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Representation of a one class function of two
variables by bicontinued fractions

Hexait dynkuia u(z,w) = f(z)h(w) Busnayena na xommnakti K = Z x W C C2. o-
CIIXKYEThCs 3a/avua 300parkeHHs1 (PYHKIIiN TaKOro KJjacy A0o0yTKOM JIAHIIOTOBUX JPOo0iB
o KOXKHi#t 3MiHHIN, sikuii HasuBalOTh GijlaHIIOrOBUM Jpobom. B pobori moBenmeHo HOBI
BJIACTUBOCTI obepHenux noxigumx Time Ta koedillieHTIB po3BUMHEHHS CKJadeHOol PYyHKITIT
onHiel 3miHHOT B JrammgoroBuii api6 Tine i nmpoBuabHMit nanmorosuit C—api6. 3okpema
JOBeAeHOo, o Ko D(z;g) po3BuHeHHs (yHKUil jaHIorosuit api6 Tine, To po3BuHEH-
Hs byskuix g(z) = Cyg(z),C = const, mae Burasayn D(z;Cg) = CD(z;g). Kpim Toro moka-
3aHO, 0 oGepHeni moximui Tine dyukuii §(z) = ¢(Cz) Bu3HauaroThCs 3a (opMysiamMu
@ (g(C2)) = Pg)],_er 0 (9(C2) = C1- G Vg(w)| o keN.

OrpumaHi BJjlacTUBOCTI ObDepHEHHMX IIOXiAHMX Ta JIAHIIOTOBUX APOOiB pasom i3 Bimo-
MHMHU X BJIACTUBOCTAMM JO3BOJISIOTH OOI'PYHTYBATU MOXKJIMBICTH 300parkeHHS (DYyHKITiH
JIBOX 3MIHHUX PO3IJISHYTOro KJjacy OimamiforoBuMu gapobammu Tijie Ta OiaHIoroBumMu
C—apobBamu, BcTaHOBUTH 00JiacTi 36i>KHOCTI Ta piBHOMipHOT 30i>kHOCTi OTpMMaHUX 300-
pa*keHb.

B sikocTi ismrocTpaitiil po3riisiHyTo 300parkeHHs OijtaHIIoroBuMu ApobamMu ABOX pyHK-
it uy (z,w) = (04 62)* tg(e+yw), me a € C\{Z}, B,7,d,e € C\{0} Ta uz(z,w) = e** In(B+~w), xe
a, 8,7 € C\{0}. JdoBeneno, mo orpumani 306pakeHHs GisaHigoropumu apobamu yHKIIT
uy 36iraroTbest o dyHKUil B obiacti G = {2z € C: |arg(d + Bz) —arg(d + Bz.)| < 7} x C\{yw #
%’r — &,k € Z} i na poBinbHOMy kommnakTi K C G GisaHmorosi nqpobu 36irarorbcst piBHO-
MipHO. AHanoriyHo, B obnacti Gy = C x {w: w € C\{-5/7}, | arg(f +~yw) — arg(ﬁ+’yw*)| <}
nobyagoBaHi GijlaHIIOroBi Apobu 36iratoThbess go dyHKIHT us. Ha moBiibHOMY KOMITAKTi
K C G, 6inanmgorosi gpobu 6yayTh 36iraTucs piBHOMipHO. 3anponmoHoBaHa B JaHiil pobo-
Ti MeTO/IuUKAa MPUPOJHBO TOHIMPIOETHCS HAa BUNAA0K (PYHKIIiI TphoxX Ta OijibIlle 3MiHHUX,
AKi HaJIexkaTh 0 aHAJOTIYHUX KJIACIB.

Karuosi caosa: sany0206i dpobu, 6iaanyr0206i dpobu, GyHkuii 080T KOMNAEKCHUT 3MIHHUL, 300-

