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We performed comparative analysis of curvature characteristics of bird eggs and used ovoid profiles from various authors, our 
own geometric profiles, and archive bird egg profiles from our database. We suggested that the possible ovoids arise by changing the 
curvature radii of the polar and lateral zones. We compared the constructed curves and curves presented in oological literature with 
the pictures of the real bird egg profiles. The volume of actual material includes 16,490 eggs from 800 species of 20 bird orders. 
Specially designed computer software had calculated the radius of curvature of real bird eggs from photos and drew out the half-
profiles presented in our article. We supposed that the asymmetrical ovoid is the most widespread geometric egg-shaped figure, 
which can easily be obtained by combination of circles. We also calculated that if the ovoid diameter were taken as a unit, then the 
radius obtuse (infundibular) pole would be equal to its half-length, lateral (side arcs) is equal two lengths, and the cloacal arch is 1–√2/2. 
From this suggestion, we concluded that the length of the ovoid is 2–√2/2 and its cloacal radius is equal to the difference between the 
length of ovoid and its diameter (rc = L–D). We analyzed the geometry of this asymmetrical oval and came to the conclusion that this 
is the basic form able to generate the derivative forms. We discovered that the centres of the arcs which form it lie on one 
basic/supporting circle, the diameter of which is equal to the ovoid diameter. All other ovoids, which have radius equal to radius of 
the infundibular zone we called the real ovoids. The changes in the radii of the lateral arcs are caused by the movement of their 
centres along a horizontal line passing through the centre of the base circle. This causes the prolongation or shortening of the ovoids. 
Sizes of cloacal arcs depended on the lateral, and their centres are placed along the vertical axis. Variability of the sizes of the 
abovementioned arcs caused the variability of form of the bird eggs. For their classification, we have proposed to divide them into 
five groups: sphere-like, circle, obtuse, droplet, and cone-shaped. Further, we separated some more groups: short, shortened, normal, 
lengthened, and long; according to the sizes of cloacal arcs – large radius, middle radius, and small radius ovoids. As a result, we have 
80 forms of real ovoids – standards which describe the varieties of bird eggs. Each of them has its own number, name, geometrical 
figure, polynomic equation, and correlations of ovoid parameters. This set of ovoids is sufficient to describe the specifics of any form 
of bird eggs.  

Keywords: bird eggs; curvature; ovoid; variability of the sizes; egg shape.  

Introduction  
 

The egg is a unique natural phenomenon, which is closely related to 
different aspects of human life. It is a food product, research object of 
ornithology and poultry breeding, and an object of leisure. Egg-shaped 
curves attract special attention in mathematics, art, architecture, philo-
sophy, and religion. Information about aspects of eggs is presented in a 
great variety of literature sources. In historical aspect, egg-shaped profiles 
are known from time of the Ancient Persians, Byzantium, and the Kievan 
Rus (Ghyka, 1979). These sketches were used for building the domes of 
the temples. Later, egg-shaped profiles were intensively used in archi-
tecture, manufacture, painting, and applied art.  

In the Renaissance, ovoid curves were mentioned in works of 
Albrecht Durer (1471–1528), Johannes Kepler (1571–1630), Galileo 
Galilei (1564–1642), Rene Descartes (1596–1650), Giovanni Cassini 
(1625–1712), Isaac Newton (1643–1727), and Maxwell James Clerk 
(1831–1879). In the ХІХ and ХХ centuries, studies of curves were 
intensively continued, resulting in a number of research papers. Some of 
these publications were dedicated to obtaing egg-shaped curves by 
combination and smooth changeover of circles arcs with different 
diameter (Erchart, 1957; Nishiyama, 1986; Dixon, 1987).  

