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In modern conditions, nanomaterials, especially nanoparticles of metals and nonmetals, are increasingly used in various 
industries. Due to their unique properties, in particular, the ability of nanoparticles to exhibit an enzyme-like effect they are 
widely used in biology, medicine, biotechnology, the food industry and agriculture. Important advantages of nanoparticles are 
their size, which enables specific properties to be present: their large surface area, the ability to transfer molecules and the ability 
to protect them from degradation and release over a long time, the location of action and the specificity of interaction with 
biological structures. Nanoparticles play a special role in the processes of neutralizing the active forms of oxygen. It has been 
established that a number of nanoparticles, in particular, Fe, Mn, Zn, Ce, Si and Se oxides, have an enzyme-like activity 
mimicking that of some enzymes. By changing the degree of oxidation, these particles can regenerate and continuously catalyze 
the reaction of neutralizing superoxide anion radicals, thus fulfilling the function of SOD and being the first link in protecting 
tissues and cells from oxidative stress in physiological and pathological conditions. It is proved that nanoparticles Mn3O4, Fe3O4, 
Co3O4, CeO2, LaCoO3 and other elements can effectively dispose of hydrogen peroxide and other peroxides, showing catalase-
like and peroxidase-like activity. Nanozymes are characterized that exhibit the activity of oxidases, peroxidases and phosphatase. 
The prospect of using mimetics for complex in vitro analyzes of high-sensitivity biomarker disease detection is shown. 
The possibility of effective multi-use of nanoparticles as antioxidants is indicated. There are good prospects for further research 
on properties and the use of polyfunctional particles that are easily synthesized, reliable and inexpensive. More work is needed to 
determine the interaction of enzymomimetics with biological molecules such as proteins, carbohydrates and lipids, and also to 
take into account the peculiarities of their metabolism, clearance, degradation, biocompatibility and side effects, since individual 
nanoparticles have the potential to be deposited in separate organs.  

Keywords: mimetics; superoxide dismutase; catalase; oxidase; peroxidase; phosphatase.  
 

Introduction  
 

The 21st century is considered to be the period of global usage of 
nanotechnology, which deals with a set of theoretically sound and prac-
tical methods of research, analysis and synthesis, as well as the produc-
tion and use of products with a predictable atomic structure through 
controlled manipulation of individual atoms and molecules (Gordon et al., 
2007). Due to the extremely small dimensions (up to 100 nm) and the 
large surface area per unit volume, nanomaterials have specific chemi-
cal, physical and biological properties that are useful for many new 
applications. Many nanoparticles (NPs) have been found to exhibit enzy-
matic activity and are potentially capable of being used in various indus-
tries, particularly in the food industry, pharmacy, and biotechnology. The 
creation of artificial enzymes simulating the complexity and functioning 
of natural systems is one of the greatest achievements of the last two 
decades.  
 
Use of nanoparticles  
 

Rapid development of nanotechnology around the world has created 
numerous catalytically active nanomaterials (Cormode et al., 2018). 
Currently, nanomaterials of different origin are used in biology, medi-
cine and biotechnology (Fig. 1). This category includes nanomaterials 

with enzyme-mimetic properties, such as nanoparticles of metals and 
nonmetals, their oxides, magnetic nanoparticles, liposomes, carbon and 
polymer nanomaterials. They are characterized as a potential alternative 
to natural enzymes and are widely used in many industries such as 
immunoassay, biosensorica, pharmaceutical processes, oncotherapy, the 
food industry, ecology, etc. (Chen et al., 2012, 2014; Fu, 2014; Lu et al., 
2015; Li & Zhang, 2016). This demonstrates the great importance and 
commercial interest of using nanomaterials as enzyme mimetics. Com-
pared to enzymes of natural origin, agonists or mimetics on the basis of 
nanomaterials can change catalytic activity, are stable in harsh conditions, 
their production is relatively easy and economically justified (Cheng et al., 
2015). The cyclic action of nanoparticles and the possibility of recovery 
without significant loss in subsequent cycles of catalytic activity makes 
them unique compounds (Wei & Wang, 2013). In addition, the surface of 
nanomaterials, unlike natural enzymes which have only one active site in a 
molecule, may have more catalytic centers (Liu et al., 2015; Gao et al., 
2017). These enzyme mimetics are of great importance in practice (Gor-
don et al., 2007; Wei & Wang, 2013; Lin et al., 2014; Xu et al., 2014).  