pastcerHA PYHKUIT

@yukmmsa u(z,w) = f(z)h(w) onpenenena na komnakre K C C2. Uccnenyercs 3amaua
npejacraBiieHns (PYHKIUA TAKOro KJiacca MPOU3BEJ€HUEM JIBYX HEIPEePBIBHBIX Apobeii,
KOTOpOe MMEeHYyeTCsi OMHeIrpepbIBHOM Apo0bio. /loKkazaHbl HEKOTOPbIE CBOMCTBA OOpaTHBIX
npou3BOAHbIX Tuje, HenmpepbIiBHLIX Apobeii Tune u npaBuabubix C—apobeii. ITokazana
BO3MOX@XHOCTH IpeAcTaBIeHns QYHKIUI TAKOT0 Kjacca GuHenpepbIBHbIMU JIpobsivmu. Pac-
CMOTPEHBbI IPUMEPHI, YKAa3aHbl 00JIACTA CXOAMMOCTH U PABHOMEPHOI CXOJUMOCTHU IIOJYy-
YeHHBbIX OMHENpPepBbIBHBIX Apobeii K PyHKIUN.
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Kaowo6i crosa: nenpepuenvie dpobu, bunenpepviehoe 0podu, Gynryuy 06YT KOMNAEKCHHT nepe-

MEHHBLT, Mpedcmasenue GYHKUUT

Let function u(z,w) = f(z)h(w) be defined on the compact set K C C2. We study the
problem of representation of functions of this class by the product of two continued
fractions, which is called a bicontinued fraction. Some properties of Thiele reciprocal
derivatives, Thiele continued fractions and regular C—fractions are proved. The possibility
of representation of functions of this class by bicontinued fractions is shown. Examples
are considered, domains of convergence and uniform convergence of obtained bicontinued
fractions to the function are indicated.

Key words: continued fractions, bicontinued fractions, functions of two complexr variables,
representation of functions

MSC2010: PrI 30B70, SEc 30E05, 30E10

1. Introduction

The functions of one real or complex variable can be approximate polynomials |1,
2, 3|, splines [4], rational functions or Padé approximants |5, 6, 7]. Continued fractions
are used to approximate functions too [8, 9, 10]. Methods of approximation functions
of one variable are generalized to functions of many variables [14, 15|, functionals and
operators 16, 17].

The Thiele formula is an analogue of a Taylor formula in the theory of continued
fractions. The Thiele formula has advantages over other methods of expansion of
a function in continued fractions since coefficients of expansion are determined by
reciprocal derivatives of a function [11, 12, 13].

Bicontinued fraction is a new concept that is introduced in this article. Let u
be a function of two variables of the form wu(z,w) = f(z)h(w). The problem of a
function approximation by bicontinued fractions investigated in the paper. The new
properties of Thiele continued fractions and Thiele reciprocal derivatives are proved.
These properties are used when representing functions by bicontinued fractions.

2. Approximation of functions by continued fractions

Note that in addition to the set of natural numbers N, we also use the following
sets of integer numbers Ny = NU {0} and Ny = N\{1}.
The necessary concepts of the theory of continued fractions 9] will be given below.

Definition 1. A continued fraction is an ordered pair (({a,},{bn}), {fs}), where
{a, : a, € C,a, #0,n € N}, {b, : b, € C,n € Ny} are sequences of complex numbers,
and {f, : f, € C = CU{o0},n € Ny} is a sequence in the extended complex plane
defined as follows: f,, = S,(0),n € Np, Sp(w) = so(w), Sp(w) = Sp—1(sn(w)),n € N,
so(w) = by + w, s,(w) = a,/(b, +w),n € N.
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REPRESENTATION OF A ONE CLASS FUNCTIONS

The infinite continued fraction of form

a1
b0+ a )
2
b
1+b2+‘
.‘+ a;
bi + .
(05} a;

ay [%S)
hall denote b fth bols by+— — — b —1(ai/b;),
we shall denote by one of the symbols 0+b1+ b2+---+bi+---’0r o+ K2 (a;/b;)

or by + K(a;/b;). Similarly, the finite continued fraction, nth approximant of infinite
continued fraction

a1
bO + )

a
by + 2

by + |

be denoted by by + = =2 n
ma € aenote — — -—
Y T bt byt o by

, or by + KiZ (a;/b;).

Definition 2. Continued fractions by + K(a;/b;) and dy + K(c;/d;) with nth
approximants f,, = by+K_,(a;/b;) and f* = dy+K_,(c;/d;), respectively, are said to
be equivalence if f,, = f*, n € Ny. It is written as follows by + K(a;/bi) = do+K(c;/d;).