Rosin (2004), Iwamoto (2006), and Cuadrado (2010) further deve-
loped this suggestion. Hreinsdóttir (2010), Obradović (2010), Zarrao-

nandia (2013), and Caravaca (2015) presented some mathematical ela-
borations of this theory. Nevertheless, a significant part of the publications 
was devoted to convex curves, which were received with the help of 
algebraic equations (Köller, 2000; Ferréol, 2016; Yamamotо, 2017). 
All above-mentioned researches were not related to research into real eggs 
and were mathematical searches of different egg-shaped algebraic curves. 
Description of real eggs by mathematical methods began in the second 
part of the past century. In scientific literature, there are many methods of 
constructing ovoid profile with the above-mentioned perspectives of using 
them in oology (Preston, 1953, 1968; Paganelli et al., 1974; Anderson, 
1978). Errős (1983), Todd & Smart (1984), and Myand (1988) published 
similar ideas. Later et al. (1997), Hutchinson (2000), Mattas (2001), and 
Narushin (2001) improved these ideas. Johnson et al. (2001), Führer-Nagy 
(2002), and Baker (2002) also made a significant contribution. Since the 
development of specific software, these ideas have been presented in 
Heck (2004), Bridge (2007), and Mytiai (2008). In the beginning of this 
century, egg curvature patterns remained as objects of discussion (Möller, 
2009; Francevich, 2010; Nishiyama, 2010). Some authors tried to con-
centrate on limited species (Murray et al., 2013; Avila, 2014; Mieszkalski, 
2014), while others present the results obtained from a large number of 
species (Deeming & Ruta, 2014; Nedomová & Buchar, 2014; Stoddard 
et al., 2017). The method of photographic analysis was elaborated and 
presented in Mytiai & Matsyura (2017, 2018), Deeming (2018), and 
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Biggins et al. (2018). Proceeding from the above, we were interested how 
similar the egg-shaped curves constructed by mathematicians, architects 
and builders are to the profiles of real bird eggs.  
 
Material and methods  
 

We used ovoid profiles from various authors (Dixon, 1987; Köller, 
2000; Iwamoto, 2006). We used the results of Nishiyama (2012), Mie-
szkalski (2014), Yamamotо, (2017) for comparative analysis together 
with our own geometric measurements and profiles from our database. 
To develop the geometric system of ovoid profiles, we used the figure 
of the Pythagorean "fish bubble" Vesica piscis. This figure is formed by 
the intersection of two circles with the same radius, imposed so that the 
edge of one circle passes through the center of another (Fig. 1a). Robert 
Dixonin in his “Mathographics” (1987) describes a technique for joining 
circular arcs that was typical for the XV century artist Albrecht Durer. 
Durer used this technique to design the alphabet for the printing press. 
The main idea used in Durer's technique of joining arcs of different radii is 

that the join will be smooth (i.e. the tangent lines will line up) if a straight 
line drawn through the centres of the two arcs passes through the point 
where they join. We concluded that we can obtain the coordinates of 
Descartes, Riemann, and Mobius by dividing the circles; moreover, we 
deal here with all geometric figures (Mityay et al., 2003), including the 
system of ovoids (Mityay & Matsyura, 2017). If we draw the circles in the 
centre of a figure and two circles in its opposite edges, which are 
combined with the circles surrounding them, then we get an oval. If only 
one circle is constructed on the periphery, we obtain an ovoid profile 
(marked bold in Fig. 1b). All ovoid parameters are shown in Figure 1d. 
Theoretically, the possible ovoids arise by changing the curvature radii of 
the polar and lateral zones (the direction of change is indicated by arrows).  

The curves constructed by us and the curves of the abovementioned 
authors were compared with photos of real bird egg profiles. The vo-
lume of actual material includes 16,490 eggs from 800 species of 20 
bird orders (Table 1).Specially written computer software calculated the 
radius of curvature of real bird eggs from their pictures and drew out the 
half-profiles (Fig. 2). 

 

 
Fig. 1. Construction methods and parameters of the basic egg-shaped profiles: a – Vesica piscis; b – the matrix of all forms of eggs;  

c – construction of the basic egg-shaped profile and combination of circles; d – the basic egg-shaped profile and its parameters  

  
Fig. 2. Screenshots results of computer processing of egg pictures: r1(Ic) – radius (index) of cloacal zone;  

r1(Il) – radius (index) of lateral zone; rі(Iі) – radius (index) of infundibular zone; Iel – elongation index; Icomp – index of complementarity  
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Table 1 
Raw data 