The basic requirements for nanoparticles regarding their use in bio-
logy and medicine are low toxicity or absence of it, high biocompati-
bility, biodegradational property and the ability to be removed from the 
organism naturally (Fu, 2014; Kozik et al., 2016; Bityutskyy et al., 
2017; Chekman et al., 2017).  
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The catalytic activity of nanoparticles and the ability to inactivate 
active forms of oxygen can be used to simulate the catalytic activity of 
natural enzymes. Different nanoparticles have been studied to date, and 
their enzymomimetic activity, in particular superoxide dismutase, oxidase-
like, peroxidase-like, catalase- and phosphatase-like, have been determi-
ned (He et al., 2014; Cormode et al., 2018).  

 

 
Fig. 1. Nanomaterials used in biology and medicine  

 
General characteristics of mimetics  
 

Agonists or mimetics are compounds that imitate the action of other 
substances, being similar to the ones formed in the organism (enzymes, 
hormones, mediators). Cell receptors react to mimetics as a substance 
which they interact with (Singh, 2016). According to physical and che-
mical properties, mimetics are similar to natural signaling molecules, 
but they have a number of important qualities (Fig. 2).  

 
Fig. 2. Properties of mimetic enzymes  

They bind to molecular receptors not intended for them, and substi-
tute natural regulatory substances. Mimetics can act more strongly or 
weakly than the compounds that they replace, that is, their impact 
varies. They can compete with natural signaling molecules for binding 
to receptors (by concentration and affinity). The period of functioning of 
the mimetics in the unchanged state of the organism and the time of 
binding to the receptors are different from natural compounds. 
Formation in the body of its own regulatory substances due to the 
feedback between the concentration of regulators and their production is 
conditioned by the presence of mimetics (Chekman et al., 2017).  

The term "nanozymes" was introduced for nanomaterials with their 
own enzyme-like activity to distinguish these nanocomplexes from 
immobilized enzymes (Wei & Wang, 2013). The development of high-
ly effective non-protein analogues of enzymes is an relevant task for 
modern biology, biotechnology, medicine and agriculture (Dong et al., 
2012; Bityutskyy et al., 2017). Currently, several types of artificial enzy-
mes have been created to replace natural analogues (Kozik et al., 2016; 
Nelson et al., 2016; Wang et al., 2017).  

Natural enzymes and mimetics have many properties in common: 
they accelerate the chemical reactions and can regenerate (Kozik et al., 
2016; Chekman et al., 2017). Natural enzymes, unlike the artificial ones, 

require special environmental conditions, in particular a certain tempe-
rature and pH (Grulke et al., 2014). Such unique properties of nanoma-
terials can be used for the prevention, diagnosis and treatment of disea-
ses. Many nanomaterials have powerful antioxidant properties that can 
potentially act as inhibitors of active forms of oxygen. However, it has 
also been proven that certain nanomaterials have prooxidant properties 
that contribute to the formation of active forms of oxygen, which can 
lead to the formation of oxidative stress, which is known to promote the 
development of various pathologies (Amani et al., 2017; Sims et al., 
2017). One of the important features of nanoenzymes compared to the 
natural enzymes and other mimetics is that their activity can be regula-
ted by altering the structure, size, surface modification, introduction of 
protective coverings, etc. (Liu et al., 2015; Kozik et al., 2016; Fa et al., 
2018). A relationship between catalytic activity, therapeutic efficiency 
and biocompatibility of particular mimetics has been determined (Cor-
mode et al., 2018). It was found that the smaller are the particles, the 
higher is their catalytic activity. This phenomenon is conditioned by the 
fact that smaller nanoparticles have a larger surface area for interaction 
with the substrate. This indicates the possibility of synthesizing nano-
particles with a particular activity and properties (Gao et al., 2017). The 
enzyme-mimetic activity of nanomaterials is influenced by several fac-
tors, in particular, their chemical composition, surface charge, particle 
size, and surface covering (Sharpe et al., 2011; Samuel et al., 2014; Ver-
ma, 2014; Sandhir et al., 2015; Cîrcu et al., 2016; Shah et al., 2017). 
However, both the positive and the toxic effects of NPs may be differ-
rent, since the synthesis method, the choice of stabilizers which cover 
the particles, can lead to a different biological effect (Estevez et al., 2017). 
It is important to understand which physical-chemical properties corre-
late with biological activity, and are critical for determining the condi-
tions that contribute to the positive effect and for determining the 
circumstances which lead to formation of toxic properties.  

