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1. Introduction

In this paper we consider a non-autonomous evolution problem which appears
in the investigation of the model of concentrated suspensions (proposed by Heb-
raud and Lequex [12]) with non-autonomous coefficients. More precisely, the
unknown function p(x, t), representing probability density, satisfies the following
equation:

∂p

∂t
= −b(t)∂p

∂x
+D(p)

∂2p

∂x2
− χR\[−1,1](x)p+

D(p)

α
δ0(x), (1.1)

where α > 0 is a parameter, χR\[−1,1] is the characteristic function of the open
set R \ [−1, 1], δ0 is the Dirac delta function with support at the origin,

D(f) = α

ˆ

|x|>1

f(x)dx,
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and the function b(t) is assumed to be non-autonomous. Moreover, mechanical
background of the model requires boundedness with respect to the time of the
average stress function

τ(t) =

ˆ

R

xp(t, x)dx.

Existence and uniqueness results for such model were proved in [4]. The theory
of global attractors was applied first for (1.1) in Amigó et al. [1], where the
existence of global unbounded attractors with respect to the weak topology was
proved for the case b(t) ≡ 0. Numerical aspects were investigated in [2,13]. The key
point in [4,13] was the analysis of the so-called vanishing viscosity approximation
system, where the diffusion coefficient was everywhere positive. In [3, 5–10, 14–
22] the existence of global attractor in the strong topology of the phase space
for m-semiflow generated by vanishing viscosity approximation was proved. Only
autonomous (i.e. b(t) ≡ const) case was considered. In the present paper we
extend results from [14] to much more general non-autonomous case, using the
uniform global attractor approach [11,23–26].

2. Setting of the problem and preliminaries

Let α > 0 be a positive constant, 0 ≤ ε � 1 be a small parameter, and
b : R+ → R be a measurable function. Consider the following evolution problem
with non-degenerate diffusion:

∂p

∂t
= −b(t)∂p

∂x
+ (D(p) + ε)

∂2p

∂x2
− χR\[−1,1](x)p+

D(p)

α
δ0(x), a.e. in R× R+;

(2.1)

p(x, t) ≥ 0, a.e. in R× R+; (2.2)ˆ
R
p(x, t)dx = 1, a.e. in R+; (2.3)

ˆ
R
|x|p(x, t)dx <∞, a.e. in R. (2.4)

Suppose that b is an essentially bounded function, that is, there exists a constant
B > 0 such that

|b(t)| ≤ B for a.e. t > 0. (2.5)

Further we will use the following notation:

Lp = Lp(R), H1 = H1(R), H−1 = (H1)∗,

for each 1 ≤ p ≤ ∞. Let 〈· , · 〉 be the pairing on H−1×H1 (on Lq×Lp respectively
with p ≥ 1 and 1 < q ≤ ∞ such that 1

p + 1
q = 1) that coincides with the inner

product on L2, that is,

〈f, u〉 =

ˆ
R
f(x)u(x)dx,



Attractors for viscosity approximations of complex flows 3

for each f ∈ L2 and u ∈ H1 (for each f ∈ Lq and u ∈ Lp, respectively).
Let 0 ≤ τ < T <∞ be arbitrary fixed. A solution of equation (2.1) on a finite

time interval [τ, T ] is defined as follows.

Definition 2.1. Let 0 < ε� 1. A function p ∈ L∞(τ, T ;L1 ∩ L2) ∩ L2(τ, T ;H1)
with ∂p

∂t ∈ L
2(τ, T ;H−1) is called a (weak) solution of equation (2.1) on [τ, T ], if

the equality

ˆ T

τ

(
〈∂p
∂t
, η〉+ b(t)〈∂p

∂x
, η〉+ (D(p( · , t)) + ε)〈∂p

∂x
,
∂η

∂x
〉+

ˆ
|x|>1

p · η dx

)
dt

=

ˆ T

τ

D(p( · , t))
α

〈δ0, η〉dt,

(2.6)
holds for each η ∈ L2(τ, T ;H1).

Remark 2.1. We note that the right hand-side of equality (2.6) is equal to

ˆ T

τ

D(p(t))

α
η(0, t)dt.

Remark 2.2. Let 0 < ε� 1, and p be a solution of equation (2.1) on [τ, T ]. Since
p ∈ L2(τ, T ;H1) and ∂p

∂t ∈ L
2(τ, T ;H−1), then p ∈ C([τ, T ];L2), and, therefore,

the following initial condition

p|t=τ = pτ (x), a.e. in R, (2.7)

makes sense for pτ ∈ L1 ∩ L2.

Let
X := {p ∈ L2(R) :

ˆ
R
|x| |p(x)| dx <∞},

which is a Banach space with the norm

‖p‖X := ‖p‖L2 +

ˆ
R
|x| |p(x)| dx, p ∈ X.

Remark 2.3. The embedding X ⊂ L1 ∩L2 is continuous. Moreover, X = L
1 ∩L2,

where
L

1
:= {p ∈ L1 :

ˆ
R
|x| |p| dx <∞}

is a Banach space with the following norm:

‖p‖
L

1 :=

ˆ
R

(1 + |x|) |p| dx, p ∈ L1
.

We understand condition (2.4) in the sense of the following definition.
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Definition 2.2. The solution p of equation (2.1) on [τ, T ] satisfies condition (2.4)
on [τ, T ] if xp ∈ L∞(τ, T ;L1).

Remark 2.4. Let p be a solution of equation (2.1) on [τ, T ]. Then xp ∈ L∞(τ, T ;L1)
if and only if p ∈ L∞(τ, T ;X).Moreover, since p ∈ L∞(0, T ;X), p ∈ C([0, T ];L2),
and X ⊂ L2, we have that p ∈ C([0, T ];Xw).

Let 0 < ε � 1 be arbitrary fixed. Cancès et al. [4, Proposition 2.1] proved
that for each pτ such that

pτ ∈ L1 ∩ L∞, pτ ≥ 0,

ˆ
R
pτ (x)dx = 1,

ˆ
R
|x|pτ (x)dx <∞, (2.8)

problem (2.1)–(2.4), (2.7) on [τ, T ] has a unique solution p. Moreover,

p ∈ L∞(R× (τ, T )), σp ∈ L∞
(
0, T ;L1

)
,

p ∈ C([τ, T ];L2 ∩ L1), D(p) ∈ C([τ, T ]),

and ˆ
R
p (t, σ) dσ = 1, p (t) ≥ 0 for all t ≥ 0. (2.9)

Therefore, the phase space for this problem can be defined as follows:

H := clXE, E := {p ∈ X : p ∈ L∞, p ≥ 0,

ˆ
R
p(x)dx = 1},

where clX is the closure in the space X (see Amigó et al. [1]). The convexity of
E implies the equality H = clXwE.

Remark 2.5. For 0 < ε � 1 it is easy to show that for every pτ ∈ E p ∈
C([τ, T ]; (L1 ∩ L∞)w). In particular, we have that p(t) ∈ E for each t ∈ [τ, T ].
Therefore, for each p ∈ H the following two conditions hold: (a) p(x) ≥ 0 for
a.e. x ∈ R, and (b)

´
R p(x)dx = 1 [1, p. 212]. Moreover, for each 0 < ε � 1,

0 ≤ τ < T <∞, and pτ ∈ H there exists no more than one solution p of problem
(2.1)-(2.3), (2.7) on [τ, T ].

The main goal of the present paper is to show the existence of uniform
global attractors in the strong topology of the phase space H for the m-semiflow
generated by the non-autonomous problem (2.1)–(2.4).

3. Existence and properties of solutions

In this section we provide results from [14] about existence and topological
properties of (2.1)-(2.4).

Let K+
τ,ε (D+

τ,ε) denotes the family of all globally defined solutions of problem
(2.1)-(2.3) ((2.1)-(2.4)) on [τ,∞) with p (τ) ∈ H. By definition, D+

τ,ε ⊆ K+
τ,ε
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Lemma 3.1. [14, Lemma 3.1] There exists a constant C > 0 such that, if

0 ≤ ε� 1, τ ≥ 0 and p ∈ K+
τ,ε with p(τ) ∈ H,

then p ∈ D+
τ,ε and the following inequality holds:

‖p(t)‖
L

1 ≤ ‖p(τ)‖
L

1e−
1
2

(t−τ) + C, (3.1)

for each t ≥ τ. Moreover, for each δ > 0 and a bounded set (in L
1) K ⊂ H

there exist constants T = T (δ,K) > 0 and k̄ = k̄(δ,K) > 0 such that for each
0 ≤ ε� 1, τ ≥ 0, and p ∈ K+

τ,ε with p(τ) ∈ K the following inequality holds:
ˆ
|x|>2k

p(x, t)|x|dx ≤ δ, (3.2)

for each t ≥ τ + T and k ≥ k̄.

Remark 3.1. According to Lemma 3.1, each globally defined solution p of problem
(2.1)–(2.3) on [τ,∞) with τ ≥ 0, 0 ≤ ε� 1, and p(τ) ∈ H, belongs to L∞(τ,∞;L

1
).

In particular, the following equality holds:

D+
τ,ε = {p ∈ K+

τ,ε : p(τ) ∈ H}.

The following result guaranties existence and dissipativity for the problem
(2.1)-(2.4).

Theorem 3.1. Let 0 < ε� 1. Then for every pτ ∈ H problem (2.1)–(2.4), (2.7)
on [τ, T ] has a unique solution p. Moreover, p ∈ C([τ, T ];H). Moreover, there
exists R0 > 0 such that for an arbitrary bounded (in L2) set K ⊂ H and for
arbitrary ε ∈ (0, 1) there exists a moment of time T = T (K, ε) such that for every
τ ≥ 0 and p ∈ D+

τ,ε satisfying p(τ) ∈ K the following inequality holds:

‖p(t)‖L2 ≤ R0, (3.3)

for each t ≥ τ + T.