No Orders Quantity 
species clutch eggs 

1 Anseriformes   48 1,024 1,415 
2 Apodiformes     4     14     39 
3 Caprimulgiformes   14     46     61 
4 Charadriiformes 111 1,201 2,121 
5 Ciconiiformes   14   492   821 
6 Columbiformes   21   111   176 
7 Coraciiformes     5     59   250 
8 Cuculiformes   10     84     84 
9 Falconiformes   47 1,584 2,315 
10 Galliformes   26   114   446 
11 Gaviiformes     5   169   233 
12 Gruiformes   24   215   601 
13 Passeriformes 290 2,675 5,600 
14 Pelecaniformes   10   122   256 
15 Piciformes   11   180   949 
16 Podicipediformes     7   265   510 
17 Procellariiformes     7   117   117 
18 Sphenisciformes     5     29     39 
19 Strigiformes   17     92   271 
20 Struthioniformes     4     39     41 

 Total 681 8,663 16,490  . 

Table 2  
Groups of ovoids  

Group of ovoids n % 
Real ovoids   3,491 21.19 
Symmetric pseudo-ovoids     175   1.10 
Asymmetric pseudo-ovoids 12,814 77.71 

The naming of egg zones is based on Kostin (1977); the name of egg 
forms was presented according to the standards developed by Mytiai & 
Matsyura (2017) and divided into three groups (Table 2). This report 
analyzes only real ovoids, which were 21.2% from the total (n = 16,490).  
 
Results  
 

The asymmetrical ovoid is the most widespread geometric egg-
shaped figure, which can be easily obtained by combination of circles. 
If we consider the ovoid diameter as a unit, then radius obtuse (infundi-
bular) pole is equal to its half length, lateral (side arcs) is equal to two 
lengths, and the cloacal arch is 1–√2/2.  

So, the length of the ovoid is 2–√2/2 and its cloacal radius is the dif-
ference between length of the ovoid and its diameter: rc = L–D. We have 
analysed the geometry of this asymmetrical oval and come to conclusion 
that it can be the basic form, from which the others could be generated. 
We discovered that centres of the arcs which form it lie on one basic/ 
supporting circle, the diameter of which is equal to void diameter. All 
other ovoids which have radius equal to radius of the infundibular zone we 
called the real ovoids. The changes in the radii of the lateral arcs are 
caused by the movement of their centres along a horizontal line passing 
through the center of the base circle. This causes the prolongation or 
shortening of the ovoids. Sizes of cloacal arcs depended on the lateral arcs, 
and their centres are placed along the vertical axis. Variability of arc sizes 
caused the variability of form of bird eggs. We proposed to divide them 
into five groups: sphere-like, circle, obtuse, droplet and cone-shaped 
(Mytiai & Matsyura, 2017). We presented the directions of changes in the 
radii of lateral and cloacal arcs and the average configuration of these 
figures in Figure 3.  

 

 
Fig. 3. Directions of movement of centers of radii of infundibular/cloacal arcs and types of ovoids  

Further, we separated some more groups: short, shortened, normal, 
lengthened, and long; according to the sizes of cloacal arcs – large radius, 
middle radius, and small radius ovoids. As a result,we obtained 80 forms 
of real ovoids-standards, which occur between bird eggs (Mytiai & Ma-
tsyura, 2017). Each of these has its own number, name, geometrical figu-
re, equation of polynomial, and correlations of ovoid parameters. This set 
of ovoids thereof is sufficient to describe the specifics of any bird egg.  

Among the birds’ eggs, the number of real ovoids is 21.2% (n = 
16,490). They belong to 446 species (65.5%) out of 10 orders. Howe-
ver, the maximum number of these forms is found among Passerifor-
mes (61.7%) and Charadriformes (20.0%). Far fewer were determined 
in Falconiformes (6.3%), Galliformes (4.0%), Piciformes (1.8%), and 
Gruiformes (1.8%). The three other orders had about 1% of real ovoids.  

The classic egg-shaped curve was also widely presented in mathe-
matical sources (Köller, 2000; Nishiyama, 2007; Möller, 2009). Based 
on Cuadrad (2010), Petrović & Obradović (2010), Iwamoto (2011), Ca-
ravaca (2015), and Yamamoto (2016), we included this curve with 
slight variations in the standard group called typical ovoids (Fig. 4).  