There is a prospect of using nanomaterials for medical and indust-
rial purposes (Armstrong et al., 2013; Sandhir et al., 2015). It is believed 
that their significant activity provides more effective neutralization of 
various types of active forms of oxygen (Sandhir et al., 2015). Recently, 
antioxidant activity was determined for various metallic nanocomposi-
tes such as gold (Esumi et al., 2003; BarathManiKanth et al., 2010), 
platinum (Kajita et al., 2007; Kim et al., 2008; Moglianetti et al., 2016), 
iron (Paul et al., 2009; Szekeres et al., 2014; Toth et al., 2014; Shah 
et al., 2017), nickel (Saikia et al., 2010), cerium (Kim et al., 2012) and 
yttrium (Schubert et al., 2006). Nanoparticles (NPs) of metal oxides are 
intensively studied (Kozik et al., 2016; Tsekhmistrenko et al., 2018). 
They are successfully used in the treatment of a number of pathologies, 
have high colloidal resistance and biocompatibility (Grillone et al., 2017).  

Nanoparticles with their antioxidant activity conditioned by the ability 
to exhibit enzyme-mimetic action, can be promising therapeutic agents 
that can be used for targeted drug delivery (Morry et al., 2017). Howe-
ver, with nanoparticles, one should take into account such issues as 
metabolism, clearance, degradation, biocompatibility and side effects, 
since individual nanoparticles have the potential for prolonged mainte-
nance in the organs, in particular, the liver and spleen (Cormode et al., 
2018). The interaction of nanoparticles with the local environment plays an 
important role in their distribution and long-term stability (Dhall et al., 2017).  
 
Nanomaterials as SOD mimetics  
 

Superoxide dismutase is an enzyme that functions for the catalytic 
conversion of a superoxide radical to oxygen and hydrogen peroxide. 
The catalytically active metal of this enzyme can be Cu, Fe, Mn.  

A superoxide radical which is formed predominantly in mitochond-
ria and, when protons are added is capable of being converted into 
hydroperoxide (Fig. 3), is one of the most destructive forms of oxygen 
(Lushchak, 2015; Wang et al., 2017). It is known that SOD inactivates 
superoxide anion in two stages with formation of hydrogen peroxide 
and oxygen (Shin et al., 2009). In this case, the general reaction of 
superoxide anion dismutation for nanoparticles also includes two stages 
(Korsvik et al., 2007).  

SOD-like activity is typical for various metal oxide nanoparticles, 
in particular nano-TiO2 (Zheng et al., 2017), ZnO (Li et al., 2018), 
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Fe3O4 (Khedri et al., 2018), NiO-NPs (Faisal et al., 2013), Mn3O4 (Yao 
et al., 2018), LaCoO3 (Wang et al., 2017), CeNPs (Batinić-Haberle et al., 
2010; Heckert et al., 2008), Pt (Wei & Wang, 2013), Au (Lin et al., 
2014) and nonmetals: SiO2 (Farhangi-Abriz et al., 2018; Soares et al., 
2018) and Se (Guo et al. 2016). These mimetics provide considerable 
interest, as they are characterized by increased stability, multifunction-
nality and regulated activity.  

