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Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, 
angiopathy, atherosclerosis and arterial hypertension. Moreover, DM can strongly affect pulmonary circulation, 
enhancing the wall thickness of the pulmonary arteries, changing their tone and contractility, and gas exchange in the 
lungs. It can lead to marked loss of lung function and respiratory efficiency. It is also known that protein kinase C 
(PKC) activity increases in DM and that PKC is involved in the mechanisms of DM-associated vascular complications. 
However, the effect of DM on pulmonary artery tone has been poorly investigated and the role of PKC in this remains 
unknown. The aim of this study was to investigate changes in contractility of pulmonary arteries in rats with DM and to 
determine the possible role of PKC in this process. Experimental type 1 DM was elicited in male Wistar rats by single 
streptozotocin (STZ, 65 mg/kg) injection. DM was verified by the presence of hyperglycaemia. The investigation was 
performed on the isolated rings of the main pulmonary arteries using the method of vascular tone registration. 
Phenylephrine (PhE, 0.1 nM – 1 mM) caused dose-dependent constriction of the pulmonary arteries. The pD2 (negative 
logarithm of the agonist concentration required for half-maximum response) of this constriction increased in rats with 
DM, however significant changes in amplitude of PhE-induced constriction were not observed. PKC inhibition with 
chelerythrine and staurosporine (1 µM) significantly shifted PhE the concentration-response curve to the right in intact 
diabetic vessels but had no effect on sensitivity to PhE in deendothelised diabetic vessels. Our data suggest that type 
1 DM leads to enhancement in pulmonary artery α1-adrenoceptor-mediated contractility and PKC activity in the 
endothelium rather than in vascular SMCs is involved in this process.  
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Introduction  
 

Diabetes mellitus (DM) is a complex syndrome that is rapidly 
rising in incidence throughout the world. Hyperglycemia and 
alterations in metabolism are the most severe components of DM 
(Zimmet, 2011). The adverse long-term effects of DM involve many 
organ systems and are associated with a complex pathology leading 
to a large number of secondary cellular and subcellular changes.  

DM leads to multiple dysfunctions including cardiovascular 
diseases, one of the major causes of morbidity, mortality, end-stage 
renal disease, and blindness (Madonna and de Caterina, 2011). The 
macrovascular manifestations of DM include angiopathy, athero-
sclerosis, medial calcification, and arterial hypertension mostly 
located in the coronary and carotid arteries (Whiteley et al., 2005; 
Cosson et al., 2006), cerebral vessels, and the large peripheral 
arteries of the lower extremities (Funk et al., 2012). Increased blood 
flow and vascular tone elevation have been documented in diabetes 
(Madonna and de Caterina, 2011).  

Hyperglycaemia is a key factor responsible for the development 
of vascular complications in diabetes (Boussageon et al., 2011; 
Madonna and de Caterina, 2011). Several hyperglycaemia-associa-
ted mechanisms have been identified as contributing to the 
development of vascular dysfunction associated with DM. One of 
such mechanisms may involve activation of protein kinase C (PKC) 

pathways (Kizub et al., 2014). PKC is a family of regulatory enzymes 
(serine/threonine kinases) (Cosentino-Gomes et al., 2012) that plays a 
prominent role in the signal transduction of several vascular functions 
including regulation of vascular smooth muscle contractility (Somlyo 
and Somlyo, 2003; Cosentino-Gomes et al., 2012). It has been shown 
that dysfunctions of these systems are associated with the diabetic 
state and involve PKC-dependent mechanisms which are implicated 
as an important players in the pathogenesis of diabetic microangio-
pathy (Clarke and Dodson, 2007; Kizub et al., 2014) and macroangio-
pathy (Geraldes and King, 2010; Kizub et al., 2014). Numerous PKC 
isozymes (α, β1, β2, , , , , δ, and /) have been shown to be 
activated or overexpressed in vascular smooth muscle cells (SMCs) 
and the endothelium of different vascular regions in subjects with 
diabetes (Ramana et al., 2005; Klymenko et al., 2014).  

Despite a number of studies addressed to vascular complica-
tions in DM, there is little known about the effect of DM on 
pulmonary circulation. The present study has been devoted to an 
investigation of alterations in pulmonary artery tone associated with 
DM and the possible role of PKC in this process.  
 
