to compile a system of
differential equations of transient processes, linearize these equations, and obtain
the characteristic equation of a system of linearized equations. Together, these
equations constitute a mathematical model of the energy system [2], as a result
of which solutions it is possible to obtain algebraic and other stability criteria for
the system under consideration.

In this connection, there is an urgent need to consider the problem of deter-
mining the stability of TPS as an initially nonlinear problem. At present, an
approach based on the analysis of signals produced by the system is widely used
to study the properties of complex systems, including experimental studies. This
is very important in cases when it is practically impossible to describe the pro-
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cess under study mathematically, but we have at our disposal certain observable
quantities, which allow to build a wanted model [3].

Now there is a great number of methods of diminishment of losses of electric
power in the contact network [2], [3]. In the present paper the diminishment of
losses of electric power and increase of power efficiency of the systems of electric
supply will be attained due to introduction of new dynamic models describing
the behavior of current and voltage in these networks. Due to these models
new methods of calculation of parameters of contact electric networks can be
offered. Such methods allow to apply new organizational measures resulting in
diminishment of losses of electric energy in contact networks.

Let
x0 = x(t0), x1 = x(t1), ..., xn = x(tn) (1.1)

be a finite sequence of numerical values of some scalar dynamical variable x(t)
measured with the constant time step ∆t in the moments ti = t0 +i∆t; xi = x(ti);
i = 0, 1, ..., n. Sequence (1.1) is called a time series [4] – [10].

In future the time series (1.1) will characterize a voltage (or current) in the
contact network measured through the equal intervals of time.

A common practice in chaotic time series analysis has been to reconstruct the
phase space by utilizing the delay-coordinate embedding technique, and then to
compute the dynamical invariant magnitudes such as unstable periodic orbits, a
fractal dimension of the underlying chaotic set, and its Lyapunov spectrum. As
a large body of literature exists on applying of the technique of the time series to
study chaotic attractors [10] – [15], a relatively unexplored issue is its applicability
to dynamical systems of differential equations depending on parameters. Our
focus will be concentrated on the analysis of influence of parameters of found
dynamic system on the behavior of its solutions. These parameters are determined
by the structure of the time series (1.1) and choice of approximating functions in
right sides of the got system of differential equations.

To create a model by measuring the variables characterizing any dynamic
process, it is necessary to solve the following four main problems.

It is known that any dynamic process depends on many variables. Most of
these variables are functions of some small number of independent variables. Iden-
tifying these independent variables leads to the first problem.

Problem 1. Determine the dimension of phase space in which the explored
process takes place.

Usually, a continuous dynamic process is described using a system of differen-
tial equations. It is important to specify the class of those functions that form
the right-hand sides of the differential equations. In applied modeling problems,
the right-hand sides of differential equations are given by polynomials. In this
connection, the second problem arises.

Problem 2. Establish degrees of monomials and their composition that form the
polynomial right-hand sides of the differential equations.
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Problem 3. After the structure of the differential equations describing the dyna-
mic process is established, it is necessary to determine the numerical value of
coefficients of these equations.

Problem 4. Using the specifics of the problem, to establish analytical formulas
of the coefficients of the found system of differential equations as functions of
characteristics of individual elements of the direct current traction power supply
system (it can be capacitors, resistances, inductances, and so on).

We must say that of all these problems, the fourth is the most difficult. Indeed,
for such a complex system as the direct current traction power supply system we
can not specify all electrical elements included in its composition. Therefore, in
this paper we confine ourselves to solving only the first three problems.

Note that in great numbers papers on the problem of minimization of losses
of electric power in contact networks, analytical simulation techniques are used.
In these papers mathematical models are linear or, at the best, linearized. Their
use gives positive results. However, losses of electric power in the contact network
may be diminished only on 20 – 30 percents [1].

Therefore, construction of mathematical models allowing suggest practical
methods to decrease the losses of electric power in the contact network is the
primary purpose of the present paper. These models are constructed on the
basis of the real information taken from the electric system of locomotive. As
experimental information the results of measuring of currents and voltages taken
on the segment of Nyzhne-Dneprovsk Knot – Pyatykhatky of Prydneprovskaya
Railway (Ukraine) are used.

It should be said that we do not know publications in which the direct current
traction power supply system was modeled only by measuring currents and volta-
ges (see [16, 17]). The fact is that a large number of electrical elements forming
such system practically exclude the possibility of constructing a detailed model
through the combination of the equations of its individual elements. (Such model
would represent a set of several hundred different equations.)

Therefore, the main achievements of this work are:
– creation of a new model of direct current traction power supply system,

which describes this system not as a set of interconnected elements, but as a
single dynamic element whose behavior is determined only by changes in voltages
and currents flowing through it;

– development of a universal methodology for modeling of direct current trac-
tion power supply systems suitable for any segments of contact networks located
anywhere in the world.

2. Embedding Method for Chaotic Time Series Analysis

The material of this section is well known (see [4]). The results of section are
placed in the present article only for the convenience of readers.
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Let sequence (1.1) be the time series. In principle, the measured time series
comes from an underlying dynamical system that evolves the state variable in time
according to a set of deterministic rules, which are generally represented by a set
of differential equations, with or without the influence of noise. Mathematically,
any such set of differential equations can be easily converted to a set of first-order,
autonomous equations. The dynamical variables from all the first-order equations
constitute the phase space, and the number of such variables is the dimension of
the phase space, which we denote byM. The phase space dimension can in general
be quite large (in some cases it may be infinite) [10,11,16,18].

However, it often occurs that the asymptotic evolution of the system lives on
a dynamical invariant set of a finite dimension. The assumption here is that the
details of the system equations in the phase space and of the asymptotic invariant
set that determines what can be observed through experimental probes, are un-
known. The task is to estimate, based solely on one or few time series, practically
useful statistical quantities characterizing the invariant set, such as its dimension,
its dynamical skeleton, and its degree of sensitivity on initial conditions. The
delay-coordinate embedding technique established by Takens [9], in particular,
his famous embedding theorem guarantees that a topological equivalence of the
phase space of the intrinsic unknown dynamical system can be reconstructed from
the time series, based on which characteristics of the dynamical invariant set can
be estimated.

Let

ẏ(t) = F(y(t)),y ∈M ⊂ Rp (2.1)

be the autonomous p-dimensional system of ordinary differential equations in the
phase space M.

We will consider that system (2.1) satisfies in the phase space M (an open
region in Rp) to the conditions of the known Cauchy Theorem about existence
and uniqueness of solutions. Then for any initial condition y(0) = y0 ∈ M
it is possible uniquely to define the solution y(t) systems (2.1) on the formula
y(t) = Wt(y0), where Wt is an evolution operator. (A domain G ⊂ M of the
phase space M under action of the evolution operator passes, generally speaking,
in another domain Gt = Wt(G) ⊂M. If Gt = Wt(G) = G, then the domain G
is called an invariant subset of the phase space M with respect to the action of
the evolution operator Wt.)

The compact invariant with respect to the evolution operator set H ⊂ M is
called attracting if there exists an open set U ⊂ M containing H such that for
almost all y ∈ U lim

t→∞
Wt(y) ∈ H. The indecomposable on two compact invariant

subsets attracting set H is called an attractor.

It is known [12] that it is possible to get the attractor satisfactory image of a
small dimension, if instead of the phase vector y(t) to use m-dimensional vectors
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derived from the time series (1.1) on the following formula:

xi =


xi
xi+1
...

xi+m−1

 ; i→ 0, 1l, 2l, ..., il, ..., (2.2)

where l is a positive integer.
Consider the m-dimensional autonomous dynamical system

ẋ(t) = Q(x(t)),x ⊂ Rm, (2.3)

for which the following conditions

x(t0) = x0, x(t1) = x(t0 + τ) = x1, ..., x(ti) = x(t0 + iτ) = xi

are fulfilled. The magnitude xi depends on x0 and τ , but it does not depend on
t0. We will especially emphasize that the map Q : Rm → Rm, determining the
right side of systems (2.3), it is not known. In addition, it is clear that the role
of the number l in (2.2) plays the number τ . The magnitude τ is called a delay
parameter of the time series (1.1).

Introduce the evolution operator Pt : Rm → Rm of system (2.3). For any
vector x ∈ Rm the action of this operator in a coordinate form looks like:

Pt(x) = (P t0(x), P t1(x), ..., P tm−1(x))T .

Let t = τ . Consider the sequence of real numbers

hk = P τ0 (xk), hk+1 = P τ1 (xk), hk+2 = P τ2 (xk), ..., hk+m−1 = P τm−1(xk). (2.4)

Introduce the new vector zk under the formula: zk = (hk, hk+1, ..., hk+m−1)T .
Then there must be an operator ∆ : Rm → Rm depending only on Q and τ such
that z = ∆(x), where x = (xi, xi+1, ..., xi+m−1)T is one of vectors (2.2).

Theorem 2.1. [9] Let d be a dimension of the attractor Σ generated by system
(2.3). Then for almost all τ > 0 and m ≥ 2d+1 the mapping ∆ will be continuous
and one-to-one.

Theorem 2.1 means that if in the space Rm to select the set Hk such that
∀xk ∈ Hk we have ∆(xk) ∈ Hk, then on this set the map ∆ is invertible and ∀k
xk = ∆−1(zk).

By N denote the set of natural numbers.

Theorem 2.2. [19] Let i1, i2, ..., il, ... be an infinite increasing sequence of positive
integers. If system (2.3) is a dissipative then for any compact open subset Φ ⊂ Rm,
any τ > 0, and almost all x ∈ Φ the inclusion (Pτ )il(x) = Pτ (Pτ (...(Pτ (x))...))︸ ︷︷ ︸

il

∈

Φ; l ∈ N takes place.
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Thus, Theorem 2.2 (which is sometimes called the Poincare recurrence theo-
rem) asserts that in the phase space of the dissipative system any trajectory
beginning from the almost liked point A of this space in some finite time (even
very large) will pass as much as close to A.

Theorems 2.1 and 2.2 allowed to create the necessary research instrument
which is used presently in the theory of the dynamic systems. Indeed, as the time
series (1.1) has only a finite number of terms and, consequently, it is bounded,
there are no justified arguments in order to assert that at the further measure-
ments we will derive very large values of terms of this series. Further, the time
series (1.1) describes the behavior of some phase variable of the explored dynamic
process. If we assume that the number of such phase variables is finite, then it is
possible to consider that there exists the evolution operator, which controls by the
behavior of this dynamic system in some finite-dimensional space. In addition,
most systems describing the dynamics of one or another processes in our world
are dissipative. Thus, the use of Theorems 2.1 and 2.2 for description of dynamics
of the dissipative finite-dimensional systems becomes more than justified.

Eckmann [6] have introduced tools which visualize the recurrence of states
xi in the phase space. Usually, the phase state does not have a dimension (it is
more than two or three) which allows it to be pictured. Higher dimensional phase
spaces can only be visualized by projection into the two or three dimensional
subspaces [10], [12].

Now by x(i) denote the point xi = (xi, xi+1, ..., xi+m−1)T , which is built from
the elements of the time series (1.1) describing the change of some scalar variable
(or some coordinate of the vector variable, if a phase trajectory in m-dimensional
space is considered); i→ 0, 1l, 2l, ..., il. If il+m− 1 > n, then number i must be
replaced by the number k → kl = il− [n/l]l, where [n/l] is an integer part of the
number n/l. We will consider that l = τ .

Introduce in the first quadrant of the cartesian system of coordinates the
graphic square matrix T ∈ R(n+1)×(n+1), which is built on the following algorithm:
if point x(i) is close enough to the point x(j) (the concept of "closeness" will be
defined below) then such points are called recurrence, and in the matrix T a black
point with coordinates (i, j) are put. If point x(i) is not near to the point x(j),
then in the matrix T no marks is done. The matrix T is called a recurrence plot
of time series (1.1) [6], [10].

Let
Rij = Θ(εi − ‖xi − xj‖), xi,xj ∈ Rm; i, j = 0, 1, ..., n,

be a real function accepting only two values: 0 and 1. (Here we have Θ(ξ) = 1, if
ξ ≥ 0 and Θ(ξ) = 0, if ξ < 0: it is the Heaviside function; ‖v‖ =

√
v2

1 + ...+ v2
m

is the Euclidian norm of the vector v ∈ Rm; εi is a radius of ball with a center in
the point xi.)

In the future, it is possible to be restricted to the situation, when ∀i, j εi =
εj = ε. In this case positive number ε is called a recurrence threshold and we
have symmetry of the recurrence plot with respect to the diagonal of the first
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quadrant. Indeed, if point xi is near to the point xj , then the reverse statement
must be right: the point xj is near to the point xi.

In the present paper we want to apply the instruments of the recurrence
analysis for research of periodic trajectories in the dynamic systems described
by nD autonomous systems of differential equations. In order that such research
was correct it is necessary to provide the boundedness of solutions of the explored
systems.

3. Mathematical Statement of Problem and Its Discussion

We will assume that we can measure the voltage and current, and also if
it is possible other dynamic characteristics of contact electric network. We also
suppose that among these characteristics can be derivatives with respect to t from
the voltage and current. (If the derivatives can not be measured, it is assumed
that there exist smooth enough approximations of these derivatives.)

A choice of equations of model of describing the dynamics of one or another
processes is a difficult task. The experiments show that the most logical approach
describing dynamics of electrical engineering models is based on the use of the
known physical laws. In particular there can be the conservation of energy laws.

By U(t) and I(t) denote respectively the voltage and current in contact electric
network. The following laws are most known: the electric energy is accumulated
in a capacitor according to the law EC = kCU

2; the electric energy is accumulated
in an inductor according to the law EL = kLI

2; the electric energy is transformed
into heat energy on a resistor according to the law ER = kRUI. (Here kC , kL,
and kR are constants.) In addition, a speed of change of energy ĖC = 2kCUU̇ ,
ĖL = 2kLIİ or ĖR = kR(U̇I + Uİ), and magnitudes U, U̇ , I, İ also influences on
the dynamics of electric network.

Thus, the vast class of electric networks can be described by quadratic diffe-
rential equations depending on the linear U, U̇ , I, İ, and quadratic U2, UU̇ , I2,
Iİ, UI, U̇I, Uİ terms.

We consider that there is n characteristics (measurements): z1(ti), ..., zn(ti),
i = 1, 2, ..., N . In addition, we also suppose that these measurements are noisy.
Thus, we have multivariate time series

z1(ti) = x1(ti) + θ1(ti), ..., zn(ti) = xn(ti) + θn(ti), (3.1)

which defined for ∀ti ∈ (t1, tN ). Here ∀i = 1, 2, ..., N , we have ti = i∆t and
∆t = (tN − t1)/N . In addition, we suppose that θ1(ti), ..., θn(ti) are Gaussian
(white) noises, unable by definition to produce statistically systematical errors
[9], [13], [14], [16], [18].