The next result guaranties the continuous properties of solutions of (2.1)-(2.4).

Theorem 3.2. [14, Lemma 3.3] Let 0 ≤ τ < T < ∞, pnτ ∈ H, bn ∈ L∞(τ, T ),
and 0 < εn � 1 for each n = 0, 1, . . . . Suppose that |bn(t)| ≤ B for a.e. t ∈ (τ, T )
and pn ∈ C([τ, T ];Hw) be a solution of problem (2.1)–(2.4), (2.7) on [τ, T ] with
parameters pnτ , εn, bn, for each n ≥ 1. If

pnτ → p0
τ in Hw, εn → ε0 > 0, bn → b0 weakly-star in L∞(τ, T ),

then there exists a solution p ∈ C([τ, T ];Hw) of problem (2.1)–(2.4), (2.7) on
[τ, T ] with parameters p0

τ , ε0, b0, such that up to a subsequence the following con-
vergence holds:

pn → p in C([τ, T ];Hw). (3.4)

Moreover, if pnτ → p0
τ in H, then the following statements hold:
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(a) p, pn ∈ C([τ, T ];H) for each n ≥ 1;

(b) the following convergence holds for the entire sequence:

pn → p in L2(τ, T ;H1), (3.5)

pn → p in C([τ, T ];H). (3.6)

If, additionally, bn → b0 in the Lebesgue measure on [τ, T ], then

∂pn

∂t
→ ∂p

∂t
in L2(τ, T ;H−1). (3.7)

4. Existence and properties of uniform global attractors in the
non-autonomous case

To characterize the uniform long-time behavior of solutions for non-autonomous
dissipative dynamical system consider the united trajectory space K+

ε,∪ for the
family of solutions {K+

ε,τ}τ≥0 shifted to zero:

K+
ε,∪ :=

⋃
τ≥0

{
T (h)y( ·+ τ ) : y( · ) ∈ K+

ε,τ , h ≥ 0
}
, (4.1)

and the extended united trajectory space for the family {K+
ε,τ}τ≥0:

K+
ε := clCloc(R+;H)

[
K+
ε,∪
]
, (4.2)

where clCloc(R+;H)[ · ] is the closure in C loc(R+;H). Since T (h)K+
ε,∪ ⊆ K+

ε,∪ for
each h ≥ 0, then

T (h)K+
ε ⊆ K+

ε for each h ≥ 0, (4.3)

due to

ρCloc(R+;H)(T (h)u, T (h)v) ≤ ρCloc(R+;H)(u, v) for each u, v ∈ C loc(R+;H),

where ρCloc(R+;H) is the standard metric on Fréchet space C loc(R+;H). Therefore
the set

X := {y(0) : y ∈ K+
ε } (4.4)

is closed in H. We endow this set X with metric

ρX(x1, x2) = ‖x1 − x2‖X , x1, x2 ∈ X.

Then we obtain that (X,ρ) is a Polish space (complete separable metric space).
Let us define the multivalued semiflow (m-semiflow) Vε : R+ × X→ 2X:

Vε(t, y0) := {y(t) : y(·) ∈ K+
ε and y(0) = y0}, t ≥ 0, y0 ∈ X. (4.5)

According to (4.3) and (4.4) for each t ≥ 0 and y0 ∈ X the set Vε(t, y0) is
nonempty. Moreover, the following two conditions hold:
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(i) Vε (0, ·) = I is the identity map;

(ii) Vε (t1 + t2, y0) ⊆ Vε (t1, Vε (t2, y0)) , ∀t1, t2 ∈ R+, ∀y0 ∈ X,

where Vε (t,D) = ∪
y∈D

Vε (t, y) , D ⊆ X.

We denote by distX(C,D) = supc∈C infd∈D ρX(c, d) the Hausdorff semidistance
between nonempty subsets C andD of the Polish space X. Recall that the compact
set Θε ⊂ X is a global attractor of the m-semiflow Vε if it satisfies the following
conditions:

(i) Θε attracts each bounded subset B ⊂ X, i.e.

distX(Vε(t, B),Θε)→ 0, t→ +∞; (4.6)

(ii) Θε is negatively semi-invariant set, that is, Θε ⊆ Vε (t,Θε) for each t ≥ 0.

In this paper we examine the uniform long-time behavior of solution sets
{K+

τ,ε}τ≥0 in the strong topology of the natural phase space H (as time t→ +∞
for a fixed ε > 0) in the sense of the existence of a compact global attractor for
m-semiflow Vε generated by the family of solution sets {K+

τ,ε}τ≥0 and their shifts.

Theorem 4.1. For each ε > 0 the m-semiflow (4.5) has the connected stable
global attractor Θε in the phase space X. Moreover, Θε is bounded in H uniformly
in ε.

Proof. Due to Theorems 3.1, 3.2 and classical results about existence of global
attractors (see [21]) it is sufficient to prove that Vε is asymptotically compact,
that is,

every sequence {ξ̄n ∈ Vε(tn, pn0 )} is precompact in H,

where tn ↗ +∞, ‖pn0‖X ≤ r .
Let ξ̄n ∈ Vε(tn, p

n
0 ). Then ∃ξn : ‖ξn − ξ̄n‖X < 1

n and ξn = pn(tn), pn is a
solution of (2.1)–(2.4) with pn(0) = pn0 and bn( · ) := b( · + τn), τn ≥ 0. Therefore,
from Theorem 3.1

‖pn(t)‖X ≤ R0 + r, ∀ n ≥ 1, t ≥ 0. (4.7)

So we can claim that {ξn} is precompact in Hw. Indeed, since ‖ξn‖L2 ≤ R0 + r
then up to subsequence ξn → ξ in L2

w. Let us prove that up to a subsequence
ξn → ξ in L1

w. Since ξn = pn(tn), then (3.2) yields that for each δ > 0 there exist
k(δ) ≥ 1, n(δ) ≥ 1 such that

ˆ
|x|>k

ξn(x)|x|dx < δ

3
, ∀ k ≥ k(δ), n ≥ n(δ).

According to Amigó et al. [1, Lemma 6.1]

(L1)∗ = {ϕ = (1 + |x|)u : u ∈ L∞}.
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Thus, we set dn(x) = (1 + |x|)ξn(x) and prove that {dn} is a Cauchy sequence in
L1
w, because∣∣∣∣ˆ

R
(dn(x)− dm(x))u(x)dx

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
|x|≤k

(1 + |x|)(ξn(x)− ξm(x))u(x)dx

∣∣∣∣∣
+ 2‖u‖L∞

(ˆ
|x|>k

ξn(x)|x|dx+

ˆ
|x|>k

ξm(x)|x|dx

)
< δ,

for each u ∈ L∞ and n,m ≥ N = N(δ, k). Since the space L1 is weakly complete,
then up to a subsequence dn → d in L1

w for some d ∈ L1. Thus

ξn → ξ̄ =
d

1 + |x|
in L

1
w.

If we consider the restriction of ξn to each interval [−k, k], then we deduce that
ξ̄ = ξ and up to a subsequence ξn → ξ in Hw.

Now let us prove this convergence in the strong topology of H. Consider a
smooth real function θ that satisfies the following three conditions:

(a) θ(s) = 0, |s| ≤ 1;
(b) 0 ≤ θ(s) ≤ 1, |s| ∈ [1, 2];
(c) θ(s) = 1, |s| ≥ 2,

(4.8)

and define for k > 1
ρk(x) = θ(

x

k
).

According to Amigó et al. [1, pp. 215–216] after multiplying (2.1) by ρk(x)pn we
obtain

1

2

d

dt

ˆ
R
ρk(x)p2

ndx+ bn(t)

ˆ
R
ρk(x)pn

∂pn
∂x

dx

+(D(pn(·, t)) + εn)
(ˆ

R
ρk(x)

(
∂pn
∂x

)2

dx

+
1

k

ˆ
R
θ′(
x

k
)pn

∂pn
∂x

dx
)

+

ˆ
R
ρk(x)p2

ndx = 0.

(4.9)

Integrating by parts we deduce

bn(t)

ˆ
R

(ρk(x)pn
∂pn
∂x

dx = −bn(t)

2k

ˆ
R
θ′(
x

k
)p2
ndx,

1

k

ˆ
R
θ′(
x

k
)pn

∂pn
∂x

dx = − 1

2k2

ˆ
R
θ′′(

x

k
)p2
ndx.

Then from (4.9) we have

1

2

d

dt

ˆ
R
ρk(x)p2

ndx+

ˆ
R
ρk(x)p2

ndx ≤
(
Bβ

2k
+

(α+ 1)β

2k2

)ˆ
R
p2
ndx, (4.10)
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where β := max
|s|∈[1,2]

{|θ′(s)|+ |θ′′(s)|}.

Combining (4.7) and (4.10) we deduce from Gronwall’s Lemma that for some
positive constant C = C(r)
ˆ
|x|>2k

p2
n(x, t)dx ≤ e−2tr2 +

C(r)

k
, ∀ t ≥ 0, n ≥ 1, k > 1. (4.11)

On the other hand, for every solution of (2.1)–(2.4) we have the following
energy equality (for details see the proof of Lemma 3.2):

1

2

d

dt

ˆ
R

(p(x, t))2dx+ (D(p( · , t)) + ε)

ˆ
R

(
∂p(x, t)

∂x

)2

dx+

ˆ
|x|>1

(p(x, t))2dx

=
D(p( · , t))

α
〈δ0, p( · , t)〉.

(4.12)
Let us consider the functions

p̄n(t) = pn(t+ (tn − 1)), t ≥ 0.