Material and methods  
 

Experiments were performed on isolated vascular rings 
obtained from the main pulmonary artery of male Wistar rats 
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weighing 190–210 g. All experimental procedures conformed to the 
European Convention for the Protection of Vertebrate Animals used 
for Experimental and Other Scientific Purposes and were approved 
by the Ethics Committee of the Educational and Scientific Centre 
“Institute of Biology and Medicine” of Taras Shevchenko National 
University of Kyiv, Ukraine and State Institution “Institute of 
Pharmacology and Toxicology of NAMS of Ukraine”, Kyiv, 
Ukraine. Two groups of animals were used: diabetic rats injected 
with streptozotocin (STZ, 60–65 mg/kg, i.p.) and maintained for 
9 weeks, and age-matched controls. STZ was dissolved in buffer 
solution containing 0.9% NaCl and 10 mM citrate (рН = 4.6). DM 
development was verified by the presence of hyperglycaemia 
(plasma glucose higher than 20 mM) every 4 weeks after streptozo-
tocin injection, and on the day of experimentation. The diabetic 
group of animals (blood glucose 26.02 ± 5.04 mM, n = 8) was com-
pared with the control rats (blood glucose 6.74 ± 0.12 mM, n = 8; 
two-tailed t-test P < 0.05). Blood samples were obtained from the 
tail tip and analyzed using a glucose meter Bionime Rightest 
GS300 (Bionime Gmbh, Switzerland).  

The animals were killed by cervical dislocation. The heart and 
lungs were rapidly removed and placed into Krebs’ physiological 
salt solution (composition in mM: 133.00 NaCl, 16.30 NaHCO3, 
1.05 MgCl2, 1.38 NaH2PO4, 4.70 KCl, 7.00 D-glucose, 2.75 CaCl2 
and 10 HEPES, pH 7.4). For rings from diabetic animals, the 
concentration of glucose was increased to 25 mM. Vessels were 
dissected free, cleaned of connective and adipose tissue, cut into 2–
3 mm rings and mounted on fine stainless steel hooks in organ 
baths perfused with warmed to 37 °C Krebs’ solution. For vascular 
tone measurement capacitive tension detectors (Danish Myo 
Technology, Aarhus, Denmark) and LabScribe 2 (World Precession 
Instrument Inc., USA) software were used. The resting tension of 
the vessels was gradually increased to 0.7–0.8 g. After 1 hour 
equilibration, each vascular ring was exposed twice to 60 mM KCl 
exposure to assess its viability and reproducibility of contractions.  

In experiments with deendothlised vessels the endothelium was 
disrupted chemically with 15 min incubation of the vascular rings in 
Krebs’ solution containing 0.1 mg/ml of saponine. Successful endo-
thelium removal was determined by absence of 10 μM acetylchole-
induced relaxation following the contraction in response to 1 mM 
phenylephrine (PhE) application.  

Data are presented as mean ± SE with n indicating the number 
of vascular preparations tested. Contractile responses were expres-
sed as a percentage of the maximum response produced by 60 mM 
KCl or 1 mM PhE. The sensitivity to the agonist was expressed as 
pD2 (negative logarithm of the agonist concentration required for 
half-maximum response). In order to determine this parameter, data 
points were calculated using the Origin 8.1 software (OriginLab 
Corporation, Northampton, MA, USA) with the ‘DoseResp’ 
function in the following form:  

pxxLog
T 


)0(101

100
,
 

where T is normalized tension (expressed as % of maximal 
contraction) at the agonist concentration x (expressed as negative 
logarithm), x0 is the midpoint of the concentration-effect curve (e.g. 
T = 50%) and p is the slope factor of the curve. Mean values were 
obtained by averaging pD2 values obtained from individual 
preparations. Statistical comparisons were made using Student’s 
unpaired two-tailed t-test for two groups. Differences for P < 0.05 
were considered to be statistically significant.  
 