Finally, we assume that x1(ti), ..., xn(ti) is a discrete approximation of some
curve x(t) = (x1(t), ..., xn(t))T ∈ Rn [13], [14]. In the turn, it is assumed that
the curve x(t) is a solution of some quadratic differential equations system. The
necessity of such description is dictated by the considerations resulted higher.
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Let (c1, ..., cn)T and A = (aij), B1, ..., Bn ∈ Rn×n be a real vector and real
matrices, and let the matrices B1, ..., Bn be symmetrical.

Principal problem. Construct the quadratic system of differential equations

ẋ1(t) =

n∑
j=1

a1jxj(t) + xT (t)B1x(t) + c1 ≡ f1(x(t)),

. . . . . . . . . . . . . . . . ,

ẋn(t) =

n∑
j=1

anjxj(t) + xT (t)Bnx(t) + cn ≡ fn(x(t))

(3.2)

such that there exists bounded solution x(t) ( lim
t→∞
‖x(t)‖ < ∞) of this system,

which approximates time-variate series (3.1) with given accuracy in the set points
t1, ..., tN at the fixed choice of the vector of initial values x(0) = (x10, ..., xn0)T .

Further, we use the procedure for determining unknown quadratic right sides
of the system of differential equations (3.2), which was suggested in [12] – [15].
This procedure is based on the least squares method and the fact that we know
sufficient precision the components of x(t) and its derivative ẋ(t).

We will use the following designations: x(ti) = (x1(ti), x2(ti), ..., xn(ti))
T =

(x1i, x2i, ..., xni)
T , ẋ(ti) = (ẋ1(ti), ẋ2(ti), ..., ẋn(ti))

T = (ẋ1i, ẋ2i, ..., ẋni)
T , where

ẋki = (xk,i+1 − xki)/∆t; k = 1, ..., n; i = 0, 1, ..., N .
Introduce the matrix of unknown coefficients of system (3.2):

Y =


c1 a11 · · · a1n b

(1)
11 · · · b

(1)
nn 2b

(1)
12 · · · 2b

(1)
n−1,n

...
... · · ·

...
... · · ·

...
... · · ·

...
cn an1 · · · ann b

(n)
11 · · · b

(n)
nn 2b

(n)
12 · · · 2b

(n)
n−1,n

 ∈ Rn×m,

where m = 1 + 2n+ n(n− 1)/2 = (n+ 1)(n+ 2)/2.
Introduce also (N ×m)-matrix

X =

 1 x11 · · · xn1 x2
11 · · · x2

n1 x11x21 · · · xn−1,1xn,1
...

... · · ·
...

... · · ·
...

... · · ·
...

1 x1N · · · xnN x2
1N · · · x2

nN x1Nx2N · · · xn−1,Nxn,N


and (N × n)-matrix

ẊD =

 ẋ11 · · · ẋn1
... · · ·

...
ẋ1N · · · ẋnN

 ,

elements of which are known. Then by the least square method [12,20,21], we have
Y T = (XTX)−1XT ẊD. Further, the following is said in work [13]. In view of the
fact that number N may be chosen arbitrary large, a high precision reconstruction
may be achieved. Thus, we can expect that the solution of reconstructed system
will be near the purified solution x(t).
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However, it should be said that one important circumstance, which can arise
up at a reconstruction, remained outside the attention of the authors of article [14].
The point is that in [14] it is assumed that this interval (t1, tN ) is finite. If the
problem of long-term prediction is considered, it is necessary to assume that
tN →∞. In this case a reconstruction must be fulfilled so that system (3.2) had
the bounded solutions [22]– [24].

Finally, we mark that the presence of all quadratic elements in the right side of
system (3.2) do not always result in that the built model will adequately describe
the explored process. Therefore, the choice of base of quadratic part of system
(3.2) must be argued by the real information about the studied process, by which
it is impossible to neglect.

4. Simulation of Dynamics of Current and Voltage in Contact
Electric Network

We consider the following scheme of placing of traction substations on the
segment Pyatykhatky – Nyzhne-Dneprovsk Knot [1]:

Fig. 4.1. The scheme of placing of traction substations

The length of this segment is 128.2 kM. Distances between the traction substa-
tions (in kM) are indicated on Fig. 4.1.

On Fig.4.1 the following designations are accepted: ts is a traction substation;
tsP is the traction substation of Pyatykhatky; tsN is the traction substation of
Nyzhne-Dneprovsk Knot; tp1, ..., tp12 are posts of parallel connection of contact
suspension ways; sp1, ..., sp5 are sectioning posts.

Measurings of current and voltage will be realized by a measuring labora-
tory which moves on the segment together with a locomotive with a constant
speed. Time of passing of all segment Pyatykhatky – Nyzhne-Dneprovsk Knot is
12470 sec.

On the segment Pyatykhatky – Nyzhne-Dneprovsk Knot the temporal depen-
dences for current and voltage in the contact network were built. In all 12470
measurings with an interval of 1 second were done. The graphs of these depen-
dences are represented on Fig. 4.2:
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(a1) (a2)

Fig. 4.2. The behavior of voltage U(t)(a1), current I(t)(a2), and U − I characteristic of contact
network (experimental data)

A standard procedure for modeling of the direct current traction power supply
system consists of the following steps:

1. Construct a scheme replacing the direct current traction power supply
system of the considered segment (no load; see Fig. 4.3).

2. Introduce in the model obtained at the first step, an element describing a
motion of locomotive (it is a load; see Fig. 4.4).

3. Calculate using the Ohm and Kirchhoff laws, the voltage and current
variations along in all the segment Pyatykhatky – Nyzhne-Dneprovsk Knot.

4. If the measured values of current and voltage significantly differ from
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calculated in the step 3, then the topology of substitution scheme (see Fig. 4.4)
and the characteristics of elements forming this scheme must be changed.

Fig. 4.3. The equivalent electric circuit for substitution of the segment Pyatykhatky – Nyzhne-
Dneprovsk Knot (no load)

On Fig. 4.3 the following designations are accepted: EP , E1, ..., EN are volt-
ages of idling of traction substations; ρP , ρ1, ..., ρN are internal resistances of
traction substations; r1, r2, ..., r8 are resistances between substations.

Fig. 4.4. The equivalent electric circuit for substitution of the segment Pyatykhatky – Nyzhne-
Dneprovsk Knot (with load)

On Fig. 4.4 the following designations are accepted: x is a coordinate of
locating an electric locomotive at a given time (in kM); r12 is the resistance of the
traction network of the section of the first path between tsP and tp1; r15 is the
equivalent resistance of both paths section of the traction network between tp1

and ts1; r13 and r14 are the traction network resistances of the second path section
between tsP and x, and x and tp1, respectively. The values of the resistances r13

and r14 depend on the location of the train.
It is clear that such procedure leads to a very approximate model of the direct

current traction power supply system (see, for example, [17]). Therefore, in this
paper we propose another modeling method based on recurrence analysis.

A preliminary analysis of the obtained data shows that they are nonstationary.
In this connection, the solution of problems of modeling and forecasting of non-
stationary processes is of particular relevance. We point out that nonstationarity
can manifest itself in the appearance of a deterministic or stochastic trend that
varies in time with variance and covariance. There are two main purposes of
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analyzing time series: the determination of the nature time series and prediction
(the prediction of future values of time series by present and past values). Both
these goals require that the series model be identified and, more or less, formally
described [25] – [28].

In order that to successfully fulfill the modeling of processes of represented
on Fig. 4.2 it is necessary to verify the conditions of Theorems 2.1 and 2.2 (see
Fig. 4.5):

(a1) (a2)

Fig. 4.5. The search optimal embedding dimension by means of false nearest neighbours

We take advantage of the least squares method. In accord to the done calcula-
tions an embedding dimension space n must be not less than 4. In future we will
consider that n = 4. It should be noted here that dimension 5 can also be
considered.

Thus, the dynamic system assumes existence of limit cycle of dimension N = 1
( in this case, we have n = 4 > 2 ·N + 1 = 3). Exactly bifurcations of limit cycles
result in an appearance of chaotic dynamics.

On all following Fig. 4.6– 4.12 the voltage U(t) = x(t) and current I(t) = z(t)
is measured in kilovolts (kV) and kiloamperes (kA).

1. The base of quadratic part of system (3.2) consists of two elements {xy, x2}:



ẋ(t) = y(t),
ẏ(t) = 0.0193− 0.0072x(t) + 0.0218y(t)− ε1z(t) + 0.0057u(t)

−0.0039x(t)y(t) + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = 0.0294− 0.0145x(t)− 0.8506y(t)− ε2z(t)− 0.0095u(t)

+0.2380x(t)y(t) + 0.0017x2(t).

(4.1)



34 V.Ye. Belozyorov, Ye.M. Kosariev, M.M. Pulin, V.G. Sychenko, V.G. Zaytsev

2. The base of quadratic part of system (3.2) consists of two elements {zu, z2}:

ẋ(t) = y(t),
ẏ(t) = ε1 − 0.005634x(t) + 0.017369y(t)− 0.001177z(t) + 0.018429u(t)

−0.0225244z(t)u(t) + 0.00016z2(t),
ż(t) = u(t),
u̇(t) = ε2 − 0.003521x(t)− 0.083527y(t)− 0.002236z(t)− 0.057069u(t)

+0.0985z(t)u(t)− 0.00096z2(t).
(4.2)

3. The base of quadratic part of system (3.2) consists of two elements {xz, xy
+zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0192− 0.0056x(t) + 0.0083y(t)− 0.00044z(t)− 0.0396u(t)

−0.0004x(t)z(t) + 0.0139(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.0123− 0.0035x(t)− 0.0336y(t)− 0.0006z(t) + 0.4143u(t)

−0.0006x(t)z(t)− 0.1279(x(t)u(t) + z(t)y(t)).

(4.3)

4. The base of quadratic part of system (3.2) consists of two elements {xz, xy
+zu}:

ẋ(t) = y(t),
ẏ(t) = 0.019297079− 0.0056x(t) + 0.0084y(t)− 0.0004z(t)− 0.0396u(t)

−0.0004x(t)z(t) + 0.0143(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.012284− 0.0035x(t)− 0.03362y(t)− 0.0006z(t) + 0.4143u(t)

−0.0005x(t)z(t)− 0.1269(x(t)u(t) + z(t)y(t)).
(4.4)

5. The base of quadratic part of system (3.2) consists of two elements {xy, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0138− 0.0040x(t)− 0.2526y(t)− 0.0008z(t) + 0.0162u(t)

+0.0791x(t)y(t)− 0.1782z(t)u(t),
ż(t) = u(t),
u̇(t) = 0.0095− 0.0027x(t) + 0.1703y(t)− εz(t)− 0.0486u(t)

−0.0705x(t)y(t) + 0.147z(t)u(t).

(4.5)

6. The base of quadratic part of system (3.2) consists of four elements
{xy, xu, zy, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.0137− 0.0040x(t)− 0.2516y(t)− ε1z(t) + 0.1418u(t)

+0.0776x(t)y(t)− 0.0370x(t)u(t) + 0.0128z(t)y(t)− 0.0286z(t)u(t),
ż(t) = u(t),
u̇(t) = 0.0096− 0.0027x(t) + 1.1072y(t)− ε2z(t) + 0.1237u(t)

−0.3401x(t)y(t)− 0.0496x(t)u(t)− 0.1029y(t)z(t) + 0.112z(t)u(t).
(4.6)
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7. The base of quadratic part of system (3.2) consists of six elements {xy, xz,
xu, x2, y2, z2}:

ẋ(t) = y(t),
ẏ(t) = 0.0422− 0.0206x(t)− 0.2367y(t)− 0.0042z(t) + 0.1494u(t)

+0.0732x(t)y(t) + 0.0010x(t)z(t)− 0.0206x(t)u(t) + 0.0024x2(t)
+0.2794y2(t) + 0.0037z2(t),

ż(t) = u(t),
u̇(t) = 0.0882− 0.049x(t) + 1.0144y(t) + εz(t) + 0.0394u(t)− 0.3144x(t)y(t)

+0.00073x(t)z(t)− 0.0240x(t)u(t) + 0.0068x2(t)− 2.1513y2(t).
(4.7)

The graphs of solutions of the corresponding systems of differential equations
are below represented. (The starting point for integration was always chosen near
an equilibrium point.)

(c1) (c2)

Fig. 4.6. The behavior U(t) − I(t) characteristic (c1) for system (4.1) at ε2 = 0.0019 and
ε1 = 0.0008(quasiperiodic behavior), and the same characteristic (c2) at ε2 = 0.0019 and ε1 =

0.00088(chaotic behavior)

(c1) (c2)

Fig. 4.7. The behavior U(t) − I(t) characteristic (c1) for system (4.2) at ε1 = 0.01934 and
ε2 = 0.01281(quasiperiodic behavior), and the same characteristic (c2) at ε1 = 0.0207 and
ε2 = 0.01363(chaotic behavior)
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(c1) (c2)

Fig. 4.8. The behavior U(t)−I(t) characteristic (c1) for system (4.3) and the same characteristic
(c2) for system (4.4)

(c1) (c2)

Fig. 4.9. The behavior U(t) − I(t) characteristic (c1) for system (4.5) at ε = −0.0019(chaos),
and the same characteristic (c2) at ε = −0.0020

(c1) (c2)

Fig. 4.10. The behavior U(t) − I(t) characteristic (c1) for system (4.6) at ε1 = −0.0008, ε2 =

−0.00185(quasiperiodic behavior), and the same characteristic (c2) at at ε1 = −0.0008, ε2 =

−0.00187(quasiperiodic behavior)
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(c1) (c2)

Fig. 4.11. The behavior U(t)−I(t)(c1) for system (4.6) at ε1 = −0.00086, ε2 = −0.00187(chaos),
and the same characteristic (c2) at at ε1 = −0.00082, ε2 = −0.00186(quasiperiodic behavior)

(c1) (c2)

Fig. 4.12. The behavior U(t) − I(t) characteristic (c1) for system (4.7) at ε = 0.0039(chaos),
and the same characteristic (c2) at ε = 0.0044(quasiperiodic behavior)

It should be noted that all the considered models are chaotic: an arbitrarily
small change in the parameters of the model leads to a radically different behavior
of this model. (Nevertheless, one can always find such parameter values for which
a limit cycle appears in the system. his fact can be used to construct stabilizing
control laws. Another application of the obtained limit cycle can be the search
for limit tori.)

Now there is a question: what from models (4.1)–(4.7) most adequately desc-
ribes the behavior of process of represented on Fig. 4.2? Comparison of trajec-
tories of the real chaotic system and its model does not enable to speak about
their adequacy. Therefore, we decided to define the adequacy beginning from
comparison of U − I characteristics of model and real process. In this connection
we build a parallelogram ABCD in the coordinate system U − I (see Fig. 4.13):
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Fig. 4.13. The framework of U − I characteristic for the direct current power supply system

This parallelogram must possess the following features:
a) taking into account that we deal with the direct current power supply

system bases AB and CD of parallelogram ABCD must be parallels to axis U ;
b) the vertices of parallelogram must be disposed in points: A(Umin, Imax),

B(Umin +δ, Imax), C(Umin, Imin), D(Umax−δ, Imin), where Imin(Imax) is a minimum
(maximum) current with the exception of some random fluctuations; Umin(Umax)
is a minimum (maximum) voltage with the exception of some random fluctuations;
δ is a magnitude of change of voltage at the fixed current.