Theorem 1. Continued fractions by + K(a;/b;) and dy+XK(c;/d;) are equivalent iff
there exists a sequence of non—zero constants {r; : ro = 1,17; # 0, i € N} such that

do = bo, C; = Ti—17;G4, dl = ?"Z'bi, 1€ N. (21)
Let the function of complex variable g is defined on the compact set Z C C. Function

g can be interpolated on set of nodes Z = {z; : z; € Z,z; # zj, i,j = 0,n} by a Thiele
interpolation continued fraction (T-ICF) of the form

Dy g) = _9>> i+ K (2= 5 Bu(z0, 21, 2650) (2.2)

Canonical numerator P,(z; g) and canonical denominator @, (z; g) of a T-ICF (2.2) are
polynomials whose degrees satisfy inequalities deg P, (z; g) < [”T“} ,deg Qn(z;9) < [%} .
By prl20, 21, - - -5 2x; 9], k = 0,n, denote the reciprocal difference of the kth order.
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The reciprocal differences are calculated as follows

z9] = 9(2),  plz0,2:9] —
polzigl = g9(2),  pilz0,2;9) = :
polz; 9] — polzo; 9]
[ ] = polz0: 9] + —
P2(%0, %1, 259 = Pol?0: 9 )
120, 2 9] — pr—1[20, 215 9] (2.3)
PEl20y - -5 2k—1, 21 ] = pr—2[20s - - -, Zk—2; 9]+
Z — Zl._ _
+ kol , k=2n.
pk—1[207 cee 7Zk—27z;g] - pk—l['zO? s 7Z]€—27Zk?—1;g]

Coefficients of a T-ICF (2.2) are determined by through reciprocal differences according
to the formulae
bo(20; 9) = polzo0; g]; bi1(20, 215 9) = p1l20, 215 9],
ba(20, 21, 22; ) = p2[20, 21, 225 9] — polz0; 9], (2.4)
be(20,- -+, 21 9) = prl20, - s 263 9] — pr—2l20, . .-, 221 9], k=2,n.
It is known [12, 19| that the reciprocal difference of the kth order pg|zo, 21, . . ., 2k; ¢]
is determined by the relation of two determinants formed from interpolation nodes

and function values in nodes. The reciprocal difference is the symmetric function of
arguments 2g, 21, - . ., 2k-

Theorem 2. Let D, (z;g) be a T-ICF of a function g and C' = const. Then
Dy (z;Cg) = C Dy(z; 9). (2.5)

Proof. We first prove the auxiliary statement. The reciprocal differences of a function
Cg satisfy the relation

Cprlz0,- - 2k 9], k= 2m,

20, .., 25 Cg| = 2.6

We shall prove the relation (2.6) by induction. When k£ = 0,1 then the relation holds.
Let’s assume that formula (2.6) holds when k = 2s — 1,2s. For k = 2s + 1 from (2.3)
it follows

p2s+1[20, <oy 22541, Cg] = P23—1[ZO, <oy 2251, OQ]+

n 22541 T 22s _ 1 p [z P ‘g]

— N M2s+1[#0y - -y <2541, .
,025[20, ceey R25—1; R2s+1; Cg] - p2s[207 <oy R25—15 R2s, Cg] C " -
Similarly, we get that pesialzo, ..., 22s12; Cg] = C pasialz0,- -, 22542; g]. The formula

(2.6) is proved.
It follows from (2.4) and (2.6) that the coefficients of a T-ICF (2.2) of a function
Cg satisfy the relation

Cbe(zoy---, 26, 9), k= 2m,

br(z0,...,2k;Cg) = 2.7
k(20 & C9) {C"lbk(zo,...7zk;g), k=2m+1. 27)
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REPRESENTATION OF A ONE CLASS FUNCTIONS

Consider the a T-ICF of a function C'g. We have
Dy(2: Cg) = by(z0: Cg) + in{l((z e ) /a0, 21, 202 Cg)).
We shall use the relation (2.7). Then we shall have that
Da(25C) = Choli0sg) + K (2 = 21-1)/(C balzo 21, 2139))).

If we perform equivalent transformations (2.1) when r, = CCYV*"' k€ N then we
obtain (2.5).

Since the reciprocal difference of the kth order pilzo,...,21;9],k = 0,n, is a
symmetric function of the arguments zg, 21, ..., 2, then we can go to the limiting
case.