Among the real ovoids (n = 3,490), the typical ovoids make up 
36.1%. Such eggs were found in 248 species of 7 bird orders. These are: 

Passeriformes (62.9%), Charadriformes (23.4%), Galliformes (6.5%), 
Gruiformes (2.4%), Piciformes (2.4%), Falconiformes (1.6%), and Cu-
culiformes (0.8%). The profile photos and patterns of the typical ovoids 
are shown in Figure 5. All other forms are the result of shortening or 
lengthening the ovoid, that should be caused by the increasing or de-
creasing the radii of the lateral and cloacal arcs. Mathematical curves of 
truncated ovоids proposed by various authors are shown in Figure 6.  

Among the above-mentioned, the most common are forms in which 
the radius of the cloacal zone is equal to half the difference between the 
length of the egg and the radius of the infundibular zone (rc = (L – 
0.5D)/2). In such forms, the edge of the cloacal ring bases on the center 
of main circle. These eggs are called obtuse medium-radius ovoids. 
Their profiles are presented in Figure 7.  

Close to the above, there are ovoids in which the edge of the cloacal 
circle lies slightly above the centre of the base circle. These ovoids were 
initially proposed by Thom (1967). The similar curves were also sug-
gested by other authors (Fig. 8). According to our classification, these 
forms are called obtuse large-radius (Fig. 9). Granvill & Cadrin (Fer-
réol, 2016) proposed a group of oval curves, in which the cloacal circle 
is located just below the centre of the base circle (Fig. 10).  



 

Regul. Mech. Biosyst., 2019, 10(1) 95 

  
Fig. 4. Typical ovoids: a – Cundy & Rollet ovoid (1989); b – classic ovoid; c – ovoid Sqrt 327 (Dixon, 1987)  

  
Fig. 5. Typical ovoids and their manifestation in the form of bird eggs: 1 – Saxicola rubetra; 2 – Sylvia atricapilla;  

3 – Carpodacus erythrinus; 4 – Turdus philomelos; 5 – Garrulus glandarius; 6 – Corvus monedula; 7 – Glareola pratincola;  
8 – Alectoris chukar; 9 – profile scheme of typical ovoids (circles – centrums of arcs, horizontally arrows – axis of centrum  

placement of lateral arcs); 10 – profile for comparison of real eggs; 11 – Larus canus; 12 – Crex crex; 13 – Falco tinnunculus;  
14 – Milvus milvus; 15 – Buteo buteo; 16 – Perdix perdix; 17 – Phasianus colchicus; 18 – Picus canus  

These shapes are called obtuse small radius, their profiles are shown 
in Figure 11. In some forms the cloacal radius is equal to the fourth part 
of the length (rc = L/4); we also determined forms in which the ratio 
between the infundibular radius and cloacal is equal to the golden 
section (so-called golden eggs).  

Among the real ovoids, obtuse ovoids make 29.5%. Such eggs were 
found in 214 species from 8 orders of birds. These are: Passeriformes 
(69.2%), Falconiformes (12.6%), Charadriformes (7.9%), Galliformes 
(4.7%), Piciformes (2.4%), Gruiformes (0.9%), Cuculiformes (0.9%), and 
Coraciiformes (0.5%). In the next group of forms, the center of cloacal 
curvature was positioned outside the base circle (Fig. 12). The averaged 
form has a cloacal radius equal to half the difference between length and 
diameter rc = (L–D)/2. These forms are called drop-shaped (Fig. 13). 

Among the real ovoids, the drop-shaped form makes up 23.5%. Such 
eggs were found in 132 species of 5 orders of birds. However, their main 
number is concentrated among two bird orders: Charadriformes (64.4%) 
and Passeriformes (26.5%). Far fewer are found in Galliformes (6.1%), 
Gruiformes (2.3%), and Sphenisciformes (0.8%).  

The following group has forms that we call cone-shaped. These 
algebraic curves are proposed by Köller (2000), Nishiyama (2012), and 
Obramovic (2013) (Fig. 14). Among the real ovoids, these forms make 
up to 10.8% and were found in 51 Charadriidae species (Fig. 15). Thus, 
it is established that there is complete adequacy between the curves, 
mathematical calcultaions, and the natural bird egg curves. The same 
adequacy exists between the shape of eggs and architectural structures, 
sewage systems, and household objects.  
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Thus, in the 1800s, the raw sewage in London swept through the 
streets and the Thames, creating unsanitary living conditions for the 
poor and a terrible smell for everyone (Webste & Wagner, 1900). 
Bazalgette was the person who designed the sewage system to make the 
city a more attractive and survivable place to live.When new sewers 
were designed for London in the last half of the 1800s, the egg-shaped 

(or oval) sewers were determined to be the best cross-section for the 
larger “combined” sewers (this design is sometimes called “English” 
because of its association with London). The design was also used in 
Paris and for many early sewers in the United States (Fig. 16). Tubes of 
the ovoid form are still in use nowadays (Fig. 17). Technical drawings 
in these cases are also not the result of the study of bird eggs.  