 
Fig. 3. Enzyme-like properties of nanomaterials:  

TMB (3,3,5,5-tetramethylbenzidine), DOPA 
(dihydroxyphenylalanine) (adopted from Singh, 2017)  

One of the first superoxide dismutase activities determined was for 
cerium dioxide nanoparticles (Korsvik et al., 2007; Singh, 2016). In the 
case of superoxide anion dismutration, the formation of hydrogen peroxi-
de and transitional compound – cerium hydroperoxide Се(ООН)(ОН)3 
on the surface of the nanodispersed cerium dioxide occurs, ie, three 
reactions actually occur (Batinić-Haberle et al., 2010):  
Oxidation of О2

– – ē → О2;  
Restoration of О2– + ē + 2Н+ → Н2О2;  
Oxidation-reduction Се3+ + 4Н2О↔ Се(ОН)4 + 4Н++ ē.  

The treatment of cerium nanoparticles with Н2О2 causes a complete 
loss of SOD-like activity, but after a certain period of time, the activity 
is restored, which confirms the process of spontaneous regeneration of 
the nanoparticle surface (in relation to oxygen non-stoichiometry) and 
recovery to trivalent cerium (Gil et al., 2017; Baldim et al., 2018). The 
activity of nanoparticles depends on their size. NPs, the size of which is 
3–5 nm, more intensively inactivate superoxide anion than larger nano-
particles (5–8 nm). The effectiveness of nanocerium to act as a SOD 
mimetic is proportional to the concentration of Ce3+ ions on the surface 
of particles (Nelson et al., 2016). The presence of other ions, in particu-
lar titanium ions, inhibits this activity (Zhu et al., 2012). SOD-like acti-
vity of nanoparticles depends on the ionic composition of the solution 
(McCormack et al., 2014). During the action of phosphate ions, phos-
phorylation of the surface of particles occurs, which reduces their ability 
to manifest the functions of SOD and catalase.  
 
Nanomaterials as catalase mimetics  
 

Along with superoxide radionuclide, hydrogen peroxide is also an 
active form of oxygen that is neutralized due to catalase. It was determi-
ned that a number of nanoparticles effectively protect the cells and 
tissues from the toxic effects of Н2О2 (Grinko et al., 2015; Wang et al., 
2017) and other peroxides (Sun et al., 2017).  

Nanoparticles of Mn3O4 (Yao et al., 2018), Fe3O4, Co3O4 and CeO2 
(Wei & Wang, 2013), LaCoO3 (Wang et al., 2017), NiO-NPs (Faisal 
et al., 2013), Au (Lin et al., 2014) simulate the activity of catalase. In con-
ditions of physiological reactions, including the substrate, the optimal 
values of pH and temperature, some nanoparticles, particularly of 
ferrum oxide, demonstrate catalase- and peroxidase-like activity (Gao et al., 
2017). The Fe2O3 and Fe3O4 nanoparticles decompose Н2О2 in a neutral 
and alkaline medium, but it was found that Fe3O4 was characterized by 
higher catalase mimetic activity. Similarly to peroxidase-like activity, 
the pH range is essential in the effectiveness of this reaction (Chen et al., 
2012; Gao et al., 2017). Singh et al. (2017) reported that the ability of 

graphenes to simulate the catalase function at pH > 7.2. The mechanism 
of mimetic action of nanoparticles is complex and remains incompletely 
studied. Grinko et al. (2015) mention that the process of decomposition 
of Н2О2 by nanoparticles is similar to the mechanism of catalase acti-
vity. The intensity of the catalase-mimetic activity of nanoparticles of 
transition metals, in particular cerium, is conditioned by the number of 
ions of trivalent Ce on their surface (Das et al., 2013; Nelson et al., 
2016; Yang et al., 2016). The reactivity of hydrogen peroxide is affected 
by the size of nanoparticles and surface ligands (Lee et al., 2013; Gil et al., 
2017). Small СеО2 nanoparticles, and those containing more oxide, 
exhibit increased reactivity to Н2О2. Reaction of the decomposition is 
not hindered by the surface ligand. Concentrations of Ce3+ ions on the 
surface of СеО2 nanoparticles have a proportional effect on their 
catalase-like activity (Nelson et al., 2016).  