Definition 3. If exist limit (finite number or infinity) of a reciprocal difference kth
order pglzo, - - ., zk; g] when the nodes zg, ..., 2z — 2z, where z, € Z then the limit value
is called the Thiele reciprocal derivative of a kth order of a function ¢ at the point z,
and is denoted ®g(z,).

It follows from the definition that ®g(z,) = lim  pglz0,. .., 2k; g]. The Thiele

reciprocal derivatives are calculated by the recurrent formula [11]

1 k _
(1) — (k) — (k—2) —
9'(2) (+g(z))

Theorem 3 ([12]). If the function g is analytic at Z C C then Thiele reciprocal
derivatives of a function g at z, € Z are defined as follows

gz = By Bl oy 2.9
H”(2) H, (2
where Hankel determinants H,gm)(z*) are equals
Co Cmtl -+ Ctk—1
HY™ () = 1, B () = | T O g g = g(slﬁz*), ¢ =0, 5 <0.
Cm—i:k—l Cm.—&-k cee Cm+.2k—2

Theorem 4 ([13]). (A) If determinants H,g(jzl(z*), H,(f)(z*), H,S’_)l(z*), H,gl)(z*),
where k = 0,n, be non-zero then a function g at the point z, has finite Thiele reciprocal
derivatives up to (2n)th order inclusive which may be calculated by formula (2.8) or by
formula (2.9).
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(B) If Hﬁl( .) # 0 and HY ( L) = 0 then ®g(z,) = 0. If H,(ngl(z*) = 0 and
I—L(f)(z*) # 0 then ®g(z.) = oo.

(C) If H,(Ll)( «) # 0 and Hflﬂ( .) = 0 then ®"Yg(z,) = 0. If H,Sl)(z*) = 0 and
H,(;ll)(z*) # 0 then @ Vg(z,) = 0.

Let the function g have Thiele reciprocal derivatives at the point z, € Z. Then
we get the expansion of a function g into a Thiele continued fraction (T-CF) in some
neighbourhood of the point z,, i.e.

D(x:9) = bolzi9) + K (= = 22) u(24:9)), (210)
where

bo(2; 9) = 9(24), bi(z9) = Vg(20), br(zs9) = Pglz) —“Pg(z), k€ Noo (2.11)

The Thiele reciprocal derivatives has properties that follows directly from properties
of reciprocal differences. In particular

1
e (Cg(z4)) = ol CrDg(z,), @ (Cg(z4)) = C - ®Vg(z4), C = const, n € N. (2.12)

From Theorem 2, definition of a Thiele reciprocal derivatives, formulae (2.11) and
properties (2.12) it follows that

D(z;Cg) = C D(z;9), C = const. (2.13)

Theorem 5 ([13|). Let the function w = f(z) has a Thiele reciprocal derivative at
the point zy € G and let the function u = g(w) has a Thiele reciprocal derivative at
the point wy € E, where wy = f(29), then the composed function F(z) = g (f(2)) has
a Thiele reciprocal derivative at point zo and W F(zy) = M g(wy) - V f(20).

We shall prove the following property of Thiele reciprocal derivatives.

Theorem 6. Let the function g has Thiele reciprocal derivatives and C' = const
then

I (g(Cz)) = PMgv)| _or @ V(9(C2)) =C7H-Fg(w)| _,.., keN. (2.14)

Proof. From theorem 5 follows that @ (f(Cz)) = &-® f(v) |v:Cz' It follows from here,
from (2.8) and (2.12) that

(P(f(C2)) =2:0(V(f(C2)) +(C2) = (2:7(5- VS @) + )] . = VF )], .

Suppose that the formulas (2.14) are true when £ = 1,s — 1. Then when k = s from
(2.12) we have that

@ (f(C2)) = 25 - O (D (F(C2))) + @I (F(C)) =
=25 (VG @) + T )] e, = SO e (215)

18



REPRESENTATION OF A ONE CLASS FUNCTIONS

The relation

(I (F(C2) = @5+ 1) (V(*(F@)) T (F0) ]y = & O],

is similarly proved.