 
 

  
 

Fig. 6. Obtuse ovoids with an average radius: a – Petrović, Obradović ovoid (2000), b – Köllerovoid (2000), c – Caravaca ovoid (2015)  
 

  
Fig. 7. Profiles of obtuse ovoids (medium radius) eggs: 1 – Hieraaetus pennatus; 2 – Falco tinnunculus; 3 – Jynx torquilla;  
4 – Coracias garrulus; 5 – Furnarius rufus; 6 – Lanius collurio; 7 – Pernis apivorus; 8 – Perdix perdix; 9 – profile scheme  

of typical ovoids (circles – centrums of arcs, horizontally arrows – axis of centrum placement of lateral arcs); 10 – control profile  
of real eggs; 11 – Buteo rufinus; 12 – Erithacus rubecula; 13 – Dendrocopos major; 14 – Phylloscopus sibilatrix;  

15 – Certhia familiaris; 16 – Numida meleagris; 17 – Buteo buteo; 18 – Dendrocopos minor  
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Fig. 8. Schemes of ovoids: a – Thom ovoid (Thom, 1967); b – ovoid 3, 4, 5 (Dixon, 1987); c – ovoid A. de Quay (Ferréol, 2016)  

 
Fig. 9. Obtuse ovoids (large radius): 1 – Aquila pomarina; 2 – Falco tinnunculus; 3 – Milvus migrans; 4 – Falco vespertinus;  

5 – Circus pуgargus; 6 – Falco cherrug; 7 – Dendrocopos major; 8 – Jynx torquilla; 9 – profile scheme of obtuse ovoids  
(circles – centrums of arcs, horizontally arrows – axis of centrum placement of lateral arcs); 10 – control profile for comparison  

of real eggs; 11 – Picus canus; 12 – Phasianus colchicus; 13 – Panurus biarmicus; 14 – Phylloscopus sibilatrix;  
15 – Sylvia atricapilla; 16 – Saxicola torquata; 17 – Lanius collurio; 18 – Phylloscopus collybitа  

Discussion  
 

A much debated problem in current ornithology is the adequate de-
scription of eggs and the relationship between their shapes and incuba-
tion process under various environmental conditions, development 
strategies, directions of bird evolution and phylogeny. The egg, as a 
stage of ontogenesis, contains a significant amount of information that 
could be interpreted for predicting the incubation success and offspring 
quality for various bird species. However, many methods describing the 
shape of bird eggs do not properly consider the peculiarities of the ovoid 

shape, since the closed loop does not allow discovery of the egg’s 
constituent parts.  

In this regard, the composite ovoid method we use is more 
constructive, because here the egg profile is considered as a set of arcs 
of different radii, which smoothly merge into each other. The minimum 
number of them is three and this allows us to describe most eggs with 
acceptable accuracy. Besides, a large number of arcs set up a limited 
number of forms. As a result there is a piecewise continuous curve, 
whose rotation around its longitudinal axis forms a closed ovoid profile. 
Closing the contour leads to the appearance of two parameters: length 
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(L) and diameter (D). The radii of the abovementioned arcs act as 
independent parameters. Each of them may arbitrarily change and lead 
to a non-linear change in L and D that gives rise to a great variety of 
forms. We are hardly ever able to describe these forms because of their 
nonlinearity.  

Usage of digital photography and computer processing has signifi-
cantly simplified the description of eggs by various polynomial equati-
ons (Todd & Smart, 1984; Biggins et al., 2018) or by geometric mor-
phometry (Deeming & Ruta, 2014). These methods are accurate 
enough; however, they are less suitable for uncovering the morpholo-
gical essence of the egg shape, since the coefficients of various equa-
tions reveal the functional relationship between the elements of the 
curve and the physical essence of the egg. Moreover, they are less suita-

ble for the classification of egg forms. In this regard, our composite 
ovoid method is more constructive, which is evidenced by the system of 
standards of egg forms (Mytiai & Matsyura, 2017).  