Definition 4.1. The parallelogram ABCD is called a framework of U−I charac-
teristic for the direct current power supply system.

Let S ∈ R2 be the set of all internal points of the parallelogram ABCD. Now
we are ready to answer on the question about adequacy of model and real process.

By M1, ...,Mk ∈ R2 denote U−I characteristics of models, which it is possible
to build beginning from the real process of represented on Fig. 4.2).

Introduce the Hausdorff distance dH(S,Mi) between the sets S and Mi, i ∈
{1, ..., k} [29].

Definition 4.2. The set S is called adequate to the set Mm, if dH(S,Mm) ≤
dH(S,Mi), i = 1, ..., k; 1 ≤ m ≤ k.
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We notice that exact calculation of the Hausdorff distance dH(S,M) for the
complex sets S and M is practically impossible. Therefore in the present work we
will be limited to rough enough estimations of the magnitude dH(S,M).

Thus, the analysis of models (4.1)–(4.7) shows that only the behavior of model
(4.1) is adequate to the real process of represented on Fig. 4.2.

5. Modeling of Other Contact Networks

All the above equations modeled the experimental data of voltage and current
changes (they are shown in Fig. 4.2) in the contact network. In order to dwell
on specific equations modeling the dynamics, it is necessary to use other data
representing the dynamics of processes in other contact networks. These data,
describing changes in voltage and current on other railway lines, are presented
in Fig. 5.17. (Note that the above data, generally speaking, is non-stationary.
Therefore, for good modeling it is necessary to have such data as much as possible.)

Now we use the methodology of Sections 3 and 4. Then, we get the following
equations and the corresponding behavior of their chaotic solutions (see Fig. 5.14–
Fig. 5.16):

1. The base of quadratic part of system (3.2) consists of two elements {xz, xu+
zy}:

ẋ(t) = y(t),
ẏ(t) = 0.00393− 0.0012x(t) + 0.0059y(t)− 0.00154z(t)− 0.13146u(t)

+0.0005x(t)z(t) + ε1(x(t)u(t) + z(t)y(t)),
ż(t) = u(t),
u̇(t) = 0.01016− 0.0029x(t) + 0.0006y(t) + 0.00228z(t) + 1.14108u(t)

−0.001481x(t)z(t)− ε2(x(t)u(t) + z(t)y(t)).

(5.1)

(a1) (b1)

Fig. 5.14. The behavior of U − I characteristic for ε1 = 0.04339, ε2 = 0.3710 (a1) and ε1 =

0.04335, ε2 = 0.3709(a1)(b1)
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2. The base of quadratic part of system (3.2) consists of two elements {z2, zu}:

ẋ(t) = y(t),
ẏ(t) = 0.00623− 0.00118696x(t) + 0.00957y(t)− 0.00012z(t) + 0.0114u(t)

+ε1z
2(t)− 0.01674z(t)u(t),

ż(t) = u(t),
u̇(t) = 0.001951− 0.00035x(t) + 0.06579y(t)− 0.000878z(t)− 0.0871u(t)

−ε1z2(t) + 0.145988z(t)u(t).
(5.2)

(a1) (b1)

Fig. 5.15. The behavior of U − I characteristic for ε1 = 0.0001, ε2 = 0.0019 (a1) and ε1 =

0.000091, ε2 = 0.0011 (b1)

3. The base of quadratic part of system (3.2) consists of two elements {x2, xy}:

ẋ(t) = y(t),
ẏ(t) = 0.029438− 0.015765x(t) + 0.48059y(t)− 0.000055z(t) + 0.002253u(t)

+0.002082x2(t)− 0.1423665x(t)y(t),
ż(t) = u(t),
u̇(t) = −0.05098 + 0.03155x(t)− 3.3642y(t)− 0.0001783z(t)− 0.006276u(t)

−ε1x2(t) + 0.99914x(t)y(t).
(5.3)

(a1) (b1)

Fig. 5.16. The behavior of U − I characteristic for ε1 = 0.004724(a1) and ε1 = 0.004739(b1)
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(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 5.17. The behavior of voltage U(t)(a1,b1), current I(t)(a2,b2), and U − I characteristic
(a3,b3) of different contact networks in Ukraine (experimental data)
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Using the methodology of Sections 3 and 4, as well as Fig. 4.13, we arrive at
the following conclusion: the most adequate description of processes in the contact
network is achieved when pairs of quadratic nonlinearities {x2, xy} or {z2, zu} or
{xz, zy + ux} are used as nonlinear terms in system (3.2).

6. Research of System (4.1)

For verification of conditions Theorem 2.2 we will carry beginning of coordi-
nates of system (4.1) in the point (3.3657, 0,−0.0388, 0). In the total we get such
system

ẋ(t) = y(t),
ẏ(t) = −0.0043x(t) + 0.0086y(t)− 0.00088z(t) + 0.0057u(t)

−0.0039x(t)y(t) + 0.000422x2(t),
ż(t) = u(t),
u̇(t) = −0.0030x(t)− 0.0495y(t)− 0.0019z(t)− 0.0095u(t)

+0.2380x(t)y(t) + 0.0017x2(t)

(6.1)

The condition of dissipativity for system (6.1)

∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
+
∂u̇

∂u
= 0 + 0.0086 + 0− 0.0095 = −0.0009 < 0

(and for system (4.1)) is fulfilled. On Fig. 6.18 possible solutions of system (4.1)
are shown.

Fig. 4.2 and 5.17 show that processes in contact networks are chaotic. It is
known that any chaotic processes begin from bifurcations of limit cycles. There-
fore, we show the existence of such cycles using the example of system (4.1).

Thus, system (4.1) most corresponds to experimental information represented
on Fig. 4.2.

6.1. Existence of limit cycles

Definition 6.1. A real cubic form f(x, y) = a0x
3 +a1x

2y+a2xy
2 +a3y

3 is called
trilinear, if the real factorization

f(x, y) = (b0x+b1y)(c0x+c1y)(d0x+d1y) 6≡ (h0x+h1y)2(r0x+r1y) 6≡ (p0x+p1y)3

takes place.

Consider the following real quadratic system{
ẋ(t) = a11x(t) + a12y(t) + b11x

2(t) + b12x(t)y(t) + b22y
2(t),

ẏ(t) = a21x(t) + a22y(t) + c11x
2(t) + c12x(t)y(t) + c22y

2(t).
(6.2)
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(a1) (a2)

(a3) (a4)

(a5) (a6)

Fig. 6.18. The phase portraits of system (4.1) at the parameters: ε1 = −0.00084, ε2 = −0.0018

(a1); ε1 = −0.00084, ε2 = −0.0017 (a2); ε1 = −0.00086, ε2 = −0.0017 (a3); ε1 = −0.00085,
ε2 = −0.0018 (a4); ε1 = −0.00086, ε2 = −0.0019 (a5); and system (6.1)

Assume that the equilibrium (0, 0)T of system (6.2) be an unstable focus. By



44 V.Ye. Belozyorov, Ye.M. Kosariev, M.M. Pulin, V.G. Sychenko, V.G. Zaytsev

suitable real linear replacements of variables x and y, we reduce system (6.2) to
the following form:{

ẋ(t) = αx(t) + βy(t) + d11x
2(t) + d12x(t)y(t) + d22y

2(t),
ẏ(t) = −βx(t) + αy(t) + e11x

2(t) + e12x(t)y(t) + e22y
2(t).

(6.3)

Now we construct the following cubic form: g(x, y) ≡ x · (d11x
2 + d12xy +

d22y
2) + y · (e11x

2 + e12xy + e22y
2).

Theorem 6.1. Let for system (6.3) the form g(x, y) be trilinear. Suppose also
that in the same system there are two equilibriums, one of which is an unstable
focus or center (the number α ≥ 0 is small enough, β 6= 0) and the other is a
saddle. Then in this system there exists a stable limit cycle.

Proof. Using system (6.3), we introduce the following continuously differentiable
function V (t) = 0.5(x2(t) + y2(t)). Thus, we have:

V̇ (t) ≡ x(t)ẋ(t) + y(t)ẏ(t) = α · (x2(t) + y2(t)) + g(x, y)

≡ α · (x2(t) + y2(t)) + (q1x(t) + q2y(t))(s11x(t) + s12y(t))(s21x(t) + s22y(t)).

Without loss of generality, we can consider that q1s11s21 > 0. Otherwise, by
replacement x(t) → −x(t) (or y(t) → −y(t)), we obtain implementation of the
condition q1s11s21 > 0. (If q1s11s21 6= 0, then it is always possible.)

In addition, we can also consider that α = 0.
By λ1 = −q2/q1, λ2 = −s12/s11, λ3 = −s22/s21 denote roots of polynomial

(q1λ + q2)(s11λ + s12)(s21λ + s22). Without loss of generality, we can consider
that λ1 < λ2 < λ3.

Rewrite the cubic function H(x, y) ≡ (q1x+ q2y)(s11x+ s12y)(s21x+ s22y) in
the following way:

H(cosφ, sinφ) = (q1 cosφ+ q2 sinφ)(s11 cosφ+ s12 sinφ)(s21 cosφ+ s22 sinφ),

where cosφ = x/
√

2V , sinφ = y/
√

2V . From here it follows that

δmin ≤ H(cosφ, sinφ) ≤ δmax,

where δmin < 0(δmax > 0) is a minimum (maximum) of function H(cosφ, sinφ).
Consider the trigonometric polynomial

H1(cosφ, sinφ, V )

=
α√
2V

+ (q1 cosφ+ q2 sinφ)(s11 cosφ+ s12 sinφ)(s21 cosφ+ s22 sinφ),

where a number V > 0 must be chosen so that the real trigonometric periodic
function H1(cosφ, sinφ, V ) has three real distinct roots on a period. (The number
V must be large enough.)
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By V ∗ denote the minimal value V > 0 at which the periodic function
H1(cosφ, sinφ, V ) has three real roots on the period.

Let λ∗1 < λ∗2 < λ∗3 be three real distinct roots of function H1(cosφ, sinφ, V ∗)
following in succession. It is obviously that λ∗1 < λ1 < λ2 < λ∗2 and λ2 < λ∗2 <
λ∗3 < λ3. In addition it is possible to consider that function H1(cosφ, sinφ, V ∗)
on the interval (λ∗1, λ

∗
2) is positive, and on the interval (λ∗2, λ

∗
3) is negative.

In addition, for function H1(cosφ, sinφ, V ∗) we have

δ∗min ≤ H1(cosφ, sinφ, V ∗) ≤ δ∗max; δmin < δ∗min < 0 < δmax < δ∗max,

where δ∗min < 0(δ∗max > 0) is a minimum (maximum) of the real periodic function
H1(cosφ, sinφ, V ∗).

Further, we have that if λ∗1 < tanφ < λ∗2, then H1(cosφ, sinφ, V ∗) > 0, and if
λ∗2 < tanφ < λ∗3, then H1(cosφ, sinφ, V ∗) < 0.

Thus, if λ∗1 < tanφ < λ∗3, then we have

0.5V (t) · (α+
√

2V (t) · δ∗min) ≤ V̇ (t) ≤ 0.5V (t) · (α+
√

2V (t) · δ∗max).

Since (0, 0)T there is a repellent point, then from here it follows that the maximal
value of function V must be bounded.

To investigate system (6.3), we will use the iterative Euler method:{
xj+1 = xj + (αxj + βyj + d11x

2
j + d12xjyj + d22y

2
j )∆t,

yj+1 = yj + (−βxj + αyj + e11x
2
j + e12xjyj + e22y

2
j )∆t.

(6.4)

where x0 = x(0), y0 = y(0) and ∆t > 0 is a integration step; j = 0, ...,m→∞.
In addition, we construct the iterated procedure

Vj+1 = Vj + Vj · (α+
√

2Vj ·H(cosφj , sinφj))∆t; (6.5)

where V0 = x2
0 + y2

0, cosφj = xj/
√

2Vj , sinφj = xj/
√

2Vj , j = 0, ...,m → ∞.
(Here we did replacement V (t)→ x2(t) + y2(t) .)

Assume that the initial pair values (x0, y0) such that y0/x0 = (cosφ0/ sinφ0)
∈ (λ∗1, λ

∗
2).

Construct the iterative process V0 ≥ V1 ≥ ... ≥ Vm ≥ ..., which is defined
by formulas (6.5). It is obviously that we have a positive monotone decreasing
bonded sequence. It means that for small enough ∆t the iterative process (6.5)
is convergence. Therefore, lim

j→∞
Vj = C(xl, yl) = const. Here (xl, yl) is a solution

of equation α+
√
x2 + y2H(cosφ, sinφ) = 0 (α ≈ 0).

Now we again assume that the initial pair values (x0, y0) such that y0/x0 =
(cosφ0/ sinφ0) ∈ (λ∗2, λ

∗
3).

Construct the iterative process V0 ≤ V1 ≤ ... ≤ Vm ≤ ..., which is defined
by formulas (6.5). Now we already have a positive monotone increasing bonded
sequence. Therefore, we again have lim

j→∞
Vj = C(xl, yl) = const.
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Let S be a bounded set containing the point (0, 0). (It can be a circle of small
enough radius.) Now we will organize the iterative process (6.5) from any point
of the set S. In this case, in acording to LaSall’s Theorem [30] all limit points of
the process (6.5) form a positively invariant set C.

Since system (6.3) has also the saddle equilibrium, then her separatrix is a
restriction for any trajectory of the system of beginning in the small neighbouring
of the point (0, 0)T . It means that sequence (6.4) (it is (x0, y0)T , (x1, y1)T , ...)
must converge to the set C. Thus, this is a stable limit cycle.

Consider the following system:

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11x
2(t),

ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22x
2(t),

(6.6)

In system (6.6) it is possible to select two subsystems:
ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11x
2(t).

(6.7)

and 
ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22x
2(t).

(6.8)

At system (6.7) it is possible to look as on the system with external perturba-
tion F (t) ≡ a13z(t) + a14u(t). Therefore, it is importantly to research the proper
behavior of the unperturbed system{

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + b12x(t)y(t) + b11x

2(t),
(6.9)

where b11b12 6= 0.
Assume that system (6.9) has real equilibriums: (λ1, 0) and (λ2, 0), where λ1,2

are real roots of the equation a10 + a11λ+ b11λ
2 = 0. Introduce the new variable

x1 in system (6.9) under the formula x1 = x− λ1 (or x1 = x− λ2).{
ẋ(t) = y(t),
ẏ(t) = h11x(t) + h12y(t) + b12x(t)y(t) + b11x

2(t).
(6.10)

(For simplicity we have left the former designation of variables x.)