The possibility of effective use and reuse of СеО2 nanoparticles as 
an antioxidant has been proved. Such effect occurs due to the fact that at 
first the Се3+ ions located on the surface of nanoparticles, are oxidized 
with hydrogen peroxide, forming Се4+.  

At the same time, Н2О2 is irreversibly adsorbed on the surface of 
hydrated Се4+ ions, forming cerium perhydroxide. Perhydroxide is de-
composed with the formation of oxygen. After using all of the hydrogen 
peroxide in the system, part of the quaternary cerium ions due to the 
restoration (recovery) of the crystalline lattice of the nanoparticle returns 
to the initial Се3+ state (Celardo et al., 2011; Grinko et al., 2015; Kozik 
et al., 2016). These processes are possible due to the occurrence of oxygen 
vacancies which contribute to the formation of oxygen non-stoichiometry 
and increase in the number of cerium atoms with the III degree of 
oxidation. The set of processes which occurs on the surface of cerium 
nanoparticles can be represented in the form of a scheme:  

NP-Ce3+ + H2O2 → NP-Се4+=О + H2O,  
NP-Се4+=О + H2O2→ NP-Се3+ + H2O + O2.  

Ions of various metals can modify the catalase-like activity of nano-
particles (Tsai et al., 2007). Therefore, in the case of doping into a cry-
stalline lattice of cerium dioxide of zirconium ions, there was observed 
the activation of the decomposition of hydrogen peroxide, which was 
directly proportional to the molar Zr/Ce ratio. Celardo et al. (2011) men-
tioned the opposite effect after introducing Samarium ions into the 
crystalline lattice of CeNPs. The authors observed a monotonic decrea-
se in the speed of decomposition of hydrogen peroxide, which depen-
ded on the content of Samaria.  

It was determined that nanopolyhedrons with a high concentration 
of Ce4+ ions contributed to the mimetic activity of catalase, while nano-
tubes and nanopowders with high concentration of Ce3+ ions increased 
the mimetic activity of SOD (Naganuma, 2017). These results should 
be used to construct nanoparticles aimed at enhancing enzyme mimetic 
activity for therapeutic purposes. It was determined that biomimetic 
artificial enzymes based on antioxidant CeO2 nanoparticles become 
luminescent during their Eu3+ doping (Pratsinis et al., 2017).  
 
Nanomaterials as oxidase mimetics  
 

Over the recent decades, the enzyme-like properties of nanomate-
rials have been widely studied, but for the most part, attention has been 
paid to SOD-like, peroxidase- and catalase-like activity of these nano-
materials. Now, research is becoming focused on nanomaterials with 
oxidase-like properties.  

Oxidases are enzymes from the oxidoreductase class, which cataly-
ze the oxidation-recovery reaction, which includes molecular oxygen as 
an acceptor of electrons. In the course of reactions which are catalyzed 
by oxidase, the substrate oxidizes by molecular oxygen, forming water, 
hydrogen peroxide or free oxygen radicals (Singh, 2016). These enzy-
mes catalyze a number of reactions:  

Glucose + O2 → Gluconic acid + H2O2 (Glucose oxidase)  
Galactose + O2 → 1,6-Diadehyde + H2O2 (Galactose oxidase)  

Alcohol + O2 → Aldehyde + H2O2 (Alcohol oxidase)  
Cholesterol + O2 → Cholesteon + H2O2 (Cholesterol oxidase)  