Then p̄n is a solution of (2.1)–(2.4) with b̄n( · ) := bn( ·+tn−1) = b( ·+tn−1+τn),
p̄n(0) = pn(tn − 1), p̄n(1) = ξn and p̄n satisfies (4.7), (4.9), (4.12). Moreover,
similarly to the previous arguments we deduce that up to subsequence

p̄n(0) = pn(tn − 1)→ p̄0 in Hw.

Hence, from Lemma 3.2 we obtain for every T > 1 that

p̄n → p̄ in C([0, T ];Hw), (4.13)

where p̄ is a solution of (2.1)–(2.4) with p̄(0) = p̄0 and some b̄ ∈ L∞(0,+∞) such
that b̄n → b weakly star in L∞(0, T ) for each T > 0. In particular, |b̄(t)| ≤ B for
a.e. t > 0.

Since ε > 0 is fixed, we can derive from (4.7), (4.12) and the Aubin-Lions
theorem [16] that for every k > 1 up to subsequence

p̄n → p̄ in L2(0, T ;L2(−k, k)).

In particular,

p̄n(t)→ p̄(t) in L2(−k, k) for a.a. t ∈ (0, T ).

By a diagonal procedure we obtain that up to a subsequence and for some
τ ∈ (0, 1),

p̄n(τ)→ p̄(τ) in L2(−k, k), ∀ k ≥ 1. (4.14)

From (4.11) we get
ˆ
|x|>2k

p̄2
n(x, τ)dx ≤ e−2(τ+tn−1)r2 +

C(r)

k
, ∀ n ≥ 1, k > 1. (4.15)
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Combining (3.2), (4.14), (4.15) we have

p̄n(τ)→ p̄(τ) in X.

Then the second part of Theorem 3.2 guarantees the convergence

p̄n → p̄ in C([τ, T ];H).

In particular,
ξn = p̄n(1)→ p̄(1) in H.

Thus we obtain the required precompactness of {ξn} and, therefore, the existence
of the connected, stable global attractor Θε.
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9. A. Giménez, F. Morillas, J. Valero, J.M. Amigó, Stability and numerical
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12. P. Hébraud, F. Lequeux, Mode-coupling theory for the pasty rheology of soft
glassy materials, Phys. Rev. Lett., 81(1998), 2934–2937.

13. O.V. Kapustyan, J. Valero, P.O. Kasyanov, A. Giménez, J.M. Amigó,
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Abstract. We study here Dirichlet boundary value problem for a quasi-linear elliptic
equation with anisotropic p-Laplace operator in its principle part and L1-control in
coefficient of the low-order term. As characteristic feature of such problem is a specification
of the matrix of anisotropy A = Asym + Askew in BMO-space. Since we cannot expect
to have a solution of the state equation in the classical Sobolev space W 1,p

0 (Ω), we
specify a suitable functional class in which we look for solutions and prove existence
of weak solutions in the sense of Minty using a non standard approximation procedure
and compactness arguments in variable spaces.
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1. Introduction

In this paper we deal with the following boundary value problem{
−∆p(A, y) + |y|p−2yu = −div f in Ω, y = 0 on ∂Ω,

u ∈ L1(Ω), u(x) ≥ 0 a.e. in Ω ,
(1.1)

where
−∆p(A, y) = −div

(
|(∇y,A∇y)|

p−2
2 A∇y

)
(1.2)

is the anisotropic p-Laplacian, 2 ≤ p < +∞, A is the matrix of anisotropy,
yd ∈ L2(Ω) and f ∈ L∞(Ω;RN ) are given distributions.

The interest to elliptic equations whose principal part is an anisotropic p-
Laplace operator arises from various applied contexts related to composite mate-
rials such as nonlinear dielectric composites, whose nonlinear behavior is modeled
by the so-called power-low (see, for instance, [1,21] and references therein). From
mathematical point of view, the interest of anisotropic p-Laplacian lies on its
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nonlinearity and an effect of degeneracy, which turns out to be the major difference
from the standard Laplacian on RN . As characteristic feature of boundary value
problem (1.1) is a specification of the matrix of anisotropy A = B + D, where
B := Asym = (A+At)/2 andD := Askew = (A−At)/2, and the control u ∈ L1(Ω).
In particular, we assume that the matrix A is such that

α2(x)I ≤ B(x) ≤ β2(x)I a. e. in Ω,

where α, β ∈ L1(Ω), β(x) ≥ α(x) ≥ 0 almost everywhere in Ω, α 6∈ L∞(Ω),
α−1 ∈ L1(Ω), and α, α−1, and β extended by zero outside of Ω are in BMO(RN ).

We note that these assumptions on the class of admissible matrices are essen-
tially weaker than they usually are in the literature (see, for instance, [8, 9,
11, 19, 20]). In fact, we deal with the Dirichlet boundary value problem (BVP)
for degenerate anisotropic elliptic equation with unbounded coefficients in its
principal part and with L1-bounded control in the coefficient of the low-order
term. It is well-known that such BVP can exhibit the so-called Lavrentieff pheno-
menon, non-uniqueness of the weak solutions as well as other surprising consequen-
ces (see, for instance, [2,4]). As a result, the existence, uniqueness, and variational
properties of the weak solution to the above BVP usually are drastically different
from the corresponding properties of solutions to the elliptic equations with coer-
cive L∞-matrices of anisotropy (we refer to [6,26–28,31] for the details and other
results in this field). Another distinguishing feature of the boundary value problem
(3.1)–(3.2) is the fact that the skew-symmetric part D of the matrix A is merely
measurable and its sub-multiplicative norm belongs to the BMO-space (rather
than the space L∞

(
Ω
)
). This circumstance can entail a number of pathologies with

respect to the standard properties of BVPs for elliptic equations with anisotropic
p-Laplacian even with ’a good’ symmetric part A and a smooth right-hand side f .
In particular, the unboundedness of the skew-symmetric part of matrix A ∈Mad

can have a reflection in non-uniqueness of weak solutions to the corresponding
boundary value problem. For more details and other types of solutions to elliptic
equations with unbounded coefficients we refer to [7,14–16,33]. So, in contrast to
the paper [32], where the author consider the case of well-posed Dirichlet boundary
value problem for a quasi-linear elliptic equation with unbounded coefficients in
its principal part, we deal with an ill-posed boundary value problem.

We introduce a special functional space Xu,B related to a given control u and
symmetric part B of matrix A, and prove (see Theorem 4.1) that the original
boundary value problem admits weak solutions in the sense of Minty. Moreover,
we show that for every control u ∈ L1(Ω), a weak solutions (in the sense of Minty)
to the corresponding BVP can be obtained as the limit of solutions to coercive
problems with bounded coefficients, using any L∞-approximation of BMO-matrix
A. Such solutions are called approximation solutions in [33]. Their characteristic
feature is the fact that they lay in variable space Xu,B and, in general, do not
satisfy the energy equality but rather some energy inequality. We also derive a
priori estimates for such solutions that do not depend on the skew-symmetric
part D of matrix A. As a bi-product of our approach, we derive the conditions
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guaranteeing the equality H1,p
0,B(Ω) = W 1,p

0,B(Ω), i.e. we establish the density of
smooth compactly supported functions in W 1,p

0,B(Ω).

2. Notation and Preliminaries

Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz boundary.
Let p be a real number such that 2 ≤ p < ∞, and let q = p/(p − 1) be the
conjugate of p. Let MN be the set of all N ×N real matrices. We denote by SNskew
and SNsym the set of all skew-symmetric and symmetric matrices, respectively. We
always identify each matrix A ∈ MN with the decomposition A = B +D, where
B := 1

2

(
A+At

)
∈ SNsym and D := 1

2

(
A−At

)
∈ SNskew. Moreover, applying the

Cholesky method to the symmetric part of matrix A (see Isaacson and Keller
[30]), we deduce the existence of a lower triangular matrix L such that B(x) :=
1
2

(
A(x) +At(x)

)
= Lt(x)L(x). In what follows, by matrix norm in MN we mean

a sub-multiplicative norm

‖A‖ := sup
|ξ|6=0

ξ∈RN

{
|Aξ|
|ξ|

}
=
(
maximal eigenvalue of AtA

)1/2 a.e. in Ω.

BMO-Functions Defined on Bounded Domains. We recall that a function g
on RN belongs to the space BMO(RN ) if g ∈ L1

loc(RN ) and

‖g‖BMO(RN ) := sup
1

|Q|

ˆ
Q
|g − gQ| dx < +∞,

where gQ = −
ˆ
Q
g dx :=

1

|Q|

ˆ
Q
g dx, Q = Q(x, r) is a ball centered at x and of

radius `(Q) = r, and the supremum is taken over all balls Q ⊂ RN . Obviously,
L∞(RN ) ⊂ BMO(RN ). As an example of unbounded function in BMO(RN ), one
can take ln |x|.