Results  
 

Effect of DM on intact pulmonary artery contractility. In control 
intact pulmonary artery rings isolated from non-diabetic rats, 
phenylephrine (PhE), a selective α1-adrenoceptor agonist, applied at 
ascending concentrations (0.1 nM – 1 mM) evoked concentration-
dependent contractions with a maximal response (Emax) 146.76 ± 
18.92 % (n = 16) of constriction evoked by 5-minute application of 

60 mM KCl (Fig. 1 and 2A). A plateau response was obtained after 
the addition of each test PhE concentration before the addition of a 
subsequent dose. pD2 value of PhE in control vessels consisted 
7.49 ± 0.19 (n = 16) (Fig. 2B).  

In intact pulmonary arteries isolated from diabetic rats, the 
responsiveness to PhE was enhanced since the diabetic vessels 
responded to lower concentrations of the agonist. pD2 value of PhE 
in diabetic vessels was 8.02 ± 0.09 (n = 16, Р < 0.05) (Fig. 2). 
In contrast, pulmonary artery rings from diabetic animals showed 
no significant difference in Emax between nondiabetic control and 
diabetic rats. It was 130.4 ± 10.5% (n = 16; Р > 0.05) of constriction 
evoked by 60 mM KCl (Fig. 1).  

 

 

Fig. 1. Mean data of relevant amplitude of the contractile responses 
to phenylephrine (PhE, 0.1 nM – 1 mM) in intact (E+) pulmonary 

artery from control (Ctrl) and diabetic (DM) rats before and  
after PKC inhibition with chelerythrine (Chel, 1 µM)  

and staurosporine (Stsp, 1 µM); * – Р < 0.05  

Effect of DM on deendothelised pulmonary artery contractility. 
To evaluate the role of the endothelium in pulmonary artery con-
tractility in DM experiments were performed on deendothelised 
vascular rings. In deendothelised pulmonary arteries from control 
rats, 0.1 nM – 1 mM PhE application led to vasoconstriction 
development with a maximal amplitude of 99.4 ± 22.5% (n = 8) of 
contraction evoked by 60 mM KCl (Fig. 3). pD2 value of PhE-
induced constriction in these vessels was 7.55 ± 0.16 (n = 8) (Fig. 4).  

In the deendothelised pulmonary artery of animals with experi-
mental DM, the dose-response curve of PhE was significantly 
shifted to the right as compared to the intact vessels of the control 
animals, showing decrease in vascular sensitivity to the agonist with 
pD2 value of 7.09 ± 0.22 (n = 8, Р < 0.05) (Fig. 4). In contrast to 
deendothelised control vessels, significant changes in the amplitude 
of PhE-evoked contraction in diabetic pulmonary artery rings were 
not observed (138.7 ± 24.0%; n = 8; Р > 0.05; Fig. 3).  

Effect of PKC inhibition on intact pulmonary artery 
contractility in norm and DM. To investigate the role of PKC in 
pulmonary artery tone alterations in DM, vascular tissues were pre-
treated for 20 min with combination of potent cell-permeable PKC 
inhibitors chelerythrine (1 µM) and staurosporine (1 µM). PKC 
inhibition had no significant effect on the amplitude of Phe-induced 
constriction in intact pulmonary arteries of control rats. Maximum 
contraction in response to 100 µM PhE was 175.5 ± 20.8% (n = 12; 
Р > 0.05 as compared to control) (Fig. 1). On the other hand, PKC 
inhibition resulted in an unexpected leftward shift of the 
concentration-response curve for PhE with pD2 value 8.55 ± 0.49 
(n = 8; Р < 0.05) (Fig. 2).  

In diabetic pulmonary arteries PKC inhibition significantly 
shifted the concentration-response curve for PhE to the right 
(Fig. 2). Mean pD2 value in diabetic arteries was 6.67 ± 0.29 (n = 12; 
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Р < 0.05) compared with the control tissue. PKC inhibition also 
significantly decreased amplitude of PhE-induced constriction in 
pulmonary arteries from diabetic animals (Fig. 2). In these 
conditions its maximum was 28.3 ± 8.6% (n = 12; Р < 0.05) of 
constriction evoked by 60 mM KCl (Fig. 1).  