Choline → Betaine + H2O2 (Choline oxidase)  
Recently, research has increasingly focussed on the oxidase-mimetic 

activity of nanoparticles. The studies by Cao et al. (2017) revealed that 
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ruthenium nanoparticles (Ru) exhibit their own oxidase activity, cataly-
zing the oxidation of tetramethylbenzidine (TMB) and sodium L-ascor-
bate with dissolved oxygen. Similar activity was demonstrated by Pt 
nanoparticles (Deng et al., 2017), Au (He et al., 2011), Ir (Cui et al., 
2017), CoFe2O4 (Zhang et al., 2013), ZnFe2O4 (Su et al., 2012), MnO2 
(Yan et al., 2017), CeO2 (Dalapati, 2017; Estevez et al., 2017), NiCo2O4 
(Song et al., 2018), Se (Guo et al., 2016) and other metals and compo-
sites. It was determined that the maximum mimetic activity depends on 
particular physical parameters. Thus, the nanoparticles of Se exhibited 
optimal catalytic activity at pH 4 and 30 °C, and the oxidase-like activity 
was higher as the concentrations increased and the size reduced (Guo 
et al., 2016). The maximum activity of iridium nanoparticles (IrNP) which 
were synthesized using sodium citrate and NaBH4, occured at their 
average diameter of 2.5 nm (Cui et al., 2017). Chen et al. (2017) repor-
ted the first attempt of using graphene nanoparticles (GQD/AgNP 
hybrids). These NPs demonstrate high oxidase activity and remained 
stable in neutral media at temperature of up to 60 °C. The doping of 
CeO2 nanoparticles by titanium caused no reduction in their oxidase 
mimetic activity, but was accompanied by a change in the shape of the 
spherical nanostructure (Zhu et al., 2012).  
 
Nanomaterials as peroxidase mimetics  
 

Peroxidase is an enzyme that catalyzes the oxidation of polyphe-
nols and some aromatic amines with oxygen, hydrogen peroxide or or-
ganic peroxides. Peroxidase forms a complex compound with hydrogen 
peroxide, resulting in peroxide being activated and becoming able to act 
as an acceptor of hydrogen (Pandey et al., 2017).  

2RH + H2O2 → 2R + 2H2O.  
Peroxidases, as a cofactor in active centers, contain gem, or redox-

active cysteine or selenium (van Bloois et al., 2010). There are several 
types of peroxidases, such as glutathione peroxidase, myeloperoxidase, 
haloperoxidase, lactoperoxidase, etc. (Pandey et al., 2017).  

Since 2007, when the enzyme-like peroxidase activity of Fe3O4 
nanoparticles was first recorded, over 40 nanomaterials have been iden-
tified (Jiang et al., 2018). It was determined that nanomaterials are cha-
racterized by peroxidase activity, including high stability and low cost 
of synthesis (He et al., 2014; Singh, 2016).  

Peroxidation activity is characteristic for Co3O4 nanoparticles (Jia 
et al., 2016), Cu2O (Chen et al., 2012; Guo et al., 2017), FeS (Dutta et al., 
2012), CeO2 (Sun et al., 2017), Au/CeO2 (Bhagat et al., 2018), CoFe2O4 
(Fan & Huang, 2012), BiFeO3 (Luo et al., 2010), MnFe2O4 (Vernekar, 
et al., 2016), CdS (Garai-Ibabe et al., 2014), FeSe (Dutta et al., 2012), 
FeTe (Jiang et al., 2013), rhodium (Choleva et al., 2018), ZnFe2O4 
(Zhao et al., 2013), graphene oxide (Vineh et al., 2017), fullerene (Voei-
kov & Yablonskaya, 2015) and carbon nanotubes (Wang et al., 2014). 
This allows them to be applied for immunoassay, glucose detection, 
protection against free radicals, etc. Significant enzymic activity of such 
nanoparticles (in the presence of the nucleus and the shell) is maintained 
at extreme values of pH (2–11) and high temperature (up to 90 °C), 
which indicates their superiority over natural enzymes.  

Antioxidants based on selenium and tellurium can act as mimetics 
of glutathione peroxidase, can reduce oxidative stress during inflamma-
tory processes and other pathological conditions (Huang et al., 2014; Lu 
et al., 2017; Hosnedlova et al., 2018). Nano-Se has a better antioxidant 
effect than other chemical forms of selenium, at the same time reducing 
the risk of its toxicity (Wang et al., 2007). The antioxidant properties of 
SeNPs nanoparticles are more effective compared to other selenium 
compounds and less toxic than selenomethionine (SeMet).  