For our further analysis, we make use of the following result: if g ∈ BMO(RN )
then the John-Nirenberg estimate

−
ˆ
Q
|g − gQ|p dx ≤ Cp,Ω‖g‖BMO(RN ) for all p ≥ 1 (2.1)

holds for any ball Q ⊂ RN (see [13]).
Let L1(Ω)

N(N+1)
2 = L1

(
Ω;SNsym

)
be the space of measurable absolutely integ-

rable functions whose values are symmetric matrices. By BMO(Ω; SNskew) we
denote the space of all skew-symmetric matrices D = [dij ] (the-so-called matrices
of bounded mean oscillation) such that D ∈ L1(Ω;SNskew) and their sub-multipli-
cative norm extended by zero to the entire RN is in BMO(RN ). The similar
specification holds for the space BMO(Ω;MN ).
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Matrices with Degenerate Eigenvalues. Let α, β be given elements of L1(Ω)
satisfying the conditions

α−1 ∈ L1(Ω), α−1 6∈ L∞(Ω), 0 ≤ α(x) ≤ β(x) a.e. in Ω, (2.2)

α, α−1, β extended by zero outside of Ω are in BMO(RN ). (2.3)

Remark 2.1. As immediately follows from the John-Nirenberg estimate (2.1) and
assumption (2.3), we have

‖α−1‖rLr(Ω) ≤ 2r−1

ˆ
Ω
|α−1 − α−1

Q |
r dx+ 2r−1

(
1

|Q|

ˆ
Q
α−1 dx

)r
|Ω|

≤ 2r−1|Q|
[
−
ˆ
Q
|α−1 − α−1

Q |
r dx+

|Ω|
|Q|r+1

(ˆ
Ω
α−1 dx

)r]
by (2.1)
≤ CQ,r

(
‖α−1‖BMO(RN ) + ‖α−1‖rL1(Ω)

)
∀ r > 1. (2.4)

Here, Q is a ball such that Ω ⊂ Q, and α−1
Q = −

ˆ
Q
α−1 dx. The similar estimates

hold true for α and β. So, we can suppose that α, α−1, β ∈ Lr(Ω) for all r ≥ 1
provided the conditions (2.2)–(2.3) hold true.

We define the class of matrices Mad as follows

Mad(Ω) =


A ∈MN

∣∣∣∣∣∣∣∣∣∣∣∣∣

A = B +D = 1
2

(
A+At

)
+ 1

2

(
A−At

)
,

α2‖η‖2 ≤ (η,Bη) ≤ β2‖η‖2 a.e. in Ω ∀ η ∈ RN ,
B(x) = Lt(x)L(x) a.e. in Ω,

D ∈ BMO(Ω; SNskew),

α and β satisfy conditions (2.2)–(2.3).


.

(2.5)

Remark 2.2. Here, in view of the estimate (η,Bη) ≥ α2‖η‖2 a.e. in Ω ∀ η ∈ RN ,
L is a triangular matrix with positive (a.e. in Ω) diagonal elements. Moreover, for
a fixed A ∈Mad, conditions (2.2)–(2.5) imply the following inequalities:

‖L‖BMO(Ω;MN ) ≤ ‖β‖BMO(RN ) < +∞, (2.6)

(B(x)ξ, ξ) = |L(x)ξ|2 ≤ β2(x)|ξ|2 a. e. in Ω, ∀ ξ ∈ RN (2.7)∣∣L−1(x)ξ
∣∣2 ≤ α−2(x)|ξ|2 a. e. in Ω, ∀ ξ ∈ RN , (2.8)

and, therefore,

‖L(x)‖ ≤ β(x) and ‖L−1(x)‖ ≤ α−1(x) a. e. in Ω, (2.9)

L,L−1 ∈ BMO(Ω;MN ). (2.10)
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Weighted Sobolev Spaces. To each matrixA ∈Mad(Ω) we can formally associate
two weighted Sobolev spaces: W 1,p

0,B(Ω) and H1,p
0,B(Ω), where W 1,p

0,B(Ω) is the set of
functions y ∈W 1,1

0 (Ω) for which the norm

‖y‖
W 1,p

0,B(Ω)
=
( ˆ

Ω

(
|y|p + |(∇y,B∇y)|

p
2
)
dx
)1/p

(2.11)

is finite, and H1,p
0,B(Ω) is the closure of C∞0 (Ω) with respect to the norm (2.11).

As follows from the definition of the class Mad and estimatesˆ
Ω
|y| dx ≤

(ˆ
Ω
|y|p dx

)1/p
|Ω|1/q ≤ C‖y‖

W 1,p
0,B(Ω)

, ∀ y ∈W 1,p
0,B(Ω), (2.12)

ˆ
Ω
|∇y| dx ≤

(ˆ
Ω
|∇y|pαp dx

)1/p(ˆ
Ω
α−q dx

)1/q

≤
(ˆ

Ω
|(∇y,B(x)∇y)|p/2 dx

)1/p
‖α−1‖Lq(Ω) ≤ C‖y‖W 1,p

0,B(Ω)
, (2.13)

the spaceW 1,p
0,B(Ω) is complete with respect to the norm ‖·‖

W 1,p
0,B(Ω)

. It is clear that

H1,p
0,B(Ω) and W 1,p

0,B(Ω), for p ≥ 2, are uniformly convex reflexive Banach spaces
such that H1,p

0,B(Ω) ⊆ W 1,p
0,B(Ω) (see, for instance [10]). In general, the identity

W 1,p
0,B(Ω) = H1,p

0,B(Ω) is not always valid (for the corresponding examples, we refer
to [5]).

Further we make use of the following observation. If we introduce the parameter
ps by ps := ps/(s + 1) < p with a certain s > 0 and use the Hölder inequality
with the parameter r = s+1

s = p
ps
> 1, we obtain

ˆ
Ω
|∇y|ps dx =

ˆ
Ω
|∇y|psαpsα−ps dx

≤
( ˆ

Ω
|∇y|pαp dx

)ps/p(ˆ
Ω
α−s−1 dx

)1/(s+1)

≤
( ˆ

Ω
|(∇y,B(x)∇y)|p/2 dx

)s/(s+1)
‖α−1‖Ls+1(Ω)

by (2.4)
≤ C‖y‖

ps
p

H1,p
0,B(Ω)

, (2.14)
ˆ

Ω
|y|ps dx ≤

( ˆ
Ω
|y|p dx

)s/(s+1)
|Ω|1/(s+1) ≤ C‖y‖

ps
p

H1,p
0,B(Ω)

. (2.15)

Hence, each function y ∈ H1,p
0,B(Ω) belongs to the non-weighted space W 1,ps

0 (Ω).
Combining this fact with the Sobolev embedding theorem, we deduce:

if s >
N

p
then p∗s =

Nps
N − ps

> p,

and, therefore, we have the compact embedding

W 1,ps
0 (Ω) ↪→ Lr(Ω) and H1,p

0,B(Ω) ↪→ Lr(Ω),

1 ≤ r < p∗s = Nps
(N−p)s+N .

(2.16)
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Moreover, as follows from (2.16) and (2.14), the following the weighted Friedrichs
inequality

‖y‖Lp(Ω)

by (2.16)
≤ C‖y‖

W 1,ps
0 (Ω)

= C‖∇y‖Lps (Ω)N

by (2.14)
≤ C‖α−1‖1/ps

Ls+1(Ω)

(ˆ
Ω
|(∇y,B(x)∇y)|p/2 dx

)1/p

holds true for each y ∈ H1,p
0,B(Ω). Hence, the norm

‖y‖
H1,p

0,B(Ω)
=
( ˆ

Ω
|(∇y,B∇y)|

p
2 dx

)1/p
(2.17)

on the space H1,p
0,B(Ω) is equivalent to the norm ‖ · ‖

W 1,p
0,B(Ω)

defined by (2.11).

Weak Convergence in Variable Lp-Spaces Associated with SNsym-Matrices. Let
{Bk}k∈N and B be a given collection of SNsym-matrices such that

Bk, B ∈ L1(Ω;SNsym) and Bk ⇀ B in L1(Ω;SNsym). (2.18)

Let Lp(Ω, B dx)N , with p ≥ 2, be the Lebesgue space of measurable vector-valued
functions f(x) ∈ RN on Ω such that

‖f‖Lp(Ω,B dx)N =
(ˆ

Ω
|(f,Bf)|

p
2 dx

)1/p
< +∞.

We say that a sequence
{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N is bounded if

lim sup
k→∞

ˆ
Ω
|(vk, Bkvk)|

p
2 dx < +∞.

Definition 2.1. A bounded sequence
{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N is weakly con-

vergent to a function v ∈ Lp(Ω, B dx)N in variable space Lp(Ω, Bk dx)N if

lim
k→∞

ˆ
Ω

(ϕ,Bkvk) dx =

ˆ
Ω

(ϕ,Bv) dx ∀ϕ ∈ C∞0 (Ω)N . (2.19)

Definition 2.2. A sequence
{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N is said to be strongly

convergent to a function v ∈ Lp(Ω, A dx)N if

lim
k→∞

ˆ
Ω

(bk, Bkvk) dx =

ˆ
Ω

(b, Bv) dx (2.20)

whenever bk ⇀ b in Lq(Ω, Bk dx)N as k →∞, where q = p/(p− 1) is the Holder
conjugate of p.

Remark 2.3. Note that in the case Bk ≡ B, Definitions 2.1–2.2 leads to the well-
known notion of convergence in weighted Lebesgue space Lp(Ω, B dx)N .
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The main properties of the weak and strong convergence in Lp(Ω, Bk dx)N can
be expressed as follows (see [17,18] for the details):

Proposition 2.1. If a sequence
{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N is bounded and con-

dition (2.18) holds true, then it is compact with respect to the weak convergence
in Lp(Ω, Bk dx)N .

Proposition 2.2. If the sequence
{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N converges weakly to

v ∈ Lp(Ω, B dx)N and condition (2.18) holds true, then

lim inf
k→∞

ˆ
Ω
|(vk, Bkvk)|

p
2 dx ≥

ˆ
Ω
|(v,Bv)|

p
2 dx. (2.21)

Proposition 2.3. Assume the condition (2.18) holds true. Then the weak conver-
gence of a sequence

{
vk ∈ Lp(Ω, Bk dx)N

}
k∈N to v ∈ Lp(Ω, B dx)N and

lim
k→∞

ˆ
Ω
|(vk, Bkvk)|

p
2 dx =

ˆ
Ω
|(v,Bv)|

p
2 dx (2.22)

are equivalent to the strong convergence of {vk}k∈N to v in Lp(Ω, Bk dx)N .