Corollary 6.1. Assume that for the system (6.10) conditions h11 < 0, h12 =
0, b12 < 0, b11 > 0 are fulfilled. Then in system (6.10) there exists the stable limit
cycle.
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Proof. The quadratic form b12xy+b11x
2 it is possible to represent as x(b11x+b12y).

Now we replace the variable y under the formula: y1 = b11x + b12y. In this case
system (6.10) can be represented in the following form:{

ẋ(t) = h11x(t) + h12y(t) + d1x(t)y(t),
ẏ(t) = h21x(t) + h22y(t) + d2x(t)y(t).

(6.11)

For simplicity we have left the former designation of variables y.

Suppose that eigenvalues of matrix H =

(
h11 h12

h21 h22

)
are complex: µ +

iν, µ − iν. (Here µ > 0, ν 6= 0.) By suitable linear replacements of variables
x→ s11x+ s12y, x→ s21x+ s22y, we reduce system (6.11) to such aspect:{

ẋ(t) = µx(t) + νy(t) + q1 · (s11x(t) + s12y(t))(s21x(t) + s22y(t)),
ẏ(t) = −νx(t) + µy(t) + q2 · (s11x(t) + s12y(t))(s21x(t) + s22y(t)).

(6.12)

In addition, by replacement x(t) → −x(t) (or y(t) → −y(t), we must obtain
implementation of the condition q1s11s21 > 0. In this case the conditions of
Theorem 6.1 are fulfilled.

Now we can apply Theorem 6.1 to system (6.12) (and (6.9)). To do this, we
show the sequence of bifurcations leading to the appearance of chaotic dynamics
from the limit cycle (see Fig. 6.19).

Let A,ω be an amplitude and frequency of external perturbation A sin(ωt).
(If A = 0, then the perturbation there doesn’t exist.)

For system (6.7) the perturbed system is
ẋ(t) = y(t),
ẏ(t) = 0.0193− 0.0072x(t) + 0.0218y(t)− 0.0039x(t)y(t)

+0.000422x2(t) +A sin(ωt).
(6.13)

All conditions of Theorem 6.1 for system (6.12) are satisfied. (It can be con-
firmed directly.) Appearance in system (6.13) of a stable limit cycle at the corre-
sponding external perturbations is shown on Fig. 6.19.

Further, on system (6.8) it is also possible to look as on a linear system
with external perturbation G(t) ≡ a21x(t) + a22y(t) + b21x(t)y(t) + b22x

2(t). In
order that the solution of this linear system was bounded it is necessary that the
equilibrium (−a20/a23, 0) unperturbed system was stable and the function G(t)
was bounded [30]. For system{

ż(t) = u(t),
u̇(t) = 0.0294− 0.0019z(t)− 0.0095u(t) +G(t)

(6.14)

both these conditions are fulfilled. The equilibrium (z∗ = −15.4737, u∗ = 0) (at
G(t) ≡ 0) is a stable focus. In system (6.14) the boundedness of function G(t) is
guaranteed by the boundedness of solutions of system (6.13) [23, 24].
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(a1) (a2)

(a3) (a4)

Fig. 6.19. The bifurcations of limit cycle for system (6.13) at A = 0 (a1); A = 0.3, ω = 0.45

(a2); A = 0.3, ω = 0.85 (a3); A = 0.3, ω = 1.45 (a4)

Thus, on system (4.1) it is also possible to look as on a system of two connected
2D circuits of describing oscillations of current and voltage in the contact electric
network.

7. Remarks on Design of Voltage Regulator

At certain values of parameters system (6.6) describes the dynamics of chan-
ges in voltage and current in a contact network. Note that voltage U(t) = x(t)
and current I(t) = z(t) are measured using a mobile laboratory that moves at
constant velocity v along a contact network [31]. Note that in order to study pro-
cesses in the contact network, it is more convenient to employ a dynamic model
in which voltage U(t) = x(t) and current I(t) = z(t) are represented as functions
U(s) = x(s), I(s) = z(s) of distance s from some starting point. Such represen-
tation is very convenient when the stabilization of voltage in contact network is
implemented from some fixed points along the route of the train, for example,
at traction substations or gain points. Furthermore, we shall assume that volt-
age control is executed using the regulator Uinput(s) = f(U(s), U̇(s), I(s), İ(s)),
where f(...) is the real function of its arguments. Thus, the transition from model
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(6.6), where x(t) and z(t) are represented as a function of time t, has been achieved
through the replacement of independent variable t with independent variable s,
according to formula s = vst. In this case, y(t) → vsy(s), u(t) → vsu(s), and
system (6.6) transforms to the following system:

ẋ(s) = y(s),
ẏ(s) = (a10 + a11x(s) + a12vsy(s) + a13z(s) + a14vsu(s)

+b12vsx(s)y(s) + b11x
2(s))/v2

s ,
ż(t) = u(t),
u̇(t) = (a20 + a21x(s) + a22vsy(s) + a23z(s) + a24vsu(s)

+b21vsx(s)y(s) + b22x
2(s))/v2

s ,

(7.1)

where velocity vs = const is measured in m/s and U(s) = x(s), I(s) = z(s) are
some functions of distance. (For simplicity, we kept the former designations for
dependent variables x and z in the newly derived system. The variables x(t) and
z(t) are replaced with variables x(s) and z(s).

Now we will introduce a control law.
Model (7.1) is designed to study the stability of the voltage in the contact

network. This model was obtained by observing the chaotic behavior of voltage
and current. In future, for simplicity we will consider that vs = 1.

Introduce in system (6.6) a new variable v = x2. Then we get the following
system 

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t)

+b12x(t)y(t) + b11v(t),
ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t)

+b21x(t)y(t) + b22v(t),
v̇(t) = 2x(t)y(t).

(7.2)

Hence it is already possible to establish parameters under which the voltage
in system (7.2) (or (6.6)) can be stabilized [30, 32]. (The corresponding charac-
teristics of real behavior of the voltage and current are given in Fig. 5.17.)

Now we will do an attempt yet to simplify system (7.2) and to do this system
of more suitable for further researches.

We will consider that system (6.6) has an equilibrium P = (x∗, y∗, z∗, u∗).
Then we can transfer the origin of coordinates in the point P . In this case in
system (7.2) we have a10 = a20 = 0. Therefore, we can consider that the condition
a10 = a20 = 0 is satisfied.

Introduce the matrices

A =


0 1 0 0 0
a11 a12 a13 a14 b11

0 0 0 1 0
a21 a22 a23 a24 b22

0 0 0 0 0

 , B =


0
b12

0
b21

2

 .
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Then by the algorithm of indicated in [33], the following result can be got:

Theorem 7.1. [33] If the conditions a10 = a20 = 0 and

det(B,AB,A2B,A3B,A4B) 6= 0

are hold, then by linear replacements of variables (x, y, z, u, v)→ (v1, v2, v3, v4, v5)
system (7.2) can be reduced to the following canonical form:

v̇1(t)
v̇2(t)
v̇3(t)
v̇4(t)
v̇5(t)

 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −d4 −d3 −d2 −d1

 ·


v1

v2

v3

v4

v5

+



0
0
0
0

(
5∑
i=1

pivi)
5∑
i=1

qivi

 ,

(7.3)
where numbers d1, ..., d4, pi, qi ∈ R; i = 1, ..., 5.

The canonical form (7.3) is generalization of the known Bezout’s states column
model [33]. (The system (7.3) is interesting to those that unlike the system (7.2),
this system has only one nonlinearity.)

The last equation can be generalized in the following way. We will assume that
the model of direct current power supply system is association of several oscillatory
circuits for description of the voltage, current, electromagnetic induction, and so
on. Then model (7.3) may be generalized in the following form:

v̇(t) = Av(t) +B ·

(
n+1∑
i=1

pivi(t)

)(
n+1∑
i=1

qivi(t)

)
. (7.4)

Here,

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 −dn −dn−1 . . . −d1

 ∈ R(n+1)×(n+1), B =


0
0
...
0
1

 ∈ Rn+1,

v = (v1, ..., vn+1)T , d1, ..., dn, pi, qi ∈ R; i = 1, ..., n + 1. This equation can be
useful at the further study of the model of direct current power supply system.

Now we show a simple method of construction of stabilizing linear feedback
for system (6.6).

Consider the following control system:

ẋ(t) = y(t),
ẏ(t) = a10 + a11x(t) + a12y(t) + a13z(t) + a14u(t) + pUF (t)

+b12x(t)y(t) + b11x
2(t),

ż(t) = u(t),
u̇(t) = a20 + a21x(t) + a22y(t) + a23z(t) + a24u(t) + pIF (t)

+b21x(t)y(t) + b22x
2(t),

(7.5)
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where a pair of coefficients (pU , pI) 6= 0 can take any real values and F (t) is a
control.

Introduce the matrices

A =


0 1 0 0
a11 a12 a13 a14

0 0 0 1
a21 a22 a23 a24

 , B =


0
pU
0
pI

 .

Let a10 = a20 = 0 and det(B,AB,A2B,A3B) 6= 0. Then by the algorithm of
indicated in [30], [33], we can reduced system (6.6) to such aspect:

v̇1(t)
v̇2(t)
v̇3(t)
v̇4(t)

 =


0 1 0 0
0 0 1 0
0 0 0 1
−d4 −d3 −d2 −d1

·


v1

v2

v3

v4

+


G1(v1, ..., v4)
G2(v1, ..., v4)
G3(v1, ..., v4)

F (t) +G4(v1, ..., v4)

 ,

(7.6)
where G1(v1, ..., v4), ..., G4(v1, ..., v4) are quadratic forms and d1, ..., d4 ∈ R.

Introduce in system (7.6) a linear feedback by the formula

F (t) = k1v1(t) + k2v2(t) + k3v3(t) + k4v4(t),

where k1, ..., k4 are indeterminate coefficients. Then a linear part of the closed by
the feedback system has a characteristic polynomial h(λ) = λ4 + (k1 − d1)λ3 +
(k2 − d2)λ2 + (k3 − d3)λ+ k4 − d4.

Choose the coefficients (ki − di) of polynomial h(λ); i = 1, ..., 4, so that this
polynomial became the Hurwitz polynomial [34]. In this case the origin of the
closed by feedback system will be stable (see Fig. 7.20):

(a1) (a2)

Fig. 7.20. Plots for voltage (a1) and current (a2) for system (6.6) at b12 = −0.01. (Other values
of parameters the same as in system (4.1))
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Let S be a linear transformation reducing system (7.5) to form (7.4):

(x(t), y(t), z(t), u(t))T = S · (v1(t), v2(t), v3(t), v4(t))T ; detS 6= 0.

Then in order that the origin of system (7.5) (a10 = a20 = 0) would be stable it
is enough to give the control law by the formula

F (t) = (k1, k2, k3, k4) · S−1(x(t), y(t), z(t), u(t))T .

An area of stability of power system is the set of its modes, in which static
stability is provided for a certain composition of the generators and a fixed circuit
of the electric network. A surface bounding a set of stable regimes is called a
boundary of region of static stability [32]. The stability regions are constructed
in the coordinates of the parameters that affect the stability of the regime. The
calculated and experimentally determined areas of stability are used to set the
dispatch restrictions on the regime of the power system (in the form of dispatch
instructions) and to configure automation facilities to prevent possible violations
of static stability. Obviously, reliable and stable operation of the power system
in modes directly adjacent to the boundary of the stability region is impossible.
In these modes, any, even weak disturbances in the power system or spontaneous
minor weighting of the regime will lead to a violation of stability. Changes in the
regime of the power system (active and reactive overflows, voltage and frequency)
are primarily associated with load fluctuations in load nodes: the inclusion and
disconnection of individual electrical installations, start up and shutdown of en-
terprises, changes in their operating mode according to technology conditions, etc.
Part of these changes are regular character, due to daily, weekly, seasonal regimes.
Such changes are described by the corresponding load schedules and predictable
enough.

Thus, the estimate of stability regions is another problem for future research.
The basis for such studies is system (7.3).

The problem of voltage regulation is the topic of future work. For this regula-
tion, external controls can be introduced into system (7.2). Then the system (7.2)
can be taken in one of the following forms: either(

Ü(t)

Ï(t)

)
=

(
a10

a20

)
+

(
a12 a14

a22 a24

)
·
(
U̇(t)

İ(t)

)
+

(
a11 a13

a21 a23

)
·
(
U(t)
I(t)

)

+

(
b11U

2(t) + b12U(t) · U̇(t)

b22U
2(t) + b21U(t) · U̇(t)

)
+

(
u1(t)
u2(t)

)
(7.7)

or(
Ü(t)

Ï(t)

)
=

(
a10

a20

)
+

(
a12 a14

a22 a24

)
·
(
U̇(t)

İ(t)

)
+

(
a11 a13

a21 a23

)
·
(
U(t)
I(t)

)

+

(
b11I

2(t) + b12I(t) · İ(t)

b22I
2(t) + b21I(t) · İ(t)

)
+

(
u1(t)
u2(t)

)
, (7.8)
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where u1(t), u2(t) are external controls.
Note that if system (6.6) is a system without equilibria, then ∀n > 2 by affine

replacements of variables it can be reduced to the following form

v̇(t) = A0 +Av(t) +B ·

(
n+1∑
i=1

pivi(t)

)(
n+1∑
i=1

qivi(t)

)
, (7.9)

where the matrices A and B are the same as in (7.4); A0 = (0, ..., 0, r)T ∈ Rn+1,
r 6= 0, and rp1q1 > 0.

8. Conclusion and Analysis of Results

One of the main problems arising in modeling any dynamic process is the
problem of determination of dimension of phase space in which this process occurs.
In article [35], which is devoted to the study of chaotic processes in the self-exciting
homopolar disc dynamo, for modeling of the dynamics of this system three and
five dimensional systems of differential equations were used.

It should be said that researches fulfilled in [35] are based on the known
models, for which Problems 1 – 4 were already solved (see Section 1). A purpose
of these publications it is the search of hidden attractors and establishment of
their properties.

Note that the problems considered in [35] can be raised and for system (6.6).
However, it is possible only when the results of verifications and tests fully will
confirm adequacy of system (6.6) and the direct current traction power supply
system. This adequacy can be set by the recurrence analysis methods [10].

At the recurrence analysis of recurrence plots an important role play lengths
of diagonal lines (we will emphasize that on recurrence plots the length of line
characterizes a response time of trajectory in some region of phase space) [5], [10],
[13], [18]. We performed such analysis of diagonal lines, but its results were rather
rough.

It should be said that in the general case it is impossible to achieve a good
correspondence between the model and the complex process that this model de-
scribes. Therefore, in this work, the adequacy of the model and the process was
evaluated by the deviations of the current and voltage obtained in the simulation
and experiment (a current-voltage characteristic U − I).