 

Fig. 2. The changes in sensitivity to phenylephrine (PhE) in intact 
(E+) pulmonary artery from control and diabetic rats: A – original 
traces illustrating agonist concentration-response in intact control 

(top) and diabetic (bottom) rat pulmonary artery preparations;  
B – mean data of normalized amplitude of the contractile responses 

plotted versus PhE concentration (0.1 nM – 1 mM) in intact (E+) 
pulmonary artery from control (Ctrl) and diabetic (DM) rats before 

and after PKC inhibition with chelerythrine (Chel, 1 µM) and 
staurosporine (Stsp, 1 µM); vertical dotted lines represent pD2 value 

of PhE-induced constriction dose-response curves fitted by equation 1 
(see Methods section); it should be noted that dose-response curves 

“DM” and “Ctrl + Chel + Stsp” are superposed; * – Р < 0.05  

Effect of PKC inhibition on deendothelised pulmonary artery 
contractility in norm and DM. PKC inhibition with chelerythrine 
and staurosporine had no effect on Emax of deendothelised control 
pulmonary artery contraction evoked by 100 µM PhE with value 
64.2 ± 14.9% (n = 9; Р > 0.05) (Fig. 3). The sensitivity of deendo-
thelised vessels from control animals to PhE also was not changed, 
and pD2 value of PhE-induced constriction in these vessels was 
7.77 ± 0.31 (n = 9; Р > 0.05) (Fig. 4).  

In diabetic endothelium-free vascular tissues PKC inhibition 
also had no effect on maximal amplitude of PhE-induced vasocons-
triction. It was 103.0 ± 27.3% (n = 8; Р > 0.05) (Fig. 3). PKC 
inhibition also did not affect concentration-response curve for PhE 
in deendothelised vessels from diabetic animals. pD2 value of PhE-
induced constriction in these vessels was 6.99 ± 0.32 (n = 8; 
Р > 0.05) as compared to control (Fig. 4). Table 1 represents com-
parison of pD2 values which characterize PhE-induced constriction 
dose-response curve in both intact and deendothelised pulmonary 
arteries from control and diabetic rats.  

 

Fig. 3. Mean data of relevant amplitude of the contractile responses 
to phenylephrine (PhE, 0.1 nM – 1 mM) in deendothelised (E–) 

pulmonary artery from control (Ctrl) and diabetic (DM) rats before 
and after PKC inhibition with chelerythrine (Chel, 1 µM) and 

staurosporine (Stsp, 1 µM); * – Р < 0.05  

 

Fig. 4. Mean data of normalized amplitude of the contractile 
responses plotted versus phenylephrine (PhE) concentration (0.1 nM – 
1 mM) reflecting the changes in sensitivity to PhE in deendothelised 

(E–) pulmonary artery from control (Ctrl) and diabetic (DM) rats 
before and after PKC inhibition with chelerythrine (Chel, 1 µM) and 
staurosporine (Stsp, 1 µM); vertical dotted lines represent pD2 value 

of PhE-induced constriction dose-response curves fitted by equation 1 
(see Methods section); it should be noted that dose-response curves 

for control and DM are superposed;* – Р < 0.05  

Table 1  
Mean pD2 for PhE-induced constriction dose-response curve in 
intact (Е+) and deendothelised (Е–) pulmonary artery from control 
and diabetic (DM) rats in the absence or presence of combined 
action of chelerythrine (1 µM) and staurosporine (1 µM)  

Control 
Control + chelerythrine  

and staurosporine 
DM 

DM + chelerythrine 
and staurosporine 

Е+
7.49 ± 0.19

(n = 16) 
8.55 ± 0.49 

(n = 8)* 
8.02 ± 0.09 
(n = 16)* 

6.67 ± 0.29 
(n = 12)* 

pD2

Е-
7.55 ± 0.16

(n = 8) 
7.77 ± 0.31 

(n = 9)# 
7.09 ± 0.22 
(n = 8)*# 

6.99 ± 0.32 
(n = 8) 

Note: * – Р < 0.05 in comparison with pulmonary artery rings from control 
animals; # – Р < 0.05 in comparison between Е+ and Е– pulmonary artery rings.  