We make also use of the following inequality that was established by Maz’ya
in 1972 [23]. If µ is a positive Radon measure, then(ˆ

Ω
|ϕ|r dµ

)1/r

≤ CM
ˆ

Ω
|∇ϕ| dx ∀ϕ ∈ C∞0 (Ω), ∀ r ∈ [1,∞), (2.23)

with the best constant

CM = sup
Ω′⊂Ω

µ(Ω′)1/r

HN−1(∂Ω′)
(2.24)

where the supremum in (2.23) is taken over all open subsets of Ω, with C∞-boun-
dary, such that Ω′ ⊂ Ω.

3. Setting of the Boundary Value Problem

Let yd ∈ L2(Ω) and f ∈ L∞(Ω)N be given distributions. For a fixed A ∈Mad,
we consider the following boundary value problem:

−div
(
|(∇y,A∇y)|

p−2
2 A∇y

)
+ |y|p−2yu = −div f in Ω, (3.1)

y = 0 on ∂Ω, (3.2)

u ∈ L1(Ω), u(x) ≥ 0 a.e. in Ω, (3.3)

where we adopt u as a given control function.
It is worth to notice that, in view of the definition of the setMad, we deal with a

boundary value problem for degenerate quasi-linear elliptic equation with singular
coefficients. It means that even for symmetric matrices of coefficients A ∈ Mad
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this problem can exhibit the Lavrentieff phenomenon (i.e. W 1,p
0,B(Ω) 6= H1,p

0,B(Ω))
and, as a consequence, non-uniqueness of the weak solutions. Thus, the original
boundary value problem (3.1)–(3.2) is ill-posed, in general.

The another distinguishing feature of the boundary value problem (3.1)–
(3.2) is the fact that the skew-symmetric part D of the matrix A ∈ Mad is
merely measurable and belongs to the space BMO

(
Ω;MN

)
(rather than the

space of bounded matrices L∞
(
Ω;MN

)
). This circumstance can entail a number of

pathologies with respect to the standard properties of BVPs for elliptic equations
with anisotropic p-Laplacian even with ’a good’ symmetric part B of A and a
smooth right-hand side f . In particular, the unboundedness of the skew-symmetric
part of matrix A ∈Mad can have a reflection in non-uniqueness of weak solutions
to the corresponding boundary value problem. For more details and other types of
solutions to elliptic equations with unbounded coefficients we refer to [7,14–16,33].

We associate to the boundary value problem (3.1)–(3.2) the following space
Xu,B = H1,p

0,B(Ω) ∩ Lp(Ω, u dx). Here, Lp(Ω, u dx) is a usual Banach space with
respect to the measure dµ = u dx. Since u ∈ L1(Ω) and u(x) ≥ 0 a.e. in Ω,
it follows that µ is a positive Radon measure and, hence, the space H1,p

0,B(Ω) ∩
Lp(Ω, u dx) is well defined and it is a Banach space with respect to the norm
(see [3])

‖y‖Xu,B =

(ˆ
Ω
|(∇y,B∇y)|

p
2 dx+

ˆ
Ω
|y|pu dx

)1/p

=

(
‖y‖p

H1,p
0,B(Ω)

+ ‖y‖pLp(Ω,u dx)

)1/p

.

Definition 3.1. We say that, for a fixed control u and given distributions A ∈
Mad, and f ∈ L∞(Ω)N , a function y = y(A, u, f) is a weak solution (in the sense
of Minty) to boundary value problem (3.1)–(3.2) if y ∈ Xu,B and the inequality
ˆ

Ω
|(∇ϕ,A∇ϕ)|

p−2
2 (A∇ϕ,∇ϕ−∇y) dx+

ˆ
Ω
|ϕ|p−2ϕ(ϕ− y)u dx

≥
ˆ

Ω
(f,∇ϕ−∇y) dx (3.4)

holds for any ϕ ∈ C∞0 (Ω).

To begin with, let us show that this definition makes a sense. Indeed, by the
initial assumptions and Hölder’s inequality, we have
ˆ

Ω
(f,∇ϕ−∇y) dx =

ˆ
Ω

((L−1)tf, L∇ϕ− L∇y) dx

≤ ‖f‖L∞(Ω)N

ˆ
Ω
‖L−1‖|L∇ϕ− L∇y| dx

by (2.9), (2.17)
≤ ‖f‖L∞(Ω)N ‖α−1‖Lq(Ω)‖ϕ− y‖H1,p

0,B(Ω)
≤ C‖ϕ− y‖Xu,B (3.5)
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and
ˆ

Ω
|ϕ|p−2ϕ(ϕ− y)u dx ≤ ‖ϕ‖p−1

Lp(Ω,u dx)‖ϕ− y‖Lp(Ω,u dx) ≤ C‖ϕ− y‖Xu,B . (3.6)

As for the first term in (3.4), we observe that

|(∇ϕ,A∇ϕ)|
p−2

2 = |(L∇ϕ,
[
I + (Lt)−1DL−1︸ ︷︷ ︸

T

]
L∇ϕ)|

p−2
2 ≤ ‖T‖

p−2
2 |L∇ϕ|p−2

and, therefore,
ˆ

Ω
|(∇ϕ,A∇ϕ)|

p−2
2 (A∇ϕ,∇ϕ−∇y) dx

≤
ˆ

Ω
‖T‖

p−2
2 |L∇ϕ|p−2

(
TL∇ϕ,L∇ϕ− L∇y

)
dx

≤
ˆ

Ω
‖T‖

p
2 |L∇ϕ|p−1|L∇ϕ− L∇y| dx

≤ ‖ϕ‖p−1
C1(Ω)

ˆ
Ω
‖T‖

p
2βp−1|L∇ϕ− L∇y| dx

≤ ‖ϕ‖p−1
C1(Ω)

(ˆ
Ω
‖T‖

pq
2 βp dx

)1/q

‖ϕ− y‖
H1,p

0,B(Ω)
. (3.7)

Since,
ˆ

Ω
‖T‖

pq
2 βp dx ≤

ˆ
Ω

(
1 + α−2‖D‖

) pq
2 βp dx

≤ 2pq−1

ˆ
Ω

(
βp +

(
α−qβ

)p ‖D‖ pq2 ) dx
≤ 2pq−1

[
‖β‖pLp(Ω) + ‖α−1‖pq

L4pq(Ω)
‖β‖p

L4p(Ω)
‖D‖

pq
2

Lpq(Ω;SNskew)

]
by (2.4)
< +∞,

it follows from (3.7) that
ˆ

Ω
|(∇ϕ,A∇ϕ)|

p−2
2 (A∇ϕ,∇ϕ−∇y) dx ≤ C‖ϕ− y‖Xu,B . (3.8)

Thus, the well posedness of each term in the variational inequality (3.4) and,
hence, the consistency of the definition of the weak solution in the sense of Minty
to the considered boundary value problem, obviously follows from the estimates
(3.5)-(3.6), (3.8).

Remark 3.1. The estimate (3.8) and the fact that (∇ϕ(x), D(x)∇ϕ(x)) = 0 a.e.
in Ω by the skew-symmetry property of D, imply that the variational inequality
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(3.4) can be rewritten as follows

ˆ
Ω
|(∇ϕ,B∇ϕ)|

p−2
2 (A∇ϕ,∇ϕ−∇y) dx+

ˆ
Ω
|ϕ|p−2ϕ(ϕ− y)u dx

≥
ˆ

Ω
(f,∇ϕ−∇y) dx. (3.9)

Getting inspired by this, we call a function y ∈ Xu,B a weak solution (in the sense
of Minty) to boundary value problem (3.1)–(3.2) if it satisfies the inequality (3.9)
for every test function ϕ ∈ C∞0 (Ω).

Taking this remark into account, it is reasonable to consider another definition
of the weak solution to the given boundary value problem, in the terms of distribu-
tions, which appears more natural:

y ∈ Xu,B is the distributional solution to (3.1)–(3.2) if the integral identityˆ
Ω
|(∇y,B∇y)|

p−2
2 (A∇y,∇ϕ) dx+

ˆ
Ω
|y|p−2yϕu dx =

ˆ
Ω

(f,∇ϕ) dx (3.10)

holds true for every ϕ ∈ C∞0 (Ω).

In spite of the fact that the relations between these definitions are very
intricate for general matrix A ∈ Mad (for an example when these definitions
lead to the different solutions even for linear equations, we refer to [25]), we can
leverage the integral identity (3.10) for the following estimate∣∣∣ ˆ

Ω
|(∇y,B∇y)|

p−2
2 (A∇y,∇ϕ) dx

∣∣∣
≤
ˆ

Ω
|y|p−1u

p−1
p |ϕ|u

1
p dx+

ˆ
Ω
|(L−1)tf ||L∇ϕ| dx

≤ ‖y‖p−1
Lp(Ω,u dx)‖ϕ‖Lp(Ω,u dx) + ‖f‖L∞(Ω)N ‖α−1‖Lq(Ω)‖ϕ‖H1,p

0,B(Ω)

≤
[
‖y‖p−1

Lp(Ω,u dx) + ‖f‖L∞(Ω)N ‖α−1‖Lq(Ω)

]
‖ϕ‖Xu,B

= C (y, u,B, f) ‖ϕ‖Xu,B . (3.11)

Remark 3.2. As follows from (3.11), a weak solution to the considered problem
in the sense of distribution belongs to the special subset D(Xu,B) of the space
Xu,B := H1,p

0,B(Ω)∩Lp(Ω, u dx), elements of which possess the property (3.11). As
a result, if y ∈ D(Xu,B) then the mapping

ϕ 7→ [y, ϕ]A :=

ˆ
Ω
|(∇y,B∇y)|

p−2
2 (A∇y,∇ϕ) dx

can be defined for all test functions ϕ ∈ Xu,B using the standard rule

[y, z]A = lim
k→∞

[y, ϕk]A
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where {ϕk}k∈N ⊂ C∞0 (Ω) and ϕk → z strongly in Xu,B (it is the case when
we essentially use the fact that C∞0 (Ω) is dense in H1,p

0,B(Ω) ∩ Lp(Ω, u dx)). In
particular, if y ∈ D(Xu,B), then we can define the value [y, y]A and this one is
finite for every y ∈ D(Xu,B), although the "integrand"

|(∇y,B∇y)|
p
2 + |(∇y,B∇y)|

p−2
2 (D∇y,∇y)

needs not be integrable on Ω, in general. As a result, we can derive form (3.10)
the energy equality for distributional solutions

[y, y]A +

ˆ
Ω
|y|pu dx =

ˆ
Ω

(f,∇y) dx. (3.12)

However, as it follows from definition of the form [y, ϕ]A, the value [y, y]A is not
equal to ‖y‖p

H1,p
0,B(Ω)

, in general, and it does not preserve the inequality

[y, y]A ≥ ‖y‖p
H1,p

0,B(Ω)
for all y ∈ D(Xu,B).