The internal triple enzyme-mimetic activity of nickel-palladium nano-
particles (NiPd HNPs) (Wang et al., 2016), LaCoO3 was also studied 
(Wang et al., 2017) and V6O13 (Li et al., 2018). The multimimetic par-
ticles of NiPd and V6O13 exhibit oxidase-like, peroxidase-like and cata-
lase-like activity, are reliable, inexpensive and easily synthesized. On the 
basis of oxidase-like and peroxidase-like activity, a colorimetric biosen-
sor was developed to detect glutathione and a fluorescence system for 
the detection of Н2О2 and glucose. Recently, there was discovered the 
"hidden talent" of gold to exhibit mimetic activity (Lin et al., 2014). 
Gold nanoparticles, similarly to the multimimetics, were observed simu-

lating peroxidase, nucleases, esterases, glucose oxidases, catalase and 
superoxide dismutase. The authors mention that these enzyme-like cha-
racteristics are conditioned by nanogold itself or functional groups pre-
sent in the surrounding monolayer.  

Zhao et al. (2018) for the first time reported the construction of 
mesoporous nanostructures based on Co3O4 for the dispersion of cata-
lytically active sites for the purpose of doping iron nanoparticles (FeNP). 
Composites (FeNP @ Co3O4 HNCs) have high peroxidase activity, 
which is significantly higher compared to iron nanoparticles (FeNP) and 
Co3O4. The high catalytic activity of FeNP @ Co3O4 nanoparticles occurs 
due to its porous-hollow structure, which is convenient for dispersion of 
formed nanoparticles and to reduction of agglomeration.  

Nanoparticles Au, MnO2, Fe3O4, CuO, Co3O4 NP and CeO2 caused 
increased glutathione peroxidase activity (Wei & Wang, 2013). Liu et al. 
(2012) have shown that stabilized nanoparticles of MnO2 imitate the 
activity of peroxidase, therefore they were started to be used in immu-
noassay for colorimetric measurements. New nanoparticles of Co9S8 
type with effective intrinsic peroxidase activity can be used for colori-
metric ionisation of copper ions (Mu et al., 2018).  

Ions of transition metals, such as Fe, have peroxidase activity and 
can inactivate hydroxyl radicals using a general mechanism similar to 
Fenton’s reaction (Singh, 2016; Gao et al., 2017). Khedri et al. (2018) 
mention that the peroxidase activity of chitosan coated Fe3O4NPs nano-
particles. Similarly to natural enzymes, the enzyme-mimetic activity of 
nanoparticles may be stimulated or inhibited by certain chemical com-
pounds. Thus, nucleotides, in particular, AMP, can enhance the peroxi-
dase activity of Fe3O4 nanoparticles at neutral pH by forming a complex 
(Yang et al., 2017). Inhibitors of this mimetic activity can be sodium 
azide, ascorbic acid and catecholamines (Liu et al., 2012). Liao et al. 
(2018) report that sulfide ions are capable of inhibiting peroxidase-like 
activity of copper nanoclusters (CuNCs).  

It was determined that TiO2 nanoparticles demonstrated mimetic 
activity, can be incorporated into a photosensitive biocatalytic cascade, 
activate alkaline phosphatase, and subsequently peroxidase (Li et al., 
2018). Brominated graphene (GBR) containing about 3% bromine had 
a mimetic peroxidase activity in relation to 3,3', 5,5'-tetramethylben-
zidine (TMB). The optimum activity was observed at pH 4.48 (Singh 
et al., 2016).  
 