 
Discussion  
 

The data obtained clearly indicate that type 1 DM development 
leads to increase in sensitivity to PhE in rats’ pulmonary arteries 
reflecting enhancement in vascular α1-adrenoceptor-mediated con-
tractility. However, PKC inhibition in deendothelised vessels from 
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diabetic animals had no effect on the sensitivity to PhE. It may 
suggest that mechanisms of pulmonary artery contractility enhance-
ment in DM are associated with activity of PKC in the endothelial 
cells rather than in vascular SMC. There is a variety of evidence to 
indicate that sensitivity to α1-adrenoceptors-mediated stimulation is 
markedly elevated in STZ-diabetic rats’ systemic arteries: tail artery 
(Kizub et al., 2010), mesenteric artery (White and Carrier, 1990; 
Mueed et al., 2005; Kizub et al., 2010), and aorta (Xavier et al., 
2003) whereas other studies have shown an increase in amplitude of 
α1-adrenoceptors-mediated vasoconstriction in these arteries (Abebe 
and McLeod, 1991; Chow et al., 2001; Lee et al., 2011). Similar 
results showing enhanced noradrenaline-induced vasoconstriction 
have been obtained in high glucose concentration in the aorta of 
OLETF (Otsuka Long-Evans Tokushima Fatty) rat, an experimental 
model of insulin-independent DM (Nobe et al., 2003). On the other 
hand, a few studies have shown that the aortas of STZ-diabetic rats 
exhibited no changes in sensitivity to PhE (Chang and Stevens, 
1992; Kizub et al., 2010).  

In contrast to our data, Gurney and coauthors have shown that 
STZ-induced diabetes significantly blunted the maximum response 
of rats’ conduits, but not resistance pulmonary arteries to PhE, 
without changes in the sensitivity to PhE. Endothelium-dependent 
vasodilatation of these vessels was also unaffected in DM (Gurney 
and Howarth, 2009). Other researchers have demonstrated that in 
the intrapulmonary arteries of STZ-diabetic rats the concentration-
response curve PhE was characterized by an increased maximal 
response in the diabetic group compared with the control one 
without changes in pD2 value. Endothelium-dependent relaxant 
response was dramatically reduced in pulmonary arteries from 
diabetic rats (Lopez–Lopez et al., 2008).  

Our data indicate that PKC activity is involved in elevated α1-
adrenoceptors-mediated vasoconstriction in the pulmonary arteries 
of STZ-diabetic rats. It has been shown by us previously that PKC 
inhibition suppressed elevated sensitivity to PhE in the smooth 
muscle of the tail artery of STZ-diabetic rats (Kizub et al., 2010). 
In our present study two potent inhibitors of PKC, chelerythrine and 
staurosporine were both used to achieve complete inhibition of 
PKC. Chelerythrine is a specific inhibitor of PKC substrate-binding 
site (Herbert et al., 1990), whereas staurosporine (or antibiotic  
АМ-2282) is a selective inhibitor of ATP-binding site of PKC (Ishii 
et al., 1996). We have previously shown that changes in sensitivity 
of systemic vessels (aorta and tail artery) to α1-adrenoceptors 
agonists in PKC inhibition in healthy rats differ. It has been 
demonstrated that PKC inhibition had no significant effect on the 
contractile responses to PhE of the tail artery of healthy rats but 
evoked decrease in sensitivity to PhE in aorta (Kizub et al., 2010). 
On the other hand, there is evidence that PKC inhibition with other 
potent PKC inhibitors Ro-318220 and calfostin С in mesenteric 
arteries of healthy rats had no effect on maximum amplitude of 
norepinephrine (NE)-evoked contraction but significantly elevated 
its sensitivity to NE (Mueed et al., 2005).  

The role of PKC in enhancement in contractility of the pulmonary 
artery has not been demonstrated before and is clearly shown in the 
present study for the first time. It has only been demonstrated 
previously by Yamada and Yokota (Yamada and Yokota, 1997) 
that in human pulmonary arteries endothelial cell culture PKC 
activators stimulated endothelin-1 (ET-1) release, whereas PKC 
inhibition with staurosporine led to decrease in both basal and 
stimulated levels of ET-1. These authors have also demonstrated 
that PKC activators stimulated prostacyclin (or prostaglandin I2, 
PGI2) release (Yamada and Yokota, 1997).  