Comparison of the experimental information on Fig. 4.2 and solutions of sys-
tem equations (4.1) shows that there is satisfactory description of dynamics of the
direct current power supply system on the interval 4000 seconds – 10000 seconds.
(However, it is necessary to notice that among all systems of equations (4.1) –
(4.7) only the phase portrait of system (4.1) most adequate to the real phase
portrait on Fig. 4.2. Thus, there is good quality coincidence of the experimental
U − I characteristic with U − I characteristic of system (4.1).)

In order to attain a greater accuracy it is necessary to specify the coefficients of
system (4.1) (or (6.6)). It is possible to do by the use of artificial neural networks.
In the future authors hope to get back to this problem.
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Abstract. We consider the problem of existence and location of a solution of a nonlinear
operator equation with a Fréchet differentiable operator in a Banach space and present
the convergence results for a projection-iteration method based on a Newton-like method
under the Cauchy’s conditions, which generalize the results for the projection-iteration re-
alization of the Newton-Kantorovich method. The proposed method unlike the traditional
interpretation is based on the idea of whatever approximation of the original equation by
a sequence of approximate operator equations defined on subspaces of the basic space with
the subsequent application of the Newton-like method to their approximate solution. We
prove the convergence theorem, obtain the error estimate and discuss the advantages of
the proposed approach and some of its modifications.
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1. Introduction

The fundamental tool in numerical analysis, operations research, optimization
and control is Newton’s method originally intended to solve algebraic equations.
The basic ideas of the method, the main theoretical results of convergence, the
latest developments in this area, the most up-to-date versions of the method,
as well as its various applications can be found, for instance, in papers [1, 4, 5,
12–18]. Newton’s method has been studied in more detail under the so-called
Kantorovich conditions (the derivative of the equation operator is invertible at
the initial point and satisfies the Lipschitz condition in the considered domain),
under the Vertgeim conditions (the operator derivative is invertible at the initial
point but satisfies only Hölder condition) and under the Mysovskih conditions
(the derivative is invertible at all points in the considered domain and its inverse
operator is bounded).

To solve nonlinear functional equations, other iterative methods as well as
projection (approximation) type methods are also used; a survey of the relevant
literature is contained, for instance, in [8]. In the same source, to solve operator
∗Department of Computational Mathematics and Mathematical Cybernetics, Oles Honchar Dnipro

National University, 72, Gagarin av., Dnipro, 49010, Ukraine, ll_hart@ukr.net

c© L. L. Hart, 2019.
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equations of the first kind, studies have been performed for methods called the
projection-iteration ones based on the following idea. An equation of the form

Au = f (1.1)

with a nonlinear operator A acting on a Banach space X (f ∈ X is a known
element), is approximated by a sequence of approximate equations

Anun = fn, n = 1, 2, . . . , (1.2)

where An is a nonlinear operator acting on a subspace Xn of the original space
(X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X, X1 6= ∅). To solve approximate equations
(1.2), some iterative method is used, at that for each of these equations only a
few approximations u(k)

n (k = 1, 2,. . . , kn) are found and the last of them u
(kn)
n

is assumed to be equal to the initial approximation u(0)
n+1 in the iterative process

for the next, (n + 1)-th approximate equation. The sequence {u(kn)
n }∞n=1 ⊂ X is

considered as a sequence of approximations to a solution u∗ of equation (1.1). This
approach to finding an approximate solution of the original equation naturally
eliminates the difficulties that arise when solving the same equation using the
conventional projection method and also makes it easier to choose the suitable
initial approximation compared to solving the original equation using the iterative
method.

In this paper, to solve nonlinear operator equation (1.1), the projection-itera-
tion implementation of the Newton-like method [6] is studied under generalized
Cauchy’s conditions, which instead of the inverse operator to the derivative in the
considered domain imply the existence of some linear operator close to it. The
problems of substantiation of the projection-iteration schemes of both the basic
Newton-Kantorovich method under such conditions and some of its modifications
are considered.

2. Preliminaries

Let us consider equation (1.1) Au = f with a nonlinear operator A which
acts on a Banach space X and is Fréchet differentiable on some ball S(u

(0)
N , R) =

{u ∈ X : ‖u − u
(0)
N ‖ ≤ R} of this space. We approximate equation (1.1) by

the sequence of approximate equations (1.2) Anun = fn, n = 1, 2, . . . with
nonlinear operators An, each of which acts on the respective subspace Xn ⊂ X

and is Fréchet differentiable on the set Ωn = Xn∩S(u
(0)
N , R) beginning with some

number n = N ≥ 1; fn = Pnf, Pn is a linear projector which maps X onto
Xn (Pn : X → Xn, Pnun = un for un ∈ Xn).

Assume that for each n ≥ N the following proximity conditions hold:

‖Anun−PnAun‖ ≤ αn, ‖A′n(un)−PnA′(un)‖Xn→Xn ≤ α′n, ∀un ∈ Ωn; (2.1)

‖PnAu−Au‖ ≤ βn, ‖PnA′(u)−A′(u)‖X→X ≤ β′n, ∀u ∈ S(u
(0)
N , R); (2.2)
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‖Pnf − f‖ ≤ γn, ∀f ∈ X, (2.3)

where αn, α′n, βn, β′n, γn → 0 when n → ∞. We will also assume that the
derivative A′n(un) on the set Ωn satisfies the Lipschitz condition

‖A′n(un)−A′n(vn)‖Xn→Xn ≤ L′ ‖un − vn‖, ∀un, vn ∈ Ωn, n ≥ N, (2.4)

where L′ > 0 is a Lipschitz constant.
If there exists a continuous linear operator Γn(un) = [A′n(un)]−1 for all un ∈

Ωn (n ≥ N) then one can apply the Newton-Kantorovich method [14] to each of
equations (1.2) beginning from the number n = N , and construct a sequence of
approximations to the solution u∗ of equation (1.1) by the formulas

u(k+1)
n = u(k)

n − [A′n(u(k)
n )]−1(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1; (2.5)

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

In paper [3] the theorem is given on the existence of a solution u∗ to equation
(1.1), on the domain of its location, as well as on the convergence of projection-
iteration process (2.5) under the Cauchy-type conditions. The following theorem
is a generalization of the mentioned theorem, when instead of operators

Γ(u) = [A′(u)]−1, u ∈ S(u
(0)
N , R)

and Γn(un) = [A′n(un)]−1, un ∈ Ωn (n ≥ N), it is required the existence only of
an operator D(u), u ∈ S(u

(0)
N , R) in X and an operator Dn(un), un ∈ Ωn in Xn,

which are close to Γ(u) and Γn(un) respectively.

Theorem 2.1. Let the operator A be Fréchet differentiable on some ball S(u
(0)
N ,

R) ⊂ X and let for all n ≥ N the operator An be Fréchet differentiable on the set
Ωn = Xn∩S(u

(0)
N , R), at that let its derivative A′n(un) satisfy on Ωn the Lipschitz

condition (2.4). Assume that the proximity conditions (2.1)–(2.3) hold true and
there exist a linear operator D(u) on X and linear operators Dn(un) on Xn such
that

‖D(u)‖X→X ≤ b, ‖E −D(u)A′(u)‖X→X ≤ δ < 1, ∀u ∈ S(u
(0)
N , R); (2.6)

‖E −Dn(un)A′n(un)‖Xn→Xn ≤ δn < 1, ∀un ∈ Ωn, n ≥ N, (2.7)

where b > 0, δ > 0, δn > 0; E is an identity operator on X. If the initial
approximation u(0)

N ∈ ΩN satisfies the conditions

‖ANu(0)
N − fN )‖ ≤ η(0)

N , h
(0)
N = b2NL

′η
(0)
N < 2, rN = bNη

(0)
N GN ≤ R, (2.8)
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where

bN = b/
(
1− b(α′N + β′N )− δ

)
,

GN = HN +
∞∑

m=N

(h
(0)
N /2)2Sm−1 < 2HN ,

sm =

m∑
i=N

(ki − 1),

HN =
∞∑
m=0

(h
(0)
N /2)2Sm−1,

then equation (1.1) has in the ball S(u
(0)
N , rN ) a solution u∗ to which the based on

Newton’s method process (2.5) converges with the error estimate

‖u(kn)
n − u∗‖ ≤ bNη(0)

N Vn(h
(0)
N /2)2Sn−1, n ≥ N, (2.9)

where

Vn =

∞∑
m=0

(h
(0)
N /2)2Sn (2m−1) +

∞∑
m=n+1

(h
(0)
N /2)2Sm−2Sn < 2HN .

The proof of Theorem 2.1 can be found in [3].

3. Proving the convergence theorem

Let us consider, to solve the operator equation (1.1), a projection-iteration
process, like (2.5) with the replacement of the operator Γn(u

(k)
n ) = [A′n(u

(k)
n )]−1

by an operator Dn(u
(k)
n ) close to it:

u(k+1)
n = u(k)

n −Dn(u(k)
n )(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1; (3.1)

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

The following theorem establishes the sufficient conditions of feasibility and con-
vergence in the ball S(u

(0)
N , R) of the approximations sequence {u(kn)

n }∞n=N ⊂ X
determined by formulas (3.1) to a solution u∗ of equation (1.1).

Theorem 3.1. Let all the conditions of Theorem 2.1 hold true and let, moreover,
the derivative A′(u) satisfy on S(u

(0)
N , R) the Lipschitz condition

‖A′(u)−A′(v)‖X→X ≤ L ‖u− v‖, ∀u, v ∈ S(u
(0)
N , R); L > 0. (3.2)

Assume that bLδ/(1 − δ) < 1, where b > 0, δ > 0 are defined in (2.6), and that
δn → 0 in condition (2.7) when n → ∞. If the initial approximation u

(0)
N ∈ ΩN

satisfies the first condition (2.8),

h
(0)
N = b2NL

′η
(0)
N +

2bNL
′δN

1− δN
< 2, rN = bNη

(0)
N GN ≤ R, (3.3)
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where

bN = b/(1− bρN ),

ρN = α′N + β′N + L′δN/(1− δN ) + Lδ/(1− δ),

GN = HN +

∞∑
m=N

(h
(0)
N /2)Sm < 2HN ,

sm =
m∑
i=N

(ki − 1),

HN = 1/(1− h(0)
N /2),

then equation (1.1) has in the ball S(u
(0)
N , rN ) ⊂ X a solution u∗ to which the

projection-iteration process of approximations (3.1) converges with the error esti-
mate

‖u(kn)
n − u∗‖ ≤ bNη(0)

N Vn(h
(0)
N /2)Sn , n ≥ N, (3.4)

where Vn = HN +
∞∑

m=n+1
(h

(0)
N /2)Sm−Sn < 2HN .

Proof. First of all, we note that the second condition in (2.6) implies the existence
of bounded inverse operator [D(u)]−1, u ∈ S(u

(0)
N , R); while taking into account

(3.2) the estimate ‖[D(u)]−1‖X→X ≤ L/(1 − δ) holds for all u ∈ S(u
(0)
N , R).

Similarly, from the conditions (2.7) and (2.4) there follows the existence of bound-
ed inverse operators [Dn(un)]−1, un ∈ Ωn with the norm ‖[Dn(un)]−1‖Xn→Xn ≤
L′/(1− δn), n ≥ N . Further, based on the first condition (2.6) and the proximity
conditions (2.1), (2.2) the existence of operators Dn(un) implies their bounded-
ness, beginning with some n = N1 ≥ N . Indeed, since for un ∈ Ωn, zn ∈ Xn

‖[Dn(un)]−1zn − [D(un)]−1zn‖ ≤
(
‖[Dn(un)]−1 −A′n(un)‖Xn→Xn

+ ‖A′n(un)− PnA′(un)‖Xn→Xn + ‖PnA′(un)−A′(un)‖X→X
+ ‖A′(un)− [D(un)]−1‖X→X

)
‖zn‖ ≤ ρn ‖zn‖,

where ρn = L′δn/(1− δn) + α′n + β′n + Lδ/(1− δ), then

‖[Dn(un)]−1zn‖ ≥ ‖[D(un)]−1zn‖ − ‖[Dn(un)]−1zn − [D(un)]−1zn‖
≥ (1− bρn)/b ‖zn‖,

and since under the conditions of the theorem bρn < 1 for n ≥ N1, then for these
numbers n we will have

‖Dn(un)‖Xn→Xn ≤ bn = b/(1− bρn), un ∈ Ωn. (3.5)

Let us prove the feasibility of process (3.1). Note that the possibility of re-
placing equations (1.2) by linearized equations

Anu
(k)
n + [Dn(u(k)

n )]−1(un − u(k)
n ) = fn, k = 0, 1, . . . ; n ≥ N
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respectively follows from the existence of continuous operators [Dn(un)]−1 close
to A′n(un), un ∈ Ωn for the specified n. We establish (by mathematical induction)
that all subsequent approximations u(0)

n for n > N have the same properties (2.8),
(3.3) and that they belong to the ball S(u

(0)
N , rN ) ⊂ X. Based on the theorem

conditions, it can be shown that for n = N, N + 1, . . . , m

‖Anu(0)
n − fn‖ ≤ η(0)

n , h(0)
n = b2nL

′η(0)
n +

2bnL
′δn

1− δn
< 2. (3.6)

In addition, as it follows from the proof of Theorem 2 of [6], at any fixed n
(N ≤ n ≤ m) the conditions

‖Anu(k)
n − fn‖ ≤ η(k)

n , h(k)
n = b2nL

′η(k)
n +

2bnL
′δn

1− δn
< 2 (3.7)

hold for each number k = 1, 2, . . . , kn. We show the feasibility of (3.6) for
n = m+ 1. Insofar as

‖Am+1u
(0)
m+1−fm+1‖ ≤ ‖Am+1u

(0)
m+1−Amu

(0)
m+1‖+‖Amu

(km)
m −fm‖+‖fm−fm+1‖,

then based on the proximity conditions (2.1)–(2.3) from the relations

‖Am+1u
(0)
m+1 −Amu

(0)
m+1‖ ≤ ‖Am+1u

(0)
m+1 − Pm+1Au

(0)
m+1‖

+ ‖Pm+1Au
(0)
m+1 −Au

(0)
m+1‖+ ‖Au(km)

m − PmAu(km)
m ‖

+ ‖PmAu(km)
m −Amu(km)

m ‖ ≤ αm+1 + βm+1 + βm + αm;

‖fm − fm+1‖ ≤ ‖Pmf − f‖+ ‖f − Pm+1f‖ ≤ γm + γm+1

and from the first of the conditions (3.7) we obtain:

‖Am+1u
(0)
m+1 − fm+1‖ ≤ θm + η(km)

m = η
(0)
m+1, (3.8)

where θm = αm + αm+1 + βm + βm+1 + γm + γm+1, that is, the first of the
conditions (3.6) for n = m + 1 holds true. Let us show the fulfillment of the
second one.