Hence, even if the relation H1,p
0,B(Ω) = W 1,p

0,B(Ω) holds true, the energy equality
(3.12) does not allow us to derive a reasonable a priory estimate in ‖ · ‖Xu,B -norm
for the weak solutions in the sense of distributions.

4. On Solvability of Boundary Value Problem (3.1)–(3.3)

Our main intension in this section is to show that boundary value problem
admits a weak solution due to the approximation approach. It is clear that
the condition A ∈ Mad(Ω) ensures the existence of the sequence of matrices
{Ak}k∈N ⊂ Mad(Ω) ∩ L∞(Ω;MN ) such that Ak → A strongly in L1(Ω;MN ).
With that in mind we give a few auxiliary results.

Lemma 4.1. Let {Ak}k∈N ⊂Mad(Ω) and A ∈Mad(Ω) be matrices such that

Ak ∈ L∞(Ω;MN ) ∀ k ∈ N, (4.1)

Ak → A strongly in L1(Ω;MN ), (4.2)

(η,Akη) ≥ α2
k|η|2 a.e. in Ω ∀ η ∈ RN

and for some positive αk ∈ R, αk ≥ α(x). (4.3)

Then
L−1
k → L−1 and Tk → T strongly in L1(Ω;MN ), (4.4)

where

Bk :=
1

2
(Ak +Atk) = LtkLk, B :=

1

2
(A+At) = LtL,

Tk := I + (Ltk)
−1DkL

−1
k , T := I + (Lt)−1DL−1, (4.5)

Dk :=
1

2
(Ak −Atk), D :=

1

2
(A−At).
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Remark 4.1. The simplest way to construct a sequence {Ak}k∈N ⊂ Mad(Ω),
possessing the properties (4.1)–(4.3), is to set

Ak = k−1I + [max {min {aij , k} ,−k}]Ni,j=1

or apply the procedure of the direct Steklov smoothing to a given matrix A ∈
Mad(Ω) with some positive compactly supported smooth kernel (see, for instance,
[15]).

Proof. The conditions (4.1)–(4.3) ensure that B−1
k ∈ L∞(Ω; SNsym) for all k ∈ N

and (up to a subsequence)

Dk(x)→ D(x) and L−1
k (x)→ L−1(x) a.e. in Ω.

Moreover, since αk ≥ α a.e. in Ω, it follows that

‖L−1
k (x)‖ ≤ α−1

k ≤ α
−1(x) a.e. in Ω,

where α−1 ∈ L1(Ω) (see (2.2)). Hence, the sequence
{
L−1
k

}
k∈N is equi-integrable.

In view of the definition of the class Mad(Ω), the same conclusion can be made
for the sequence of skew-symmetric matrices

{
(Ltk)

−1DkL
−1
k

}
k∈N. As a result, the

property (4.4) is a direct consequence of Lebesgue’s Theorem.

Lemma 4.2. Let f ∈ L∞(Ω)N be a given distribution, and let {Ak}k∈N ⊂Mad(Ω)
and A ∈ Mad(Ω) be matrices satisfying the properties (4.1)–(4.3). Then, for an
arbitrary smooth function ϕ ∈ C∞0 (Ω), the sequences{

vk := |(∇ϕ,Bk∇ϕ)|
p−2

2 L−1
k TkLk∇ϕ

}
k∈N

and
{
wk := B−1

k f
}
k∈N

are bounded in Lq(Ω, Bk dx)N and

vk → v = |(∇ϕ,B∇ϕ)|
p−2

2 L−1TL∇ϕ strongly in variable Lq(Ω, Bk dx)N , (4.6)

wk → w = B−1f strongly in variable Lq(Ω, Bk dx)N , (4.7)

where the matrices Tk and T are defined by (4.5).

Proof. Indeed, by definition of the space Lq(Ω, Bk dx)N , we have

‖vk‖qLq(Ω,Bk dx)N
=

ˆ
Ω
|(vk, Bkvk)|

q
2 dx =

ˆ
Ω
|Lkvk|q dx

=

ˆ
Ω

∣∣∣|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk∇ϕ
∣∣∣q dx ≤ ‖ϕ‖pC1(Ω)

ˆ
Ω

[
‖Lk‖p−1‖Tk‖

]q
dx

≤ ‖ϕ‖p
C1(Ω)

ˆ
Ω

[
βp−1

(
1 + α−2‖Dk‖

)
‖
]q
dx

≤ 2q−1‖ϕ‖p
C1(Ω)

ˆ
Ω
βp
(
1 + α−2q‖Dk‖q

)
dx

≤ 2q−1‖ϕ‖p
C1(Ω)

[
‖β‖pLp(Ω) + ‖β‖p

L3p(Ω)
‖α−1‖2q

L6q(Ω)
‖D‖q

L3q(Ω)

]
by (2.4)
≤ const < +∞. (4.8)
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Hence, the sequence {vk}k∈N is bounded in Lq(Ω, Bk dx)N .
Further we notice that, by the initial assumption (4.2), Lemma 4.1, and BMO-

properties of the matrices L, L−1, and D, we see that the sequence{
|(∇ϕ,Bk∇ϕ)|

p−2
2 TkLk∇ϕ

}
k∈N

is equi-integrable and

|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk∇ϕ→ |(∇ϕ,B∇ϕ)|
p−2

2 TL∇ϕ a.e. in Ω

for any ϕ ∈ C∞0 (Ω). Hence, by Lebesgue’s Theorem, we have the strong convergence

|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk∇ϕ→ |(∇ϕ,B∇ϕ)|
p−2

2 TL∇ϕ in L1(Ω;RN ). (4.9)

As a result, this implies

lim
k→∞

ˆ
Ω

(∇ψ,Bkvk) dx = lim
k→∞

ˆ
Ω
|(∇ϕ,Bk∇ϕ)|

p−2
2 (∇ψ, TkLk∇ϕ) dx

by (4.9)
=

ˆ
Ω
|(∇ϕ,B∇ϕ)|

p−2
2 (∇ψ, TL∇ϕ) dx

=

ˆ
Ω

(∇ψ,Bv) dx, ∀ψ ∈ C∞0 (Ω). (4.10)

Thus, the sequence {vk}k∈N is weakly convergent in Lq(Ω, Bk dx)N to the
vector-valued function v = |(∇ϕ,B∇ϕ)|

p−2
2 L−1TL∇ϕ.

It remains to show that the sequence {vk}k∈N is strongly convergent to v. To
do so, we make use of Proposition 2.3. Following this assertion, it is enough to
prove the equality

lim
k→∞

ˆ
Ω
| (vk, Bkvk) |

q
2 dx = lim

k→∞

ˆ
Ω
|Lkvk|q dx

= lim
k→∞

ˆ
Ω

∣∣∣|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk∇ϕ
∣∣∣q dx

=

ˆ
Ω

∣∣∣|(∇ϕ,B∇ϕ)|
p−2

2 TL∇ϕ
∣∣∣q dx =

ˆ
Ω

(v,Bv)
q
2 dx. (4.11)

In view of the estimate∣∣∣|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk∇ϕ
∣∣∣ ≤ ‖Lk∇ϕ‖p−1‖Tk‖ ≤ βp−1‖T‖|∇ϕ|p−1

and the fact that the term
(
βp−1‖T‖|∇ϕ|p−1

)q
= βp‖T‖q|∇ϕ|p is in L1(Ω) by

Remark 2.1, we see that the sequence
{
| (vk, Bkvk) |

q
2

}
k∈N

is equi-integrable. On

the other hand, property (4.2) and Lemma 4.1 imply that, within a subsequence,

|(∇ϕ,Bk∇ϕ)|
p−2

2 TkLk → |(∇ϕ,B∇ϕ)|
p−2

2 TL almost everywhere in Ω.
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Therefore, the equality (4.11) is a direct consequence of Lebesgue Dominated
Theorem. Thus, the strong convergence in variable space Lq(Ω, Bk dx)N of the
sequence {vk}k∈N is established.

The property (4.7) can be proved following the same arguments.

For our further analysis, we make use of the following concept.

Definition 4.1. We say that a bounded sequence{
(Ak, yk) ∈Mad(Ω)×

[
H1,p

0,Bk
(Ω) ∩ Lp(Ω, u dx)

]}
k∈N

(4.12)

w-converges to the pair (A, y) ∈Mad(Ω)×
[
H1,p

0,B(Ω) ∩ Lp(Ω, u dx)
]
as k →∞ (in

symbols, (Ak, yk)
w−→ (A, y)) if

Ak → A in L1(Ω;MN ),

yk → y in Lp(Ω) and weakly in weighted space Lp(Ω, u dx),

∇yk ⇀ ∇y in the variable space Lp(Ω, Bk dx)N .