Although it has been shown in systemic vessels (aorta, 
mesenteric and tail artery) from STZ-diabetic rats that PKC 
inhibition with chelerythrine had no effect on sensitivity of these 
arteries to PhE (Kizub et al., 2010), studies on the deendothelised 
mesenteric artery of diabetic rats have demonstrated that PKC 
inhibition suppressed elevation in NE-induced contractile response 
(Mueed et al., 2005). In contrast to this, other authors have shown 
that PKC inhibition did not affect hyperreactivity to prostaglandin 

E2 (PGE2) in the mesenteric artery of Goto-Kakizaki rats with 2-type 
DM (Ishida et al., 2012).  

Our results showed that PKC inhibition in the deendothelised 
pulmonary artery from diabetic animals had no effect on sensitivity 
to PhE. It may allow us to suggest that mechanisms of pulmonary 
artery contractility enhancement in DM can be associated with 
activity of PKC in the endothelium. PKC involvement in vascular 
contractile abnormalities in DM can be mediated by a few 
mechanisms described. PKC activation in vascular endothelium in 
DM can result in endothelium-dependent vasodilator dysfunction 
via inhibition of the pathways associated with nitric oxide (NO) 
(Ishii et al., 1996; Beckman et al., 2002; Pitocco et al., 2010; Kizub 
et al., 2014), endothelium-derived hyperpolarizing factor (EDHF) 
(Gao et al., 2011), and PGI2 (Cosentino et al., 2003). Secondly, 
PKC activation in the endothelium in DM can enhance endothelium-
dependent vasoconstriction mediated by ET-1 (Matsumoto et al., 
2009), PGE2 and thromboxane A2 (TXA2) (Cosentino et al., 2003). 
Activation of nicotinamide adenine dinucleotide phosphate oxidases 
(NADPH oxidase or Nox) have also been shown to be involved in 
PKC-mediated endothelial dysfunction in DM via reactive oxygen 
species (ROS) formation (Gao et al., 2011; Kolluru et al., 2012; 
Kizub et al., 2014).  

NO-associated mechanisms underlying diabetes-associated 
vascular dysfunction may include decreased endothelial nitric oxide 
synthase (eNOS) activity and expression (Hirata et al., 1995), 
uncoupling of eNOS and degradation of NO secondary to enhanced 
superoxide production (Cosentino et al., 2003; Pitocco et al., 2010), 
attenuation of NO signaling and decreased NO bioavailability 
(Matsumoto et al., 2009). In diabetes PKC may affect NO 
bioavailability not only via intracellular accumulation of ROS 
(Pitocco et al., 2010) but also by decreasing eNOS activity (Hirata 
et al., 1995). It is established that dysfunction of eNOS in DM can 
be associated with its suppression by some PKC isoforms (Hirata 
et al., 1995; Ishii et al., 1996; Bohlen and Nase, 2001; Mehta et al., 
2009). As has been shown in DM, PKC can phosphorylate eNOS 
(Hirata et al., 1995) on its inhibitory site Thr495 (Fleming et al., 
2001) and reduces eNOS phosphorylation on the activating Ser1177 
site (Michell et al., 2001) blunting eNOS activity. On the other hand, 
PKC-mediated inhibition in eNOS activity is linked to the ability of 
PKC to phosphorylate another inhibitory phosphorylation site Thr497 
of eNOS reducing its affinity for calmodulin and, hence, the gene-
ration of NO (Matsubara et al., 2003). Alternatively, PKC-dependent 
reduction in eNOS expression has been shown in retinal (Suzuma et 
al., 2002) and aortic (Hink et al., 2001) endothelial cells in diabetes. 
Decreased eNOS expression in diabetes can occur through PKC-
mediated activation of vascular Nox by inducing ROS-dependent 
scavenging and reducing NO level (Inoguchi et al., 2000).  