Proof of the Theorem 2 of [6] implies that for any k = 0, 1, . . . , km − 1

‖Amu(k+1)
m − fm‖ = ‖Amu(k+1)

m −Amu(k)
m − [Dm(u(k)

m )]−1(u(k+1)
m − u(k)

m )‖

≤ L′

2
‖u(k+1)

m − u(k)
m ‖2 +

L′δm
1− δm

‖u(k+1)
m − u(k)

m ‖

≤ L′

2
b2mη

(k)2

m +
L′δm

1− δm
bmη

(k)
m =

h
(k)
m

2
η(k)
m = η(k+1)

m , (3.9)

so

η(km)
m =

h
(km−1)
m

2
η(km−1)
m = · · · = 1

2km
h(km−1)
m h(km−2)

m . . . h(0)
m η(0)

m .
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Because in (3.8) θm → 0 whenm→∞ and because by virtue of (3.7) h(km−1)
m < 2,

there exists a number m = N2 ≥ N beginning with which

η
(0)
m+1 ≤

1

2km−1
h(km−2)
m h(km−3)

m . . . h(0)
m η(0)

m . (3.10)

Since, obviously bm+1 ≤ bm, δm+1 ≤ δm, then taking into account (3.10) and (3.7)
we have for all m ≥ N2:

h
(0)
m+1 = b2m+1L

′η
(0)
m+1 +

2bm+1L
′δm+1

1− δm+1

≤ b2mL′
1

2km−1
h(km−2)
m h(km−3)

m . . . h(0)
m η(0)

m +
2bmL

′δm
1− δm

= b2mL
′η(km−1)
m +

2bmL
′δm

1− δm
= h(km−1)

m < 2, (3.11)

that is, the second of the conditions (3.6) for n = m+ 1 also holds true.
Let number N := max{N1, N2} be the initial one in formulas (3.1).
Let’s show that the approximations u(0)

n+1 belong to the ball S(u
(0)
N , rN ) ⊂ X

for all n ≥ N . It’s obvious that

‖u(0)
n+1 − u

(0)
N ‖ ≤

n∑
m=N

‖u(0)
m+1 − u

(0)
m ‖, n ≥ N ;

in turn, for each m = N, N + 1, . . . , n

‖u(0)
m+1 − u

(0)
m ‖ = ‖u(km)

m − u(0)
m ‖ ≤

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖.

Based on formulas (3.1), (3.5), (3.7), (3.9) for any numbers m = N, N + 1, . . . , n
and k = 0, 1, . . . , km − 1 we obtain:

‖u(k+1)
m − u(k)

m ‖ ≤ ‖Dm(u(k)
m )‖Xm→Xm‖Amu(k)

m − fm‖ ≤ bmη(k)
m

= bm
1

2k
h(k−1)
m h(k−2)

m . . . h(0)
m η(0)

m ,

and because of

h(k+1)
m = b2mL

′η(k+1)
m +

2bmL
′δm

1− δm

= b2mL
′h

(k)
m

2
η(k)
m +

2bmL
′δm

1− δm

< b2mL
′η(k)
m +

2bmL
′δm

1− δm
= h(k)

m < 2, k = 0, 1, . . . , km − 1, (3.12)
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we have

‖u(k+1)
m − u(k)

m ‖ ≤ bm
(
h(0)
m /2

)k
η(0)
m , k = 0, 1, . . . , km − 1.

Let’s evaluate here η(0)
m and h(0)

m (N + 1 ≤ m ≤ n) through η(0)
N and h(0)

N . Apply-
ing (3.12) in formulas (3.10) and (3.11), we obtain the relations

η
(0)
m+1 <

(
h(0)
m /2

)km−1
η(0)
m ;

h
(0)
m+1 ≤ h

(km−1)
m < h(0)

m ≤ h
(km−1−1)
m−1 < h

(0)
m−1 ≤ · · · < h

(0)
N , m ≥ N,

which implies that

η(0)
m <

(
h

(0)
m−1/2

)km−1−1
η

(0)
m−1

<
(
h

(0)
m−1/2

)km−1−1(
h

(0)
m−2/2

)km−2−1
η

(0)
m−2 < . . .

<
(
h

(0)
N /2

)Sm−1η
(0)
N ,

where sm−1 =
m−1∑
i=N

(ki − 1), m = N + 1, N + 2, . . . , n. With this in mind

‖u(k+1)
m − u(k)

m ‖ ≤ bN
(
h

(0)
N /2

)Sm−1+k
η

(0)
N , (3.13)

k = 0, 1, . . . , km − 1; m = N + 1, N + 2, . . . , n;

‖u(k+1)
N − u(k)

N ‖ ≤ bN
(
h

(0)
N /2

)k
η

(0)
N , k = 0, 1, . . . , kN − 1,

so

‖u(0)
n+1 − u

(0)
N ‖ ≤

n∑
m=N

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖

≤ bNη(0)
N

[
kN−1∑
k=0

(
h

(0)
N /2

)k
+

n∑
m=N+1

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

]

= bNη
(0)
N

[
Sn∑
k=0

(
h

(0)
N /2

)k
+

n−1∑
m=N

(
h

(0)
N /2

)Sm]
< bNη

(0)
N GN = rN , n ≥ N,

that is, each u(0)
n+1 where n ≥ N (and also all u(k)

n (k = 1, 2,. . . , kn) by virtue of
the Theorem 2 from [6]) belong to the ball S(u

(0)
N , rN ). Thus, the feasibility of

process (3.1) is proved.
Let’s now show that the sequence {u(kn)

n }∞n=N , which is determined by formulas
(3.1), converges in S(u

(0)
N , rN ). Using (3.13) for any numbers n ≥ N and p ∈ N
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we write:

‖u(kn+p)
n+p − u(kn)

n ‖ ≤
n+p∑

m=n+1

‖u(km)
m − u(km−1)

m−1 ‖ =

n+p∑
m=n+1

‖u(km)
m − u(0)

m ‖

≤
n+p∑

m=n+1

km−1∑
k=0

‖u(k+1)
m − u(k)

m ‖

≤ bNη(0)
N

n+p∑
m=n+1

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

= bNη
(0)
N

[
kn+1−1∑
k=0

(
h

(0)
N /2

)Sn+k
+

n+p∑
m=n+2

km−1∑
k=0

(
h

(0)
N /2

)Sm−1+k

]

= bNη
(0)
N

(
h

(0)
N /2

)Sn[ Sn+p−Sn∑
k=0

(
h

(0)
N /2

)k
+

n+p−1∑
m=n+1

(
h

(0)
N /2

)Sm−Sn]
< bNη

(0)
N

(
h

(0)
N /2

)Sn2HN . (3.14)

Since h(0)
N < 2, then ‖u(kn+p)

n+p −u
(kn)
n ‖ → 0 when n→∞, that means the fundamen-

tality of the sequence {u(kn)
n }∞n=N ⊂ S(u

(0)
N , rN ). By virtue of the completeness of

the space X, there exists an element u∗ ∈ S(u
(0)
N , rN ) such that u∗ = lim

n→∞
u

(kn)
n .

Passing to the limit at p→∞ in (3.14) and denoting

Vn = lim
p→∞

[ Sn+p−Sn∑
k=0

(
h

(0)
N /2

)k
+

n+p−1∑
m=n+1

(
h

(0)
N /2

)Sm−Sn]

=
∞∑
k=0

(
h

(0)
N /2

)k
+

∞∑
m=n+1

(
h

(0)
N /2

)Sm−Sn , n ≥ N,

we obtain the error estimate (3.4).
To prove that the limit u∗ of the sequence {u(kn)

n }∞n=N is a solution of equation
(1.1), we consider the residual of method (3.1) on the n-th step (n ≥ N):

‖Au(kn)
n − f‖ ≤ ‖Au(0)

n+1 − Pn+1Au
(0)
n+1‖+ ‖Pn+1Au

(0)
n+1 −An+1u

(0)
n+1‖

+ ‖An+1u
(0)
n+1 − fn+1‖+ ‖fn+1 − f‖ ≤ βn+1 + αn+1 + η

(0)
n+1 + γn+1.

Since, αn+1, βn+1, γn+1, η
(0)
n+1 → 0 when n → ∞, and since the operator A is

continuous due to Fréchet differentiability, then by tending n → ∞ in the last
inequality, we obtain that Au∗ = f . The theorem is proved.

Note that the projection-iteration implementation (3.1) of the Newton-like
method generally converges more slowly than the projection-iteration process (2.5)
based on the classical Newton’s method. An exception is the case, when δ = 0,
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δn = 0 (n ≥ N) in formulas (2.6), (2.7), that leads to the transformation of
method (3.1) into (2.5); in such a situation, the error estimate (3.4) for method
(3.1) (or, equivalently, method (2.5)) is significantly overestimated, and for this
case the more appropriate result is contained in Theorem 2.1.

For equation (1.1) under the Theorem 2.1 conditions, along with the projec-
tion-iteration method (2.5) based on the Newton’s method, one can consider the
approximation process based on the modified Newton’s method:

u(k+1)
n = u(k)

n − [A′n(u(0)
n )]−1(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1;

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X,

and under the Theorem 3.1 conditions, along with the projection-iteration method
(3.1), one can consider the approximation process based on the modified Newton-
like method:

u(k+1)
n = u(k)

n −Dn(u(0)
n )(Anu

(k)
n − fn), k = 0, 1, . . . , kn − 1;

u
(0)
n+1 = u(kn)

n , n ≥ N ; u
(0)
N ∈ ΩN ⊂ X.

Such the projection-iteration processes (although they converge more slowly than
the process (2.5) based on the Newton’s method) are less laborious, since for each
n ≥ N they use operators [A′n(u

(0)
n )]−1 or Dn(u

(0)
n ) which correspond only to the

initial point u(0)
n ∈ Ωn, and this obviously leads to a computational overhead

reduction in numerical implementation.
We note, finally, that while solving nonlinear operator equations of the form

(1.1), as follows from the proofs of Theorems 2.1, 3.1 on the convergence of
projection-iteration methods based on the Newton’s method and the Newton-like
one respectively, the convergence of corresponding sequences {u(kn)

n }∞n=N (when
n → ∞) towards an exact solution u∗ in X occurs under an arbitrary choice of
numbers kn. However, to prevent a sharp increase with increasing n of amount
of computations needed to find the next approximation, we have to consider a
problem of the appropriate choice of numbers kn at each n ≥ N . Some recom-
mendations on this issue have been given in [2]. In particular, there has been
considered a way to choose numbers kn so that the element u(kn)

n would be a good
initial approximation for the (n + 1)-th approximate equation of the form (1.2),
that is, that the residual An+1u

(0)
n+1 − fn+1 would have, if possible, a small value.

The idea underlying this way to choose numbers kn also makes it possible to de-
termine the most acceptable number n + p (p ≥ 1) of the approximate equation
following the n-th one in the sequence of equations (1.2). Some other ways to
choose numbers kn in projection-iteration methods of solving nonlinear equations
as well as their application in solving specific problems, can be found in [3,7,9–11].
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1. Introduction to the solver

Following [1,2], we consider the well known Dirichlet problem for the Laplace
equation in a disk of radius c centered at point x0 in the plane R2 parameterized
by cartesian orthogonal coordinates x = (x1, x2)

{
∆xu(x) = 0 , x ∈ B2

c (x0) :=
{
x : |x− x0|2 < c2

}
,

u(x) = Q′m(x) , x ∈ S2
c (x0) :=

{
x : |x− x0|2 = c2

}
,

(1.1)

where the boundary function is a polynomial of degree m

Qm(x) =

m∑
p+q=0

ap,q x
p
1 x

q
2 , (1.2)

p, q ∈ Z\Z−, ap,q ∈ R, and prime means that the domain of definition of Qm(x)

is restricted to S2
c (x0).

The above problem is known [3] to have a unique solution, and the solution
is evidently to be a polynomial Um(x) of degree m.

In [1] we proved the following
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Proposition 1.1. The solution to the Dirichlet problem (1.1) admits the follow-
ing representation

u(x) = Um(x) = F2(x)Pm−2(x) +Qm(x) , (1.3)

where F2(x) is the polynomial of degree 2 specifying the boundary of the disk:
F2(x) = c2− |x−x0|2 = 0, and Pm−2(x) is a uniquely determined polynomial of
degree m− 2 .

The way of proving proposition 1.1 was based on the Fourier method. Then,
in [2] we gave an other proof based on the Poisson integral formula for the solution.
Representation (1.3) was illustrated in [1] by numerous examples where c, x0

and Pm(x) were changed: first, we obtained solutions to (1.1) using the Fourier
method and, second, showed representation (1.3) to hold by dividing polynomial
solution Um(x) by polynomial F2(x) with remainder Qm(x). From this some
shrewd readers of [1] concluded that the method we used to prove representa-
tion (1.3) gives no explicit formula for polynomial Pm−2(x). Hence, in the current
study we derive the proper explicit formulas for polynomial Pm−2(x) literally
following [1].

The article is arranged as follows.
As in [1], we apply the direct transformation of independent variables x→ y :

x = y + x0, and replace the original Dirichlet problem (1.1) with the following
derived one {

∆yw(y) = 0 , y ∈ B2
c (0) ,

w(y) = R ′m(y) , y ∈ S2
c (0) ,

(1.4)

where the disk is centered at the origin of cartesian coordinates y = (y1, y2),
w(y) := u(y + x0), and

Rm(y) := Qm(y + x0) =
m∑

p+q=0

bp,q y
p
1 y

q
2 =

m∑
p+q=0

bp,q Rp,q(y) . (1.5)

Representation (1.3) for the solution to the derived Dirichlet problem reads

w(y) = Wm(y) = G2(y)Sm−2(y) +Rm(y) , (1.6)

where G2(y) := F2(y + x0) = c2 − |y|2, Sm−2(y) := Pm−2(y + x0) .
Then, in Section 2 we consider the contributions

Wp,q(y) = G2(y)Sp,q(y) +Rp,q(y) (1.7)
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of the monomials Rp,q(y) = yp1 y
q
2 of the boundary polynomial Rm(y) (1.5) to

the solution Wm(y) (1.6), where

Wm(y) =

m∑
p+q=0

Wp,q(y) , (1.8)

Sm−2(y) =

m∑
p+q=0

bp,q Sp,q(y) , (1.9)

Wp,q(y) and Sp,q(y) are polynomials of degree p + q and p + q − 2 respectively.
To find the polynomials Sp,q(y) we use the Fourier method. For representa-
tion (1.3) for the solution to the original Dirichlet problem to be obtained one
should apply the inverse transformation of independent variables y → x : y =
x− x0.

In Section 3 we illustrate the resulted explicit formulas of Section 2 for Sp,q(y)
by numerous examples.

In Section 4 we show how to simplify the resulted explicit formulas for Sp,q(y)
and eventually how to find polynomial Sm−2(y) not treating the monomialsRp,q(y)
separately.

In Section 5 we give supplementary data for readers to check propositions of
Section 4.