In particular, as follows from this definition, if (Ak, yk)
w→ (A, y), then

lim
k→∞

ˆ
Ω
‖Ak‖ dx =

ˆ
Ω
‖A‖ dx,

lim
k→∞

ˆ
Ω
ykϕudx =

ˆ
Ω
yϕu dx ∀ϕ ∈ C∞0 (Ω),

lim
k→∞

ˆ
Ω

(ξ,Bk∇yk) dx =

ˆ
Ω

(ξ,B∇y) dx ∀ ξ ∈ C∞0 (Ω)N .

In order to motivate this definition, we give the following result.

Lemma 4.3. Let
{

(Ak, yk) ∈Mad(Ω)×
[
H1,p

0,Bk
(Ω) ∩ Lp(Ω, u dx)

]}
k∈N

be a se-
quence with the following properties:

(i) Ak ∈ L∞(Ω;MN ) ∀ k ∈ N, and there exists a matrix A ∈Mad(Ω) such that
Ak → A in L1(Ω;MN );

(ii)
{
yk ∈ H1,p

0,Bk
(Ω) ∩ Lp(Ω, u dx)

}
k∈N

are bounded sequences, i.e.

sup
k∈N

ˆ
Ω

(
u|yk|p + (∇yk, Bk∇yk)

p
2
)
dx < +∞; (4.13)

Then, within a subsequence, the original sequence is w-convergent. Moreover, each
w-limit pair (A, y) belongs to the set Mad(Ω)×

[
H1,p

0,B(Ω) ∩ Lp(Ω, u dx)
]
.
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Proof. To begin with, we note that the conditions (i)–(ii) and estimates (2.12)–
(2.13) immediately imply the boundedness of the sequence{

yk ∈ H1,p
0,B(Ω) ∩ Lp(Ω, u dx)

}
k∈N

in W 1,1(Ω;MN ) and in variable spaces H1,p
0,Bk

(Ω) and Lp(Ω, u dx). Moreover, due
to the inequalities (2.14)–(2.15), we have the compact embedding

H1,p
0,Bk

(Ω) ↪→ Lr(Ω) for all 1 ≤ r < p∗s =
Nps

(N − p)s+N
.

Since p∗s = Nps
N−ps > p provided s > N

p , it follows that the sequence {yk}k∈N is
compact with respect to the norm topology of Lp(Ω).

Thus, combining this fact with the compactness criterium for the weak conver-
gence in variable spaces (see Proposition 2.1), we can deduce the existence of a
pair (y, z) ∈ Lp(Ω)×Lp(Ω, u dx)×Lp(Ω, B dx)N such that, within a subsequence
of {yk}k∈N, we have

yk → y in Lp(Ω), (4.14)
yk ⇀ z in Lp(Ω, u dx), (4.15)

∇yk ⇀ v in the variable space Lp(Ω, Bk dx)N . (4.16)

Our aim is to show that y = z, v = ∇y, and as a consequence y ∈ H1,p
0,B(Ω) ∩

Lp(Ω, u dx). With that in mind, we note that for every measurable subset K ⊂ Ω,
the estimateˆ

K
|∇yk| dx ≤

( ˆ
K
|Lk∇yk|p dx

) 1
p
( ˆ

K
α−q dx

) 1
q

≤
( ˆ

Ω
|(∇yk, Bk∇yk)|

p
2 dx

) 1
p
(ˆ

K
α−q dx

) 1
q

by (4.13)
≤ C|K|

1
2q ‖α−1‖L2q(Ω)

by (2.4)
≤ C1|K|

1
2q

(
‖α‖2q

L1(Ω)
+ ‖α−1‖BMO(RN )

) 1
2q

implies equi-integrability of the family {|∇yk|RN }. Combining this fact with es-
timate (2.13) and property (ii), we deduce that the sequence {|∇yk|}k∈N is weakly
compact in L1(Ω). Since, for an arbitrary ξ ∈ C∞0 (Ω)N , we have

B−1
k ξ → B−1ξ strongly in variable Lq(Ω, Bk dx)N (4.17)

by Lemma 4.2, it follows thatˆ
Ω

(ξ,∇yk) dx =

ˆ
Ω

(
B−1
k ξ,Bk∇yk

)
dx

by (4.16), (4.17), and (2.20)−→
ˆ

Ω

(
B−1ξ,Bv

)
dx

=

ˆ
Ω

(ξ, v) dx ∀ ξ ∈ C∞0 (Ω)N .
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Thus, in view of the weak compactness property of {∇yk}k∈N in L1(Ω)N , we
conclude

∇yk ⇀ v in L1(Ω;RN ) as n→∞. (4.18)

Since yk ∈ W 1,1(Ω) for all k ∈ N and the Sobolev space W 1,1(Ω) is complete,
(4.14) and (4.18) imply ∇y = v, and consequently y ∈ H1,p

0,B(Ω).
To end the proof, it remains to establish the equality y = z a.e. in Ω. Since the

sequence {yk ∈ Lp(Ω, u dx)}k∈N is bounded and for any measurable set K ⊆ Ω,
we have ˆ

K
yku dx ≤

(ˆ
Ω
|y|pu dx

)1/p(ˆ
K
u dx

)1/q

,

it follows that the sequence {yku}k∈N is equi-integrable and weakly compact
in L1(Ω) and, hence, the weak convergence (4.15) is equivalent to the weak
convergence

yku ⇀ zu in L1(Ω). (4.19)

Further, we note that
ˆ

Ω
|ϕ|u dx ≤ sup

Ω′⊂Ω

´
Ω′ |u| dx
HN−1(∂Ω′)

ˆ
Ω
|∇ϕ| dx

≤ sup
Ω′⊂Ω

‖u‖L1(Ω′)

HN−1(∂Ω′)

(ˆ
Ω
|L∇ϕ|p dx

)1/p(ˆ
Ω
α−q dx

)1/q

≤ const ‖ϕ‖
H1,p

0,B(Ω)
∀ϕ ∈ C∞0 (Ω)

by Maz’ya inequality (2.23). Since the set C∞0 (Ω) is dense in H1,p
0,B(Ω), it follows

that the family {u(yk − y)}k∈N is weakly compact in L1(Ω). Taking into account
the compactness of the embedding H1,p

0,B(Ω) ↪→ Lp(Ω) and the weak convergence
yk ⇀ y in Lp(Ω), we can suppose that yk → y almost everywhere in Ω. Hence,
u(yk − y) → 0 a.e. in Ω. Then the strong convergence u(yk − y) → 0 in L1(Ω)
immediately follows from the Lebesgue Theorem. Thus, in order to conclude the
desired equality y = z, it is enough to combine this inference with the property
(4.19). The proof is complete.

We are now in a position to prove the main result of this section. Namely, we
show that the boundary value problem (3.1)–(3.3) admits a weak solution.

Theorem 4.1. For given f ∈ L∞(Ω)N , u ∈ L1(Ω), u ≥ 0 a.e. in Ω, γ > 0, and
for an arbitrary matrix A ∈ Mad, there exists a weak solution y ∈ Xu,B (in the
sense of Minty) to boundary value problem (3.1)–(3.2) with an a priori estimate

‖y‖Xu,B ≤
(
CQ,q‖f‖L∞(Ω)N

) 1
p−1
(
‖α−1‖BMO(RN ) + ‖α−1‖q

L1(Ω)

) 1
p (4.20)

and the energy relationˆ
Ω
|(∇y,B∇y)|

p
2 dx+

ˆ
Ω
|y|pu dx ≤

ˆ
Ω

(f,∇y) dx. (4.21)
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Proof. Let u ∈ Uad be an arbitrary admissible control. For a given matrix A ∈Mad

let us consider an approximation {Ak}k∈N ⊂Mad(Ω) with properties (4.1)–(4.3),
and the corresponding variational problem

Find yk ∈W 1,p
0 (Ω) such thatˆ

Ω
|(∇yk, Ak∇yk)|

p−2
2 (Ak∇yk,∇ϕ) dx+

ˆ
Ω
|yk|p−2ykϕudx

=

ˆ
Ω

(f,∇ϕ) dx, ∀ϕ ∈ C∞0 (Ω).

(4.22)

Since Ak ∈ L∞(Ω;MN ), it follows that (∇yk, Ak∇yk) = (∇yk, Bk∇yk). Hence,
by the well-known result of quasi-linear elliptic equations (see [29, Theorem 2.14]),
for every k ∈ N, the problem (4.22) admits a unique weak solution yk ∈W 1,p

0 (Ω)
such that

ˆ
Ω
|(∇yk, Bk∇yk)|

p
2 dx+

ˆ
Ω
|yk|pu dx =

ˆ
Ω

(f,∇yk) dx (4.23)

and
ˆ

Ω
|(∇ϕ,Bk∇ϕ)|

p−2
2 (Ak∇ϕ,∇ϕ−∇yk) dx+

ˆ
Ω
|ϕ|p−2ϕ(ϕ− yk)u dx

≥
ˆ

Ω
(f,∇ϕ−∇yk) dx, ∀ϕ ∈ C∞0 (Ω).

(4.24)

It is clear that the energy equality (4.23) leads to the following estimate

‖yk‖pXu,Bk :=

ˆ
Ω
|(∇yk, Bk∇yk)|

p
2 dx+

ˆ
Ω
|yk|pu dx ≤

ˆ
Ω
|(L−1

k )tf ||Lk∇yk| dx

≤ ‖f‖L∞(Ω)N ‖α−1‖Lq(Ω)‖yk‖H1,p
0,Bk

(Ω)

≤ CQ,q‖f‖L∞(Ω)N

(
‖α−1‖BMO(RN ) + ‖α−1‖q

L1(Ω)

) 1
q ‖yk‖Xu,Bk .