It follows from the Theorem 6 that

1

ban(C'24; g) = ban (v g)‘U:CZ*7 bon11(Czi; g) = c’ bant1(v; g)‘U:CZ*a n € No. (2.16)

A T-CF (2.10) can be given by an equivalent continued fraction with partial
denominators equal to one. We have

F(z9) = ao(z 9) + Sl(an(z*;g)(z — z.)/1). (2.17)

The coefficients of a continued fraction (2.17) can be determined by the coefficients of
a T-CF as follows

] 1
ao(24; 9) = bo(2:; 9), a1 (2) = —)’a“(z*;” " b1 (25 9)ba(2459)

bl (Z*; g
Let the function g is expanded in a formal power series at the neighbourhood of
a point z,. It is proved in [13| that (2.17) is equal to a regular continued C—fraction
(C-CF). Since the a C-CF is corresponding to the formal power series, then a T-CF
will also correspond to the formal power series. It’s easy to make sure that F'(z; Cg) =
CF(z;g), C = const.

Theorem 7 (|13]). Let the function g be expanded into a C-CF (2.17) in the some
neighbourhood of a point z, € Z and lim a,(z.;9) =a, a € C,a # 0.
n—oo

,n €Ny (2.18)

(A) The continued fraction (2.17) converge to the function g which is meromorphic in
the domain R, = {z € C : |arg(a(z — z.) + 1/4)| < 7}.

(B) The convergence will be uniform on an arbitrary compact set C C R, which not
contains poles of a function g.

(C) The function g is holomorphic at the point z,.

Theorem 8 ([13|). Let the function g be expanded into a C-CF (2.17) in the some
neighbourhood of the point z. € Z, a,(2«;g) # 0 and lim a,(z.;¢9) = 0.
n—oo

(A) The continued fraction (2.17) converge to the function g.

(B) The convergence will be uniform on an arbitrary compact set Z C C which not
contains poles of a function g.

(C) The function g is holomorphic at the point z, and g(z.) = ag(z4; g).

19



M. M. PAHIRYA

3. Representation of functions of two variables by
bicontinued fractions

The results obtained in the previous section, allow us to specify a way of
representation functions of two complex variables of the form

u(z,w) = f(z)h(w) (3.1)

by the product of two continued fractions for each variable. We shall call this product
a bicontinued fraction.

Let the function u be defined on the compact set K = Z x W C C2. Suppose
that functions f and h are analytic on the compact sets Z and W respectively. Then,
according to Theorem 3 and Theorem 4, each of these functions has Thiele reciprocal
derivatives.

Let w € W be a fixed point and H = h(w). The auxiliary function F(z) = H f(z)
can be expanded into a T-CF about variable z on the compact set Z. If considers
properties of the Thiele continued fraction (2.13) than we obtain the expansion of a
function F in a neighbourhood of the point z, € Z into a T-CF about variable z

Dz f) = H(bo(z: 1) + K (2 = 2.) /(2 ).

Similarly, let Z € Z be a fixed point and F = f(z), then the auxiliary function
H(w) = Fh(w) can be expanded into a T—CF in the neighbourhood of the point
w, € W about variable w

DAz 1) = F (bo(w.: ) + K (0~ w,) /bu(u; 1))).

Since the point (Z,w) is an arbitrary point of the compact set K then we get a
representation of a function u as the product of two T—CF in the neighbourhood of a
point (z,w,) € K

X2

B(z,w; fh) = (bo(z:: f) + K (2 = 2) /ba(2:: £))) %

(bolwas ) + K (w0 = w) fbu(wis ). (3.2)

Il
MR

n

We call this product a Thiele bicontinued fraction (T-BCF). Similarly, the function u
can be represented by a bicontinued C—fraction (C-BCF)

0(27 wy fh) = (CLO(Z*; f) =+ gl(aTL(Z*; f)(z - Z*)/l)) X
(ao(w.; h) + nI:<1(a"(w*; h)(w—w,)/1)). (3.3)
We shall consider examples of function representations by bicontinued fractions and

we shall show the domains of convergence and domains of uniform convergence of such
representations too.
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REPRESENTATION OF A ONE CLASS FUNCTIONS
Ezample 1. Consider the function u;(z, w) = (§+52) tg(e+vyw), where a € C\{Z},
57 ,}/7 5a €€ (C\{O}