Descriptive indices of egg shapes and their classification is quite 
common in modern ornithology. Biggins et al. (2018) carried out detai-
led and comprehensive analysis of this method. Three indices proposed 
by Preston (1968) – elongation, asymmetry, and bicone are still the 
most applicable. As regards the names and classification of forms, there 
are even more contradictions connected with indices. Until now, there 
are no generally accepted egg names and those used nowadays are not 
geometrically correct and informative (Petrović et al., 2014). The names 
of egg forms that are traditionally used in literature (spherical, oval, 
elliptical, bicone, pyriform) have many disadvantages.  

 
 

  
Fig. 10. Schemes of ovoids: a – Granville ovoid (Ferréol, 2016); b – Cardi novoid (Ferréol, 2016); c – gold ovoid (Dixon, 1987)  

 

  
Fig. 11. Profiles of obtuse ovoids (small radius): 1 – Jynx torquilla; 2 – Dendrocopos major; 3 – Picus viridis; 4 – Corvus monedula;  

5 – Motacilla flava; 6 – Phasianus colchicus; 7 – Luscinia luscinia; 8, 10 – profile scheme of obtuse ovoids small radius  
(circles – centrums of arcs, horizontally arrows – axis of centrum placement of lateral arcs); 9, 11 – control profiles  

for comparison of real eggs; 12 – Turdus philomelos; 13 – Anas clypeata; 14 – Larus melanocephalus;  
15 – Falco cherrug; 16 – Riparia riparia; 17 – Perdix perdix; 18 – Emberiza spodocephala  
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Fig. 12. Schemes of ovoids: a – Moss ovoid; b – Antonio Castilla ovoid (Cuarado, 2010); c – ovoid in pentagon (Ei-formen, 2000)  

 

  
Fig. 13. Profiles of drop-shaped ovoids: 1 – Sterna albifrons; 2 – Riparia riparia; 3 – Chlidonias hybrida; 4 – Corvus corone;  

5 – Perdix perdix; 6 – Turnix tanki; 7 – Recurvirostra avosetta; 8 – Chlidonias hybrida; 9 – profile scheme of drop-shaped ovoids  
(circles – centrums of arcs, horizontally arrows – axis of centrum placement of lateral arcs); 10 – control profile for comparison of real eggs; 

11 – ovoid Antonio Castilla; 12 – Gallinago gallinago; 13 – Calidris temminckii; 14 – Coturnix coturnix; 15 – Larus melanocephalus;  
16 – Lophortyx californicus; 17 – Alectoris chukar; 18 – Charadrius dubius  

In most cases, the ovoid is called oval, but this is not entirely cor-
rect: oval is a symmetrical figure whereas ovoid is an asymmetric one. 
In fact, birds have no spherical eggs. The names bicone and pyriform 
are also uninformative. Recently, the number of works devoted to the 
quantitative and functional assessment of egg shape has increased. Big-
gins et al. (2018) suggested accurately quantifying the shape of birds’ 
eggs. They carried out a fundamental analysis of common indices and 
considered the proper use of some three indices to characterize the forms. 
Anyway, they did not propose names and their classification of eggs. 
Since 2010, a significant number of articles have considered the relati-
onship between egg form and its functional value. Stoddard et al. (2017) 
suggested the type of flight is a determining factor of egg shape; 
Deeming (2018) considered the inner composition of the egg as a core 

factor of egg shape; Birkhead et al. (2018) supposed that the pyriform 
egg shape can be adapted to breeding on sloping ledges. There still no 
names for the egg forms in these papers.  

This situation virtually eliminates the possibility of comparing data 
from various authors. As we noted earlier (Mytiai & Matsyura, 2017), 
the solution is possible by combining three aspects related to the egg 
form: name, geometric figure, and quantitative characteristic. We imple-
mented this in our system of egg form standards. Unfortunately, we still 
do not have enough feedback from ornithologists. In this regard, here 
we give a more detailed description concerning the use of the standards’ 
system.  