In Section 6 we discuss briefly some other methods to find polynomials Sp,q(y).
In Section 7 we show in what way other methods could help us obtain poly-

nomials Sp,q(y).

2. The Fourier method to find Sp,q(y)

Before applying the well known Fourier method [3] to derive explicit formu-
las for representation (1.6), we give a brief description of the method to clarify
the main idea we utilized in [1].

Let a boundary monomial R ′p,q (p+ q > 3 and is odd) to have the following
Fourier series (possible cases are presented in Tbl. 1 at p. 83)

R̊ ′p,q(ϕ) = c p+q

p+q−1
2∑

µ=0

a2µ+1 cos [(2µ+ 1)ϕ] ,

then extension of the boundary monomial to disk B2
c (0) is evidently to be

R̊ ′p,q(ϕ) = r p+q

p+q−1
2∑

µ=0

a2µ+1 cos [(2µ+ 1)ϕ] ,

and the solution to the Dirichlet problem is as follows
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W̊p,q(r, ϕ) = c p+q

p+q−1
2∑

µ=0

(r
c

)2µ+1
a2µ+1 cos [(2µ+ 1)ϕ] ,

where the circle over the function name indicates changing cartesian coordinates
to polar ones: y1 = r cosϕ, y2 = r sinϕ .

Then we transform the solution identically as

W̊p,q(r, ϕ) = W̊p,q(r, ϕ)− R̊p,q(r, ϕ) + R̊p,q(r, ϕ)

=

p+q−1
2∑

µ=1

[
c p+q

(r
c

)2µ+1
− r p+q

]
a2µ+1 cos [(2µ+ 1)ϕ] + R̊p,q(r, ϕ)

and manipulate the expression in brackets algebraically (provided 2µ+ 1 < p+ q
and 5 6 p+ q)

.c p+q
(r
c

)2µ+1
− r p+q = c p+q−2µ−1 r 2µ+1 − r p+q

= c p+q−2µ−1 r 2µ+1 − r p+q−2µ−1 r 2µ+1

= r 2µ+1
(
c p+q−2µ−1 − r p+q−2µ−1

)
= r 2µ+1

(
c2 − r2

)
Ap+q−2µ−3(c, r) ,

where homogeneous in c and r polynomials are defined as

A2k(c, r) =

{
1 , k = 0 ,

c2k + c2k−2r2 + . . .+ c2r2k−2 + r2k , k > 1 .
(2.1)

Eventually we obtain the required representation as

W̊p,q(r, ϕ) =
(
c2 − r2

) p+q−1
2
−1∑

µ=1

a2µ+1Ap+q−2µ−3(c, r) r 2µ+1 cos [(2µ+ 1)ϕ] + R̊p,q(r, ϕ)

=
(
c2 − r2

) p+q−1
2
−1∑

µ=1

a2µ+1Ap+q−2µ−3(c, r)H2µ+1,1(r, ϕ) + R̊p,q(r, ϕ) ,

where first there appear harmonic polynomials [8]

H̊k,1(r, ϕ) = rk cos kϕ , H̊k,2(r, ϕ) = rk sin kϕ . (2.2)
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To obtain the Fourier series of boundary monomials Rp,q we use well known
formulas [4] for powers of trigonometric functions cos and sin in terms of these
functions of multiples of the argument



cosp ϕ =
1

2p−1

p−1
2∑

µ=0

Cµp cosϕµ ,

sinq ϕ =
1

2q−1

q−1
2∑

γ=0

Cγq sinϕγ (−1)
q−1
2

+γ ,

(2.3)

when p and q are odd integers, and



cosp ϕ =
1

2p
C
p
2
p +

1

2p−1

p
2
−1∑

µ=0

Cµp cosϕµ ,

sinq ϕ =
1

2q
C
q
2
q +

1

2q−1

q
2
−1∑
γ=0

Cγq cosϕγ (−1)
q
2

+γ ,

(2.4)

when p and q are even integers; and ϕµ := pµ ϕ = (p − 2µ)ϕ, ϕγ := qγ ϕ = (q −
2γ)ϕ, and formulas

{
2 cosϕ1 cosϕ2 = cos (ϕ1 − ϕ2) + cos (ϕ1 + ϕ2) ,

2 sinϕ1 cosϕ2 = sin (ϕ1 − ϕ2) + sin (ϕ1 + ϕ2) .
(2.5)

To transform harmonic polynomials (2.2) to cartesian variables we use well
known formulas [4] for trigonometric functions cos and sin of multiples of the argu-
ment in terms of powers of these functions (for p, q being odd and even respec-
tively)



cos pϕ =

p−1
2∑

µ=0

(−1)µC2µ
p cosp−2µ ϕ sin2µ ϕ ,

sin qϕ =

q−1
2∑

γ=0

(−1)γ C2γ+1
q cosq−2γ−1 ϕ sin2γ+1 ϕ ,

(2.6)
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cos pϕ =

p
2∑

µ=0

(−1)µC2µ
p cosp−2µ ϕ sin2µ ϕ ,

sin qϕ =

q
2
−1∑
γ=0

(−1)γ C2γ+1
q cosq−2γ−1 ϕ sin2γ+1 ϕ .

(2.7)

2.1. Trivial cases

We call trivial those cases when the boundary monomials are harmonic ones
of degree 1 and 2: a) p = 1, q = 0; b) p = 0, q = 1; c) p = 1, q = 1. Then
polynomials S1,0, S0,1 and S1,1 are evidently to equal zero identically.

2.2. Other missing cases

Other missing cases are as follows: a) p > 3 is odd and q = 0; b) p = 0 and
q > 1 is odd; c) p > 2 is even and q = 0; d) p = 0 and q > 2 is even. They are
thoroughly studied or discussed in [1].

2.3. p > 1 is odd and q > 1 is odd, p+ q > 4

First we find the Fourier series for the given boundary monomial restricted
to S2

c (0)

R̊ ′p,q(ϕ) = c p cospϕ c q sinqϕ

=
c p+q

2p+q−2

 p−1
2∑

µ=0

Cµp cosϕµ

 q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq sinϕγ



=
c p+q

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ + ϕµ)

+
c p+q

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ − ϕµ) .

Then we extend the boundary monomial to B2
c (0)

R̊p,q(r, ϕ) =
r p+q

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ + ϕµ)

+
r p+q

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ − ϕµ) ,
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set up the solution to the Dirichlet problem following the Fourier method and
apply the identical transformation discussed in Section 2

W̊p,q(r, ϕ) =
1

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ+pµ − r p+q
]

sin(ϕγ+µ)

+
1

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] sin(ϕγ−µ)

− 1

2p+q−1

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] sin(ϕµ−γ)

+ R̊p,q(r, ϕ) ,

where the following auxiliary notation is used: ϕγ+µ = ϕγ +ϕµ, ϕγ−µ = ϕγ −ϕµ,
ϕµ−γ = ϕµ − ϕγ .

After some algebraic manipulations discussed and explained in Section 2 we present
the polynomial Sp,q in polar variables separately

2p+q−1 S̊p,q(r, ϕ) =

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, r) r pµ+qγ sin [(qγ+ pµ)ϕ]

+

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, r) r qγ−pµ sin [(qγ− pµ)ϕ]

−

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, r) r pµ−qγ sin [(pµ− qγ)ϕ] .

Transforming independent variables from cartesian to polar ones we eventually
find polynomial Sp,q
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2p+q−1 Sp,q(y) =

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, |y|)Hp+q−2(µγ),2(y)

+

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, |y|)Hq−p−2(γ−µ),2(y)

−

p−1
2∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, |y|)Hp−q−2(µ−γ),2(y)

(2.8)

2.4. p > 1 is odd and q > 2 is even, p+ q > 3

We again start considering new case with finding the Fourier series for the given
boundary monomial restricted to S2

c (0)

R̊ ′p,q(ϕ) = c p cospϕ c q sinqϕ

= c p+q

 1

2p−1

p−1
2∑

µ=0

Cµp cosϕµ

 1

2q
C
q
2
q +

1

2q−1

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq sinϕγ



=
c p+q

2p+q−1
C
q
2
q

p−1
2∑

µ=0

Cµp cosϕµ

+
c p+q

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕµ + ϕγ)

+
c p+q

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕµ − ϕγ) .

Then as usually we extend the boundary monomial to the disk
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R̊ ′p,q(ϕ) =
r p+q

2p+q−1
C
q
2
q

p−1
2∑

µ=0

Cµp cosϕµ

+
r p+q

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕµ + ϕγ)

+
r p+q

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕµ − ϕγ) ,

set up the solution to the problem and implement the identical transformation as
follows

W̊p,q(r, ϕ) =
1

2p+q−1
C
q
2
q

p−1
2∑

µ=0

Cµp

[
c p+q

(r
c

)pµ − r p+q] cosϕµ

+
1

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ+pµ − r p+q
]

cos(ϕγ+µ)

+
1

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] cos(ϕγ−µ)

+
1

2p+q−1

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] cos(ϕµ−γ)

+ R̊p,q(r, ϕ) .

Now the polynomial Sp,q has been ready to be presented in polar variables
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2p+q−1 S̊p,q(r, ϕ) = C
q
2
q

p−1
2∑

µ=0

Cµp Aq+2µ−2(c, r) r pµ cos pµϕ

=

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, r) r pµ+qγ cos [(pµ + qγ)ϕ]

+

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, r) r qγ−pµ cos [(qγ − pµ)ϕ]

+

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, r) r pµ−qγ cos [(pµ − qγ)ϕ]

and finally in cartesian ones

2p+q−1 Sp,q(y) = C
q
2
q

p−1
2∑

µ=0

Cµp Aq+2µ−2(c, |y|)Hp−2µ,1(y)

=

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, |y|)Hp+q−2(µ+γ),1(y)

+

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, |y|)Hq−p−2(γ−µ),1(y)

+

p−1
2∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, |y|)Hp−q−2(µ−γ),1(y) .

(2.9)
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2.5. p > 2 is even and q > 1 is odd, p+ q > 3

The Fourier series for the boundary monomial

R̊ ′p,q(ϕ) = c p cospϕ c q sinqϕ

= c p+q

 1

2p
C
p
2
p +

1

2p−1

p
2
−1∑

µ=0

Cµp cosϕµ

 1

2q−1

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq sinϕγ



=
c p+q

2p+q−1
C
p
2
p

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq sinϕγ

+
c p+q

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ + ϕµ)

+
c p+q

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ − ϕµ)

is uniquely extended to the disk as the following function of polar variables

R̊p,q(r, ϕ) =
r p+q

2p+q−1
C
p
2
p

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq sinϕγ

+
r p+q

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ + ϕµ)

+
r p+q

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cµp C
γ
q sin(ϕγ − ϕµ) .

Then the solution to the problem is set up as follows
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W̊p,q(r, ϕ) =
1

2p+q−1
C
p
2
p

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq

[
c p+q

(r
c

)qγ − r p+q] sinϕγ

+
1

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ+pµ − r p+q
]

sin(ϕγ+µ)

+
1

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] sin(ϕγ−µ)

− 1

2p+q−1

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)pµ−qγ − r p+q] sin(ϕµ−γ)

+ R̊p,q(r, ϕ) ,

from where the required polynomial is obtained in polar

2p+q−1 S̊p,q(r, ϕ) = C
p
2
p

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq Ap+2γ−2(c, r) r qγ sin qγϕ

+

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, r) r pµ+qγ sin [(pµ + qγ)ϕ]

+

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, r) r qγ−pµ sin [(qγ − pµ)ϕ]

−

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, r) r pµ−qγ sin [(pµ − qγ)ϕ]

and then in cartesian variables
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2p+q−1 Sp,q(y) = C
p
2
p

q−1
2∑

γ=0

(−1)
q−1
2

+γ Cγq Ap+2γ−2(c, |y|)Hq−2γ,1(y)

+

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
µ+γ>0

(−1)
q−1
2

+γ Cµp C
γ
q A2(µ+γ)−2(c, |y|)Hp+q−2(µ+γ),2(y)

+

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ<qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(c, |y|)Hq−p−2(γ−µ),2(y)

−

p
2
−1∑

µ=0

q−1
2∑

γ=0︸ ︷︷ ︸
pµ>qγ

(−1)
q−1
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(c, |y|)Hp−q−2(µ−γ),2(y) .

(2.10)

2.6. p > 2 is even and q > 2 is even, p+ q > 4

Using the Fourier series for the boundary monomial

R̊ ′p,q(ϕ) = c p cospϕ c q sinqϕ

= c p+q

C p
2
p

2p
+

1

2p−1

p
2
−1∑

µ=0

Cµp cosϕµ

C q
2
q

2q
+

1

2q−1

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq sinϕγ


+
c p+q

2p+q
C
p
2
p C

q
2
q

+
c p+q

2p+q−1
C
q
2
q

p
2
−1∑

µ=0

Cµp cos(ϕµ) +
c p+q

2p+q−1
C
p
2
p

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq cos(ϕγ)

+
c p+q

2p+q−1

p
2
−1∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕγ + ϕµ)

+
c p+q

2p+q−1

p
2
−1∑

µ=0

q
2
−1∑
γ=0

(−1)
q
2

+γ Cµp C
γ
q cos(ϕγ − ϕµ)
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and not extending it explicitly to the disk set up the solution to the problem in
polar variables and implement the identical transformation

W̊p,q(r, ϕ) =
1

2p+q−1


1

2
C
p
2
p C

q
2
q +

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ=qγ

(−1)
q
2

+γ Cµp C
γ
q


[
c p+q − r p+q

]

+
1

2p+q−1

p
2
−1∑

µ=0

Cµp

[
c p+q

(r
c

)pµ − r p+q] cosϕµ

+
1

2p+q−1

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq

[
c p+q

(r
c

)qγ − r p+q] cosϕγ

+
1

2p+q−1

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ+pµ − r p+q
]

cosϕγ+µ

+
1

2p+q−1

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)qγ−pµ − r p+q] cosϕγ−µ

+
1

2p+q−1

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q

[
c p+q

(r
c

)pµ−qγ − r p+q] cosϕµ−γ

+ R̊p,q(r, ϕ) .

This case needs much more work compared to previous cases, and eventually
we obtain the polynomial Sp,q in polar variables
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2p+q−1 S̊p,q(r, ϕ) =


1

2
C
p
2
p C

q
2
q +

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ=qγ

(−1)
q
2

+γ Cµp C
γ
q

Ap+q−2(r)

+

p
2
−1∑

µ=0

Cµp Aq+2µ−2(r) r pµ cos (pµϕ)

+

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq Ap+2γ−2(r) r qγ cos (qγϕ)

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q A2(µ+γ)−2(r) r qγ+pµ cos [(pµ + qγ)ϕ]

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(r) r qγ−pµ cos [(qγ − pµ)ϕ]

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(r) r pµ−qγ cos [(pµ − qγ)ϕ] .