Theorem 9. (A) The function uy(z,w) = (0 + f2)* tg(e +~yw) can be represented:
1) by a T-BCF

af(z—z) (A-a)flz—2) (a+1)8(z—2)
&+ 2 + 3¢ + ot

B(z,w;uy) = 5”(1 +

oz iz y(, 04w
+ 2 + @ntDE 4 - 1 +
Ww—w) Y(w-—w) y(w—w) TP(w —w.)  yP(w — wy)
+ -1 + 3% o+ 1 + -+ 4dn+l + -1 +
Y(w—wy)  y(w—w,) B _ _
s T ) £ v =t (3
2) by a C-BCF
By — Z) a O‘)ﬁ(z — Z) (O‘H)ﬁ(z — Z)
. _ a § 2¢ 6¢
Clz,wim) = ¢ <1+ 1+ 1 + 1 + ot
M(Z —2) M(z %) 2 (0 _
(4n—2)¢ * (4n+2)€ * (1 +9%) (w — w,)
- 1 + 1 + - ) <¢ " 1 +
—p(w—w,) —apw—w)  gpw—w) 47:11 (w —w,)
+ 1 + 1 + I 4t 1 +
2 (w — w,) 5y (W — w,) (w —w,)
An+1 (4n+3)y (4n+3)
+ 1 + 1 + 1 ) (35)

in the some neighbourhood of a point (z.,w.) € C x G(g,v;w), where G(g,v;,w) =
C\[yw# & — = k € 2},

(B) The T-BCF (3.4) and the C-BCF (3.5) converge to a function ui(z,w) on a
domainR(5, B, 7.; 2) X G(e,v;w), R(5, B, 221 2) = {z € C: | axg(5-+52)—arg(d.+52.)]| <
T}.

(C) Bicontinued fractions converge uniformly on a arbitrary compact set K C

R(0, 5, 2 2) X G(e,7;w).

Proof. It is proved in [13] that the coeflicients of expansion function (§ + 2)® into a
T-CF in the neighbourhood of a point z, € C\{—4d} are equals

iz (6 +2)%) = a(‘;j—) bon(24; (6 + 2)%) = 2Hfon<g Ei)—(i )+ =)
| = (3.6)

ban+1(2s; (6 + 2)%) = 2n + DI, (i —a)

(
"oty "N
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From (2.16) and (3.6) it follows that the coefficients of expansion of a function (§+ 52)“
into a T-CF in the neighbourhood of a point z, € C\{—4§/5} will be equals

n—1 . a
S bl 04 5 = e G B PR)

[Tio (i — )
oy @+ DI 0 —a)
b2n+1(z*7(5+62> )_ BH?:O(CV—FZ) (5_’_52,*)0[,17 neN.

We make the notation £ = § + [z.. Let the sequence {r;} be defined as follows

1 - 7,17 ) — « 7{17 + .
o = 17 r = aﬁfa’ Ty = O{’ o é_aHli[?l:(Oi<a jé_)l); Foni1 = 5 BHZI;[;(ZO(_Q/Q) Z)‘

= i
We shall be performed equivalent transforms (2.1) using the sequence {r;}. We shall
obtain the expansion of a function (§ + 52)® in the neighbourhood of a point z, €

C\{—0/p} into a T-CF

b (225 (5 + 52)7) = =

D+ par) =g (14 22 () (i)

(n—a)f(z—2) (n+a)b(z—2z) B
+ o+ 9 + <2n+1)£ _'_H_)a £—5+Bz*- (3.7)

We can rewrite a T-CF (3.7) in the form of a equivalent C-CF. From (2.18) we get

%(2 — Z) (1=2)8 (z — z) —(aﬂ)ﬂ(z — Z)
F@W5+5@ﬂ:fa<y+$ 1+ . 1 T . 1 +
n—a)f n+a)B
i S e (3.8)
+ - 1 + 1 + o)
Since
. (n—a)p (n+a)p 5
lim = lim =
A= 2)(0 + B) o (n+ )0+ f) A0+ =)
and

— 1
arg (% + 4_1) = arg <%> = arg(d + [z) — arg(d + Bz)
then by Theorem 7 we obtain that the continued fractions (3.7) and (3.8) will be
converge to the function (6 + £z)* on the domain R(4, 5, z,; z) and on an arbitrary
compact set Z C R(4, 3, z.; z) the continued fractions will be converge uniformly.