Nanomaterials as phosphate mimetics  
 

Phosphatase catalyzes the hydrolysis of complex esters of phospho-
ric acid in living organisms. The function of phosphatase is maintaining 
the phosphate level required for various biochemical processes. Phos-
phatase is involved in biological processes such as cell proliferation, 
transduction of signals, metabolism, intercellular communication, etc. 
For the first time, phosphatase-like activity was studied in cerium nano-
particles (Kuchma et al., 2010). Nanoparticles of SeO2 exhibit phospha-
tasomimetic activity in relation to the hydrolysis of organic phosphate 
esters, and the dependence between of the reaction speed on the pH of 
the medium was determined (Singh, 2016). It is assumed that in the 
case of this reaction, splitting of phosphate and its adsorption on the sur-
face of nanoparticles occur. According to Kozik et al. (2016), cerium 
dioxide nanoparticles are not complete phosphatase analogues, since the 
phosphate group binds to the surface of the nanoparticle irreversibly. 
Subsequently, cerium phosphate is desorbed, and the surface of nano-
particles is able to be involved in catalytic reactions again. Nanodisper-
sive cerium dioxide is used for concentration and quantitative dephos-
phorylation of phosphoproteins (Jia et al., 2012). It also can stimulate 
phosphorylation of mitogen-active protein kinase in human bronchial 
epithelial cells (Beas2B), manifesting pro-oxidant properties (Park 
et al., 2008).  

The activation of the nuclear transcription factor NF-κB depends on 
phosphorylation of the protein-inhibitor of IκBα-kinases (IKK) (Popov 
et al., 2017). NF-κB functions as one of the most important intracellular 
messengers which combines a variety of environmental signals with the 
expression of numerous cellular genes. NF-κB regulates a variety of 
biological processes: cell growth, their survival, tissue development, im-
mune response and inflammatory processes. Disorders in regulation of 
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signaling mechanisms which are based on NF-κB are associated with 
such severe human diseases as cancer, autoimmune diseases, chronic 
inflammation, metabolic disorders, diabetes and neurodegenerative 
diseases (Ghosh, 2007; Pushkarev et al., 2015).  

The ability to purposefully regulate the activity of the factor NF-κB 
is promising for controlling and treating a large number of pathological 
processes in the cell. Research has shown that cerium dioxide nano-
particles inhibit phosphorylation of IκBα, thereby reducing the translo-
cation of the p65 subunit, which occurs due to activation of NF-κB 
(Popov et al., 2017).  

Nanoparticles with low ratios of the Се3+/Се4+ oxidation state de-
monstrate both mimetic activity of catalase and phosphatase (Dhall et al., 
2017). The ability to manifest the activity of acid phosphatase was obser-
ved for Pt nanoparticles (Deng et al., 2017), and the activity of alkaline 
phosphatase simulates fullerene nanoparticles (Voeikov & Yablonska-
ya, 2015). Reverse phosphorylation and dephosphorylation reactions are 
the basis of energy and signaling metabolism in the cells, and such mo-
lecular activity opens a new perspective in the evaluation and prediction 
of biological properties of nanoparticles (Celardo et al., 2011).  
 
Conclusions  
 

This paper demonstrates separate results on the study of the enzy-
matic activity of nanoparticles and their positive effects. However, there 
are a number of studies on the risks of their use (Bandas et al., 2015; Fu, 
2014). As a result of the conducted analysis, we can state that nanopar-
ticles have a large number of applications in various fields – biology, 
medicine, the food industry, etc. However, the development of new 
nanosystems raises a number of new questions. It has been found that 
nanoparticles are highly biologically active, which is determined by the 
polyfactor action, which needs to be determined. The interaction bet-
ween nanoparticles and biological molecules, such as proteins, carbo-
hydrates, and lipids, remain poorly studied. Practical application of nano-
particles in biology requires an integrated analysis of the duration of 
their stay in the organism and the need for targeted delivery to organs 
and tissues, which accelerates further spread (Grillone et al., 2017). Due 
to their mimetic properties, it is promising to use nanoparticles for the 
purpose of early diagnosis of dangerous diseases, development of fun-
damentally new methods and molecular instruments in therapy and sur-
gery, as well as solving other biological and biotechnological problems. 
In future, research on this topic requires a safe, responsible and integra-
ted approach with scientific research and assessments of possible me-
dical-sanitary and environmental risks, which is the basis of the Euro-
pean Union policy in the field of nanotechnology (Regulation, 2012).  
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