Transforming the polynomial Sp,q to cartesian variables is quite routine to
obtain
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2p+q−1 Sp,q(y) =


1

2
C
p
2
p C

q
2
q +

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ=qγ

(−1)
q
2

+γ Cµp C
γ
q

Ap+q−2(|y|)

+

p
2
−1∑

µ=0

Cµp Aq+2µ−2(|y|)Hp−2µ,1(y)

+

q
2
−1∑
γ=0

(−1)
q
2

+γ Cγq Ap+2γ−2(|y|)Hq−2γ,1(y)

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

µ+γ>0

(−1)
q
2

+γ Cµp C
γ
q A2(µ+γ)−2(|y|) Hp+q−2(µ+γ),1(y)

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ<qγ

(−1)
q
2

+γ Cµp C
γ
q A2(p+γ−µ)−2(|y|)Hq−p−2(γ−µ),1(y)

+

p
2
−1∑

µ=0

q
2
−1∑
γ=0︸ ︷︷ ︸

pµ>qγ

(−1)
q
2

+γ Cµp C
γ
q A2(q+µ−γ)−2(|y|)Hp−q−2(µ−γ),1(y) .

(2.11)

3. Examples on the Fourier method to find Sp,q(y)

Here and below we consider the Dirichlet problem (1.1), where x0 =0, hence,
all the resulted formulas, namely (2.8) – (2.11), are valid when formally replacing
variables y with x. For readers interested in deriving the explicit formulas for
the coefficients of polynomials Sp,q we place in Table 1 the Fourier series of all
the boundary monomials R̊ ′p,q. The resulted polynomials Sp,q are placed in Ta-
ble 2 and could attract attention of shrewd readers by very high level of packing
the independent variables.

For example, the polynomial S6,6 is written (in Table 2) using 3 non-zero
coefficients (essential, or primary), but admits the following partial expanding
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Table 1. The Fourier series of boundary monomials R̊ ′p,q(ϕ)

No The Fourier series

1 R̊ ′7,0 = +
35

64
c7 cosϕ+

21

84
c7 cos 3ϕ+

7

64
c7 cos 5ϕ+

1

64
c7 cos 7ϕ

2 R̊ ′0,7 = +
35

64
c7 sinϕ− 21

84
c7 sin 3ϕ+

7

64
c7 sin 5ϕ+

1

64
c7 sin 7ϕ

3 R̊ ′8,0 = +
35

128
c8 +

7

16
c8 cos 2ϕ+

7

32
c8 cos 4ϕ+

1

16
c8 cos 6ϕ+

1

128
c8 cos 8ϕ

4 R̊ ′8,0 = +
35

128
c8− 7

16
c8 cos 2ϕ+

7

32
c8 cos 4ϕ− 1

16
c8 cos 6ϕ+

1

128
c8 cos 8ϕ

5 R̊ ′3,3 = +
3

32
c6 sin 2ϕ− 1

32
c6 sin 6ϕ

6 R̊ ′3,4 = +
3

64
c7 cosϕ− 3

64
c7 cos 3ϕ− 1

64
c7 cos 5ϕ+

1

64
c7 cos 7ϕ

7 R̊ ′4,3 = +
3

64
c7 sinϕ+

3

64
c7 sin 3ϕ− 1

64
c7 sin 5ϕ− 1

64
c7 sin 7ϕ

8 R̊ ′4,4 = +
3

128
c8 − 1

32
c8 cos 4ϕ+

1

128
c8 cos 8ϕ

9 R̊ ′3,5 = +
3

64
c8 sin 2ϕ− 1

64
c8 sin 4ϕ− 1

64
c8 sin 6ϕ+

1

128
c8 sin 8ϕ

10 R̊ ′5,3 = +
3

64
c8 sin 2ϕ+

1

64
c8 sin 4ϕ− 1

64
c8 sin 6ϕ− 1

128
c8 sin 8ϕ

11 R̊ ′3,6 = +
3

128
c9 cosϕ− 1

32
c9 cos 3ϕ+

3

256
c9 cos 7ϕ− 1

256
c9 cos 9ϕ

12 R̊ ′6,3 = +
3

128
c9 sinϕ+

1

32
c9 sin 3ϕ− 3

256
c9 sin 7ϕ− 1

256
c9 sin 9ϕ

13 R̊ ′5,5 = +
5

256
c10 sin 2ϕ− 5

512
c10 sin 6ϕ+

1

512
c10 sin 10ϕ

14 R̊ ′6,6 = +
5

1024
c12 − 15

2048
c12 cos 4ϕ+

3

1024
c12 cos 8ϕ− 1

2048
c12 cos 12ϕ

211 S6,6 = 10
(
c10 + c8|x|2 + c6|x|4 + c4|x|6 + c2|x|8 + |x|10

)
− 15

(
c6 + c4|x|2 + c2|x|4 + x|6

)(
x4

1 − 6x2
1x

2
2 + x4

2

)
+ 6

(
c2 + |x|2

)(
x8

1 − 28x6
1x

2
2 + 70x4

1x
4
2 − 28x2

1x
6
2 + x8

2

)
.

(3.1)

Fully expanded polynomial S6,6 is given in Table 4.
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Table 2. Polynomials Sp,q(x) (arguments (c, |x|) of the homogeneous polynomials A and
argument (x) of the harmonic polynomials H are not shown for brevity; ’# of terms‘ in
the last column refers to fully expanded polynomials, see Table 4 in Section 7)

No Sp,q(x) # of terms

1 26 S7,0 = +35A4H1,1 + 21A2H3,1 + 7A0H5,1 6

2 26 S0,7 = +35A4H1,2 − 21A2H3,2 + 7A0H5,2 6

3 27 S8,0 = +35A6H0,1 + 56A4H2,1 + 28A2H4,1 + 8A0H6,1 10

4 27 S0,8 = +35A6H0,1 − 56A4H2,1 + 28A2H4,1 − 8A0H6,1 10

5 25 S3,3 = +3A2H2,2 3

6 26 S3,4 = +3A4H1,1 − 3A2H3,1 −A0H5,1 5

7 26 S4,3 = +3A4H1,2 + 3A2H3,2 −A0H5,2 5

8 27 S4,4 = +3A6H0,1 − 4A2H4,1 10

9 27 S3,5 = +6A4H2,2 − 2A2H4,2 − 2A0H6,2 6

10 27 S5,3 = +6A4H2,2 + 2A2H4,2 − 2A0H6,2 6

11 28 S3,6 = +6A6H1,1 − 8A4H3,1 + 3A0H7,1 10

12 28 S6,3 = +6A6H1,2 + 8A4H3,2 − 3A0H7,2 10

13 29 S5,5 = +10A6H2,2 − 5A2H6,2 10

14 211 S6,6 = +10A10H0,1 − 15A6H4,1 + 6A2H8,1 21

4. Some improvements to find Sp,q(y)

From the explicit formulas (2.8) – (2.11) derived in Section 2 and the exam-
ples considered in Section 3 one could deduce that the contribution of a mono-
mial Rp,q(y) to the resulted polynomial Sm−2(y) (1.9) is given as

2p+q−1 Sp,q(y)=

p+q−1
2∑

ρ=0

A2ρ(c, |y|)
(
α2ρHp+q−2−2ρ,1(y)+σ2ρHp+q−2−2ρ,2(y)

)
, (4.1)

when p+ q is odd, and as

2p+q−1 Sp,q(y)=

p+q
2
−1∑

ρ=0

A2ρ(c, |y|)
(
α2ρHp+q−2−2ρ,1(y)+σ2ρHp+q−2−2ρ,2(y)

)
, (4.2)
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when p+ q is even, where the coefficients α2ρ, σ2ρ are fully determined by the Fou-
rier series of the monomial R ′p,q(y) through formulas (2.8) – (2.11).

We show here how to simplify the computation of the coefficients α2ρ, σ2ρ.

Proposition 4.1. The Fourier series of the Laplacian of a monomial Rp,q(y), i. e.
function ∆yRp,q(y) restricted to S2

c (0), fully determines (the coefficients α2ρ, σ2ρ

of) the polynomial Sp,q(y).

Proof. First, we derive a partial differential equation the polynomial Sp,q(y) satis-
fies. For this we substitute representation (1.7) into the differential equation of
the problem (1.4)

∆y

((
c2 − |y|2

)
Sp,q

)
= −∆yRp,q (4.3)

to obtain

(
c2 − |y|2

)
∆ySp,q − 4

(
y1

∂Sp,q
∂y1

+ y2

∂Sp,q
∂y2

+ Sp,q

)
= −∆yRp,q , (4.4)

a degenerate elliptic linear partial differential equation with variable coefficients.
Second, when |y| → c, the higher order terms of (4.4) vanish, and we obtain

the following Robin boundary condition

4

(
r
∂S̊p,q(r, ϕ)

∂r
+ S̊p,q(r, ϕ)

)∣∣∣∣
r=c

= ∆(r,ϕ) R̊p,q(r, ϕ)
∣∣
r=c

, (4.5)

written in polar variables.
Third, substituting representation (4.1) or (4.2) for the polynomial Sp,q(y) on

the left-hand side of the boundary condition (4.5) we obtain a trigonometric poly-
nomial, whereas the right-hand side of (4.5) is easily reduced due to formulas (..)
to the Fourier series of function ∆yRp,q(y) restricted to S2

c (0).
Comparing the respective coefficients of both trigonometric polynomials we

easily find simple algebraic relations between the unknown coefficients of the poly-
nomial Sp,q(y) and the Fourier series of function ∆yRp,q(y) restricted to S2

c (0).
For the sake of brevity we do not derive here the proper relations and leave
this derivation to shrewd readers.

Since the Dirichlet problem (1.4) is linear it immediately follows from propo-
sition 4.1 the following

Proposition 4.2. The Fourier series of the Laplacian of the boundary polynomi-
al Rm(y), i. e. function ∆yRm(y) restricted to S2

c (0), fully determines the poly-
nomial Sm−2(y).
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5. Examples on improvements to find Sp,q(y)

For readers interested in deriving the explicit formulas for the coefficients
of polynomials Sp,q(y) we place in Table 3 the Fourier series of the Laplacians of
monomials Rp,q, where the monomials Rp,q are the same as in Table 1. The Fourier
series in Table 3 supplemented with the boundary condition (4.5) fully determine
the polynomials Sp,q in Table 2.

Table 3. The Fourier series of functions ∆xRp,q(x) restricted to S2
c (0)

No The Fourier series

1
(
∆xR7,0

)′
= +

105

4
c5 cosϕ+

105

8
c5 cos 3ϕ+

21

8
c5 cos 5ϕ

2
(
∆xR0,7

)′
= +

105

4
c5 sinϕ− 105

8
c5 sin 3ϕ+

21

8
c5 sin 5ϕ

3
(
∆xR8,0

)′
= +

35

2
c6 +

105

4
c6 cos 2ϕ+

21

2
c8 cos 4ϕ+

7

4
c6 cos 6ϕ

4
(
∆xR0,8

)′
= +

35

2
c6 − 105

4
c6 cos 2ϕ+

21

2
c8 cos 4ϕ− 7

4
c6 cos 6ϕ

5
(
∆xR3,3

)′
= +3 c4 sin 2ϕ

6
(
∆xR3,4

)′
= +

9

4
c5 cosϕ− 15

8
c5 cos 3ϕ− 3

8
c5 cos 5ϕ

7
(
∆xR4,3

)′
= +

9

4
c5 sinϕ+

15

8
c5 sin 3ϕ− 3

8
c5 sin 5ϕ

8
(
∆xR4,4

)′
= +

3

2
c6 − 3

2
c6 cos 4ϕ

9
(
∆xR3,5

)′
= +

45

16
c6 sin 2ϕ− 3

4
c8 sin 4ϕ− 7

16
c6 sin 6ϕ

10
(
∆xR5,3

)′
= +

45

16
c6 sin 2ϕ+

3

4
c8 sin 4ϕ− 7

16
c6 sin 6ϕ

11
(
∆xR3,6

)′
= +

15

8
c7 cosϕ− 9

4
c7 cos 3ϕ+

3

8
c7 cos 7ϕ

12
(
∆xR6,3

)′
= +

15

8
c7 sinϕ+

9

4
c7 sin 3ϕ− 3

8
c7 sin 7ϕ

13
(
∆xR5,5

)′
= +

15

8
c8 sin 2ϕ− 5

8
c8 sin 6ϕ

14
(
∆xR6,6

)′
= +

45

64
c10 − 15

16
c10 cos 4ϕ+

15

64
c10 cos 8ϕ
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6. Some other methods to find Sp,q

Suppose we know that representation (1.6) holds for the solution Wm(y) to
the Dirichlet problem (1.4). Then we can find polynomial Sp,q(y) using a lot of
methods different from that developed in Section 2.

First, we can use the degenerate elliptic partial differential equation (4.4).
This equation needs no boundary condition to be solved, hence, the method of
undetermined coefficients is applicable.

Second, for solving the Poisson differential equation (4.3) with zero boundary
values the Ritz method [6,7] ideally suits.

Third, for solving the above problem for the Poisson differential equation
the Green integral formula is applicable, where the Green function is given in [5].

The above methods give required polynomials through a huge bulk of computa-
tional work, contrary to the method of Section 2 or its improved version of Sec-
tion 4. In other words, the above methods are implicit ones.

7. Examples on other methods to find Sp,q

Polynomials Sp,q obtained by any method of Section 6 are fully expanded.
Some of them are placed in Table 4.

Table 4. Some fully expanded polynomials Sp,q(x)

No Sp,q(x)

1 26 S7,0 = +63x5 − 42x3y2 + 7xy4 + 56 c2x3 − 28 c2xy2 + 35 c4x

4 27 S0,8 = −x6 + 29x4y2 − 99x2y4 + 127 y6

+ 7 c2x4 − 98 c2x2y2 + 119 c2y4 − 21 c4x2 + 91 c4y2 + 35 c6

9 27 S3,5 = −8x5y + 64x3y3 + 8xy5 + 4 c2x3y + 20 c2xy3 + 12 c4xy

14 211 S6,6 = +x10 − 67x8y2 + 562x6y4 + 562x4y6 − 67x2y8 + y10

+ c2x8 − 68 c2x6y2 + 630 c2x4y4 − 68 c2x2y6 + c2y8

− 5 c4x6 + 105 c4x4y2 + 105 c4x2y4 − 5 c4y6

− 5 c6x4 + 110 c6x2y2 − 5 c6y4 + 10 c8x2 + 10 c8y2 + 10 c10
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8. Conclusions

1. An explicit solver for the Dirichlet problem for the Laplace equation in
a disk in polynomials is presented.

2. The solver essentially uses representation (1.3) for the solution to the prob-
lem but admits very high level of packing independent variables.

3. The level of packing independent variables is influenced by the number of
essential coefficients of the solution.

4. The number of essential coefficients of the solution equals the number of non-
zero Fourier coefficients of function ∆Rm restricted to the boundary of the disk,
where Rm is the boundary polynomial.
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