It is known ([11, 13|) that the coefficients of the expansion of a function tgw into
a T-CF in the neighbourhood of a point w, € C\{%’r, k € Z} are equals

dn + 1 1+ tg?w,
bant1 (Wi tgw) = 1T+ 2w bapya(zii tgw) = ————\
+ tg? w, tg w. (3.9)
(4n + 3) tg w, 1+ tg?w, '
ban, ot = . by b = — € Np.
an+3(Ws; tg W) i snta(Ws; G W) tg w0, n < No
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It follows from (2.16) and (3.9) that coefficients of expansion of a function tg(e + yw)
into a T-CF in the neighbourhood of a point w, € W = C\{(£2 — ¢)/v,k € Z} will
be equals

dn + 1 1447
bany1(ws; tg(e +yw)) = m,bmw(w*;tg(’f +w)) = — v
_ (4n + 3)y? _ 1+ 92
bants(ws; tg(e +yw)) = EETR banta(ws; tg(e +yw)) = v
were 1) = tg(e + ywy),n € Ny. We define the elements of the sequence {r;} as follows
W (1 +9?) v
n = 1 2 n = s n = 5 n - ) Np.
Fan+1 = V(1 +¢7), Tans 142 4t ” Tantd = 100 n € No

After equivalent transforms (2.1) we obtain the expansion of a function tg(e +~yw) into
a T-CF

Y14 (w —w.)  y(w —w,)
1 + 1+
Y(w—w,) v (w—w,) TP (w — w,)
+ 3+ 1 + -4+ 4dn+1 +
Y(w—w.)  y(w—w.) y(w—w,)
+ —1  + (dn+3)+ 1 ..o (310)

D(w; tg(e +yw)) = ¢ +

We find the coefficients of a C-CF using the formulas (2.18). We have expansion

AL+ —w)  —ybw—w) —gpw—w)

tgle +yw) =9 +

1 + 1 + 1 +
%(w — W) 4ﬁ1 (w —w,) 477:&1 (w —w,)
+ 1 + ot 1 + 1 +
s (W~ W) gy (W —ws) (3.11)
+ 1 + 1 '
Since
Y gl N (7 . gl
0, ————=£0, 1 = lim ———— =0, w,eW,
mii? (4n + 3)0) A (4n + 3)¢ v

then from Theorem 8 follows that a T-CF (3.10) and a C-CF (3.11) converge to
the function tg(e + yw) in the domain G(e,~v;w) and on an arbitrary compact set
W C G(g,7; w) continued fractions converge uniformly.

The function u; has the form (3.1), then this theorem follows from (3.2) and (3.3).

Remark 1. Let a be integer number, i.e. a € Z, then a function (6 + 2)* will be
represented by a finite T-CF ([13]).
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Ezample 2. Consider the function us(z, w) = €** In(S+~w), where a, 5,y € C\{0}.
Theorem 10. Let’s have a domain
L(B,7, ws;w) = {w: w e C\{=5/7},

(A) A function us(z,w) = e**In(B + yw) can be represented:
1) by a T-BCF

<7}

arg(8 + yw) — arg( + yw.)

alz—z,) alz—2z) alz—2z) alz—2z)

B(z,w;uy) = e** <1 +

1 + -2 + -3 + 2 +
a(z — z) alz — z,) Y(w — wy)
bt (LD IR — D+ (D)2 + --->(lm+f+

dw—w) Aw—w) Tyw-w) ylw—w)
+ 2 + 3T + 2 + 51 +

e —w) (= w,) )
4+t 2 4+ (277,—1—1)7' +~'~>’ T=[+yw, . (3.12)

2) by a C-BCF

az—2z) F(—z) §Fle—2) F(z—z)
1 + 1 + 1 + 1 +

C(z,w;uy) = e** (1 +

%<Z — Z*) 2(2;7,011) <Z - Z*) M('z - Z*) ) "
L 4t — T
z — Wk = W — Wy L W — Wk
<1n7- + T( ) 27( ) 67( )
1 + + 1 + 1 +
D (W~ We) sy (W W)
). (313)

in the neighbourhood of a point (z.,w,) € C x L(B, v, w.; w).

(B) Bicontinued fractions (3.12) and (3.13) converge to the function us in the
domain C x L(S,~, w.; w).
(C) Bicontinued fractions (3.12) and (3.13) converge uniformly on the on an arbitrary
compact set K C C x L(f3, v, w.; w).