As we suggested before, the standard is a numbered cell with 
assigned name, geometric shape, and quantitative indicators of the egg 
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shape. We united the entire set of forms into a single system, and the 
egg figures are derived from the basic (classical, typical, and present) 
ovoid by topological transformation. Our classification is based on a 
comparison of the curvature sizes of egg zones.  

We proposed to divide the egg forms into symmetric (ellipsoids and 
ovaloids) and asymmetric (typical ovoids and pseudoovoids) by equality 
of polar zones (infundural and cloacal). The radius of the infundibular 
zone in typical ovoid forms is equal to half the diameter.  

 

  
Fig. 14. Cone-shaped ovoids:  

a – Jacobs ovoid (Köller, 2000); b – Nishiyama ovoid (2012); c – Hugelschaffer’s ovoid (Petrović & Obradović, 2010)  

  
Fig. 15. Profiles of cone-shaped ovoids: 1 – Himantopus himantopus; 2 – Tringa nebularia; 3 – Tringa totanus;  

4 – Actitis hypoleucos; 5 – Limosa limosa; 6 – Uria sp.; 7–10 – profile scheme of cone-shaped ovoids (circles – centrums of arcs,  
horizontally arrows – axis of centrum placement of lateral arcs); 11 – Numenius arquata; 12 – Tringa totanus; 13–16 – Uria sp.  
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Fig. 16. Drawing of egg-shaped drain in the beginning of XX century (Webste & Wagner, 1900)  

  
Fig. 17. Egg-shaped pipe drawings (Regueiro-Picallo et al., 2016)  

We also suggested dividing the forms into sphere-like, roundish, 
obtuse, typical, drop-shaped and cone-shaped according to the location 
of the upper edge of the cloacal circle. We can divide these forms into 
short, short cut, normal, elongated, and long by the size of the lateral 
arcs. Finally, we assign the form names according to the size of the egg 
cloacal radius: large-radius, medium-radius, and small-radius. As a re-
sult, we obtain 80 standards, each of which has its own name, geometric 
shape, and quantitative parameters. For a basic ovoid, it looks like typi-
cal – normal – medium (t – n – m: 0.500 – 1.293 – 0.293). These num-
bers are indices of the infundibular (Ii) form.  

We considered this method is relevant for the standards system 
since the topological transformation of the basic ovoid did not require 
any subjective input. The next step was to compare the figures obtained 
geometrically with the real forms of bird eggs, which led to good results 
as we presented above. We also identified the similarity of egg profiles 
with algebraic curves unrelated to ornithology. Finally, we found such 
coincidences in art, architecture, and even in profiles of water pipes 
(Petrovic et al., 2011). These facts proves the relevance of the ovoid form 
as a topologically transformed sphere and, therefore, the parameters of 
these transformations can be effectively used in the description of bird 
eggs and other objects of nature that have the same shape.  
 
Conclusions  
 

For centuries, mathematicians have developed a variety of egg-sha-
ped curves based on algebraic equations. Architects and hydraulic engi-
neers built various designs based on drawings. Artists have created 
various forms of eggs in the Faberge style. Not all of them were ornitho-
logists studying the actual forms of eggs. On the other hand, birds have 
produced and incubated different forms of eggs that are unknown in 
mathematics, architecture, or even art. This circumstance shows that the 
ovoid form is the manifestation of the general morphogenesis law, 
which is revealed in mental and practical human activity, the form of 
planetary orbits, the form of bird and animal eggs, the egg-shaped body 
of animals, plants and their organs. All these aspects lead to the idea of a 
new look at the evolutionary process and the regularities of its manifes-
tation. Moreover, the algorithm of scientific research also changes. Until 
now, the core pattern included raw data accumulation, its generalization 
and search for regularities. The new algorithm deals with a known ge-

neral pattern and then we try to determine its manifestation in a particu-
lar natural object. From the very beginning, we know the parameters of 
the object and the possible ways of its variability. An excellent example 
is the Pythagorean figure Vesica piscis, from which all the egg forms 
are displayed.  

As for the egg forms, it should be noted that the system of standards 
proposed by Mytiai & Matsyura (2017) is a set of logical parameters 
that are interrelated and interchangeable. This system allows us to pre-
dict forms and their parameters to meet the optimal requirements of the 
incubation process.  
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