EDHF also can be involved in endothelial dysfunction 
development in DM. It has been established that EDHF-type 
vasorelaxation is impaired in DM (Matsumoto et al., 2006; Gao 
et al., 2011; Leo et al., 2011). The relaxant pathway associated with 
SMCs hyperpolarization is thought to be independent of NO and 
prostacyclin production by the endothelial cells and has been 
attributed to the release of EDHF (Feletou and Vanhoutte, 2010). 
The identity of EDHF remains controversial, but rather than a true 
chemical mediator of endothelium-dependent hyperpolarization, 
there is considerable support for the view that EDHF reflects a 
hyperpolarization signal that is mediated from endothelial cells to 
vascular SMCs via myoendothelial gap junctions (MEGJs) 
(Matsumoto et al., 2006; Figueroa and Duling, 2009; Feletou and 
Vanhoutte, 2010). Direct communication within and between 
endothelial cells and SMCs through gap junctions (GJs) is an 
important modulator of vascular tone and essential in the control 
and coordination of vascular function (Figueroa and Duling, 2009; 
Feletou and Vanhoutte, 2010). The vascular GJs are composed of 
intercellular channels clusters allowing the direct passage of electrical 
current and small signaling molecules between adjacent cells (Figue-
roa and Duling, 2009). In vascular tissues GJs consist of connexin 
proteins (Cx37, Cx40, Cx43 and Cx45) (Brisset et al., 2009).  
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Connexin phosphorylation is highly sensitive to glucose 
concentration through the regulation via PKC dependent signaling 
pathway (Lin and Takemoto, 2005). It has been demonstrated that 
diabetes affects MEGJs function in resistance arteries (Lin and 
Takemoto, 2005; Georgescu et al., 2006). Endothelial Cx37 and 
Cx40 protein expression levels and endothelial GJs consisting of 
these connexins have been reported to be reduced in different 
vascular regions of STZ-induced type 1 diabetic mice (Hou et al., 
2008; Makino et al., 2008). A few studies have reported that 
exposure to high glucose results in a down-regulation of Cx43 in 
vascular endothelial cells (Sato et al., 2002; Chen et al., 2008; Li 
and Roy, 2009).  

Inoguchi and coauthors have reported in bovine aortic endothelial 
cells, that hyperglycemia inhibited gap junctional intercellular com-
munication via PKC (Inoguchi et al., 1995; Inoguchi et al., 2001). 
Similar results have been demonstrated in retinal microvessels of rats 
with STZ-induced diabetes (Oku et al., 2001). It has been also 
demonstrated that high glucose levels, via PKC-mediated phospho-
rylation of Cx43, can reduce gap junctional intercellular communi-
cation activity in bovine aortic SMCs (Kuroki et al., 1998).  

Diabetes and hyperglycemia may induce an increase in expres-
sion end secretion of ET-1 in vascular tissues as well (Kalani, 
2008). Investigation of ET-1 in the development of abnormal retinal 
hemodynamics in DM showed that overexpression of ET-1 is 
associated with PKC activation, presumably PKC-β2 and PKC-δ 
isoforms (Park et al., 2000). It has been also reported that increase 
in contraction in response to ET-1 in the aorta and coronary arteries 
of rats is associated with augmented PKC activation in type 1 DM 
(Hattori et al., 1999; Tickerhoof et al., 2003).  

Cyclooxygenases (COX)-derived prostanoids, which are 
arachidonic acid metabolites, also can play a significant role in 
diabetic vascular complications and have been implicated in 
hyperglycemia-induced endothelial dysfunction (Cosentino et al., 
2003; Aljofan and Ding, 2010; Ishida et al., 2012). As has been 
shown in human aortic endothelial cells, hyperglycemia causes 
PKC-dependent increase in expression of inducible COX-2 isoform 
associated with an increase in TXA2 and a reduction of PGI2 release 
(Cosentino et al., 2003). In this mechanism glucose-induced activa-
tion of PKC may result in eNOS-dependent formation of peroxy-
nitrite and tyrosine nitration and inactivation of PGI2 synthase (PGIS) 
(Cosentino et al., 2003). Production of vasoactive eicosanoid PGE2 
can be also increased in diabetic vessels (Xia et al., 1996).  
 
Conclusions  
 

The present study shows that type 1 DM leads to increase in 
sensitivity to PhE in the pulmonary artery of rats reflecting enhan-
cement in vascular α1-adrenoceptor-mediated contractility and that 
mechanisms of such enhancement in DM are associated with 
activity of PKC in the endothelium rather than in vascular SMCs. 
These mechanisms and the role of endothelium-mediated signaling 
in this process remain to be investigated in future studies.  
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