Proof. It is well-known (|18, 19]) that the coefficients of the expansion of a function
e” in the neighbourhood of a point z, € C into a T-CF are equals

bon_1(24;€%) = (=1)""1(2n — 1), bon(24;€7) = (—=1)"2e*, neN. (3.14)

It follows from (2.16) and (3.14) that the coefficients of the expansion of a function e**
into a T—CF in the neighbourhood of a point z, € C will be equals

bon—1(24; %) = -y (2n — 1)e™ ™, boy(24;€Y) = (—1)"2e*, n e N.

(67
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If the sequence {r;} is defined as follows ry, 1 = @e®* ry, = e~ n € N, then after
equivalent transformations we obtain the expansion of a function e** into a T-CF

alz—z) alz—2z) alz—2z) alz—z) alz—z)

1 + -2 + -3 4+ 2 + 5 +
alz —z)  alz — z) alz — z4) alz — z4)
+ -2 4+ =7 4+ -+ (=DC2n-1)+ (-D)m2 + ) (3.15)

D(Z, 6&2) — 60[2’* (1 +

The expansion of a function into a C—CF will be written as follow

alz — z, 2z — 2z, Lz — 2z, 2z — z,
F(z;eaz) :eaz*(l_i_ ( ) 2 ( ) 6( ) 6 ( )
1+ 1+ 1+ 1+
5(2 — 2) 2(271():1)(2 — 2) m(z — Z) > (3.16)
+ 1 + -4 1 + 1 ) '
Since
N Jp——( =" 0
a2"*1(z*ﬂ ) - 2(2Tl _ 1) 7& ’ a2n<z*7 = 2(2n+ 1) 7&
and in addition
-« «

=) A Gy
it follows from Theorem 8 that continued fractions (3.15) and (3.16) converge to the
function e** on complex plane C and on an arbitrary compact set Z C C continued
fractions converge uniformly.
In the monograph [13] was proved that the coefficients of the expansion of a function
In(f8 + w) into a T-CF in the neighbourhood of a point w, € C\{—p3} takes values

ban—1(we;In(B+w)) = 2n —1)(B+wy), bop(we; In(f 4+ w)) = %, n € N. (3.17)

Similar to the previous case, it follows from (2.16) and (3.17) that the coefficients of
the expansion of a function In(S + ~yw) into a T-CF in the neighbourhood of a point
w, € W =C\{—3/6} are defined by formulae

2n +1

2
bon—1(ws; (B +yw)) = (B4 yw.),  ban(wi;In(f +yw)) = n e N.
Let the elements of the sequence {r;} be equals 79, 1 = 7,72, = n,n € N. After the
equivalent transforms (2.1) we get the extension of a function into a T-CF, i.e.

yw—w) A —w) A —w) 2w —w,)
T —+ 2 + 37 + 2 +
2y(w — w,) ny(w—w)  ny(w = w,)
e = « (3.18
+ 57 + -+ 2 + 2n+1)71 + - =B+, (318)

D(w; In(5 + 'yw)) =In7+
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In accordance by (2.18) the extension of a function into a C—CF will be written as

Y (o 2 B
F(w; In(s —l—’yw)) =Int+ Hw—w,) Fw-w) gw-w) Zw-—w)

L+ 1 + 1 + 1 +
%(w — w,) 2(2nzl)7<w —w,) m@" — W) (3.19)
+ 1 + -t 1 + 1 + .-
Since
lim vy = lim vy = v
ns00 2(2n — 1)(B + yw,) n—=02(2n+ 1)(B +yw,)  4(8 + yw.)
and

arg (% + i) = arg (ﬂ + 7w) — arg (5 + vw*),

then it follows from Theorem 7 that a T-CF (3.18) and a C-CF (3.19) converge to
the function In(f8 + yw) in the domain L(f, 7, w,;w) and on an arbitrary compact set
W C L(5,v,w,;w) continued fractions converge uniformly.

It follows from (3.2) and (3.3) that this theorem holds.

4. Conclusions

The new properties of Thiele reciprocal derivatives which proved in this work allow
obtaining a representation of functions of two variables in the form of the product of two
continued fractions. This technique can be naturally extended to the case of functions
of three, four or more variables. Also, the properties proved in this work together with
other properties of Thiele reciprocal derivatives allow us to find the extension of a
function f(« + (z) from the extension of a function f(z).
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