Hence, the sequence {yk}k∈N is bounded in variable space Xu,Bk ,

‖yk‖Xu,Bk ≤
(
CQ,q‖f‖L∞(Ω)N

) 1
p−1

×
(
‖α−1‖BMO(RN ) + ‖α−1‖q

L1(Ω)

) 1
p
, ∀ k ∈ N, (4.25)

and, by Lemma 4.3, we can suppose the existence of an element y ∈ Xu,B such
that (within a subsequence) y is subjected to the estimate (4.20) and

yk ⇀ y in Lp(Ω, u dx), (4.26)

∇yk ⇀ ∇y in the variable space Lp(Ω, Bk dx)N . (4.27)
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We are now in a position to pass to the limit in (4.24) as k → ∞. With that in
mind we make use of Lemma 4.2. In particular, we utilize the properties (4.6)–
(4.7). Then, it follows from Definition 2.2 and (4.26)–(4.27) that
ˆ

Ω
(f,∇ϕ−∇yk) dx =

ˆ
Ω

(
B−1
k f,Bk (∇ϕ−∇yk)

)
dx

k→∞→
ˆ

Ω

(
B−1f,B (∇ϕ−∇y)

)
dx =

ˆ
Ω

(f,∇ϕ−∇y) dx,

ˆ
Ω
|(∇ϕ,Bk∇ϕ)|

p−2
2 (Ak∇ϕ,∇ϕ−∇yk) dx

=

ˆ
Ω

(
|(∇ϕ,Bk∇ϕ)|

p−2
2 L−1

k TkLk∇ϕ,Bk (∇ϕ−∇yk)
)
dx

k→∞→
ˆ

Ω

(
|(∇ϕ,B∇ϕ)|

p−2
2 L−1TL∇ϕ,B (∇ϕ−∇yk)

)
dx

=

ˆ
Ω
|(∇ϕ,B∇ϕ)|

p−2
2 (A∇ϕ,∇ϕ−∇y) dx.

Taking into account that
ˆ

Ω
|ϕ|p−2ϕ(ϕ− yk)u dx

k→∞−→
ˆ

Ω
|ϕ|p−2ϕ(ϕ− y)u dx

by (4.26) and definition of the weak convergence in Lp(Ω, u dx), we can pass
to the limit in (4.24) as k → ∞ and readily obtain the desired relation (3.9).
Thus, y is a weak solution to the boundary value problem (3.1)–(3.3). As for
the energy inequality (4.21), it follows from (4.23) and the weak convergence
properties (4.26)–(4.27).

Remark 4.2. As follows from approximation procedure that was used in the
proof of Theorem 4.1, it always leads to some weak solution of the original
boundary value problem. Such solutions are called approximation solutions in [33].
The characteristic feature of such solutions is the fact that they satisfy energy
inequality (4.21) and their a priori estimate (4.20) does not depend on the skew-
symmetric part D ∈ BMO(Ω; SNskew) of matrix A ∈ Mad(Ω). Moreover, it is
unknown in general whether approximation solutions are the weak solutions to
the boundary value problem (3.1)–(3.2) in the sense of distributions and belong
to the set D(Xu,B).

5. On Density of Smooth Compactly Supported Functions in
W 1,p

0,B(Ω)

The aim of this section is to find out the sufficient conditions guaranteeing the
equality H1,p

0,B(Ω) = W 1,p
0,B(Ω). With that in mind, it is enough to check whether,
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for each A ∈Mad(Ω) and p ≥ 2, the set of smooth compactly supported functions
C∞0 (Ω) is dense in W 1,p

0,B(Ω).

Let f ∈W 1,p
0,B(Ω) be an arbitrary function. For any δ > 0, we set

Ωδ := {x ∈ Ω : dist (x, ∂Ω) > δ}

and ζδ(x) =

ˆ
Ω3δ/4

ωδ/4(|x− y|) dy, ∀x ∈ RN ,

where

ω(x) =

{
C exp

(
1

|x|2−1

)
, 0 ≤ |x| < 1,

0, |‖ ≥ 1,

with

C =

(ˆ
B1(0)

exp

(
1

|x|2 − 1

)
dx

)−1

and

ωδ(|x|) =
1

δ
ω(|x|/δ), ∀x ∈ RN ,

so that ωδ ∈ C∞0 (Bδ(0)),
ˆ
RN

ωδ(x) dx = 1, ωδ(|x|) ≥ 0 ∀x ∈ RN .

Then, the following properties of ζδ are well-known [24, Theorem 1.4.2]:

(i) 0 ≤ ζδ(x) ≤ 1 for all x ∈ RN ;

(ii) ζδ(x) = 1 for all x ∈ Ωδ;

(iii) ζδ(x) = 0 outside of Ωδ/2;

(iv)
∣∣∣∂ζδ(x)
∂xi

∣∣∣ ≤ C
δ ∀x ∈ RN , i = 1, . . . , N , where C is a positive constant

independent of δ.

Setting f δ(x) := f(x)ζδ(x), we see that f δ = 0 outside of Ωδ/2. Before proceeding
further, we make use of the following auxiliary result.

Lemma 5.1. Assume that, in addition to (2.2)–(2.3), the functions α and β
satisfy the condition

α−1, β ∈ L∞(Ω \ Ωδ), where Ωδ := {x ∈ Ω : dist (x, ∂Ω) > δ} (5.1)

for some δ > 0 small enough. Then for given A ∈Mad(Ω) and f ∈ W 1,p
0,B(Ω), we

have
f δ ∈W 1,p

0,B(Ω) and ‖f − f δ‖p
W 1,p

0,B(Ω)
= o(1) as δ → 0. (5.2)
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Proof. Indeed, the inclusion f δ ∈W 1,p
0,B(Ω) is a direct consequence of the property

f δ = 0 outside of Ωδ/2 and the following estimate

‖f δ‖p
W 1,p

0,B(Ω)
=

ˆ
Ω

(
|f δ|p +

∣∣∣(∇f δ, B∇f δ)∣∣∣ p2 ) dx
=

ˆ
Ω

(
|fζδ|p + |L (ζδ∇f + f∇ζδ)|p

)
dx

≤
ˆ

Ω

(
|f |p + p |L∇f |p + p|f |pβp|∇ζδ|p

)
dx

≤ (1 + p)‖f‖p
W 1,p

0,B(Ω)
+ p‖β‖pL∞(Ω\Ωδ)

(√
C2N

δ2

)p ˆ
Ω\Ωδ

|f |p dx

≤ C(δ)‖f‖p
W 1,p

0,B(Ω)

which is valid for δ small enough (see (5.1)).
As for the asymptotic behaviour of the difference f − fζδ = f(1 − ζδ), we

provide this analysis utilizing the following chain of estimates

‖f − fζδ‖pW 1,p
0,B(Ω)

=

ˆ
Ω
|f(1− ζδ)|p dx+

ˆ
Ω
|(1− ζδ)L (∇f)− fL (∇ζδ)|p dx

≤
ˆ

Ω\Ωδ
|f |p dx+ p

ˆ
Ω\Ωδ

|(∇f,B∇f)|
p
2 dx

+ p

ˆ
Ω\Ωδ

|f |pβp|∇ζδ|p dx

≤ (1 + p)‖f‖p
W 1,p

0,B(Ω\Ωδ)

+ p‖β‖pL∞(Ω\Ωδ)

(
C
√
N

δ

)p ˆ
Ω\Ωδ

|f |p dx. (5.3)

In order to estimate the last term in (5.3), we make use of the Maz’ya inequality
(2.23). This gets

( ˆ
Ω\Ωδ
|f |p dx

) 1
p ≤ sup

Ω′⊂Ω\Ωδ

LN (Ω′)
1
p

HN−1(∂Ω′)

ˆ
Ω\Ωδ

|∇f | dx

≤ sup
Ω′⊂Ω\Ωδ

LN (Ω′)
1
p

HN−1(∂Ω′)

ˆ
Ω\Ωδ

|L∇f |α−1 dx

≤ sup
Ω′⊂Ω\Ωδ

LN (Ω′)
1
p

HN−1(∂Ω′)
‖α−1‖L∞(Ω\Ωδ)L

N (Ω′)
1
q

(ˆ
Ω\Ωδ

|L∇f |p dx

) 1
p

≤ ‖α−1‖L∞(Ω\Ωδ) sup
Ω′⊂Ω\Ωδ

LN (Ω′)

HN−1(∂Ω′)
‖f‖

W 1,p
0,B(Ω\Ωδ). (5.4)
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Since LN (Ω′) ≤ C∗δHN−1(∂Ω′) for δ small enough and with C∗ independent of
δ, it follows from (5.4) thatˆ

Ω\Ωδ
|f |p dx ≤ const δp ‖f‖p

W 1,p
0,B(Ω\Ωδ)

.

Thus, from (5.3) we finally deduce

‖f − fζδ‖pW 1,p
0,B(Ω)

≤ Ĉ‖f‖p
W 1,p

0,B(Ω\Ωδ)
= o(1) as δ → 0. (5.5)

Taking this result into account and following the standard rule, we define the
smoothing of f δ:

(fζδ)ε (x) :=

ˆ
RN

ωε(x− y)f(y)ζδ(y) dy = (ωε ∗ f δ)(x), ∀x ∈ RN . (5.6)

Then (fζδ)ε (x) = 0 has a compact support in Ω provided ε < δ/2. Since (fζδ)ε ∈
C∞0 (Ω) and W 1,p

0,B(Ω) ⊂ W 1,ps(Ω) with continuous embedding for all ps < p (see
estimates (2.14)–(2.15)), it follows from the classical theory of Sobolev spaces that
(fζδ)ε → fζδ in W 1,ps(Ω) as ε → 0 and, therefore, up to a subsequence, we can
suppose that (fζδ)ε → fζδ almost everywhere in Ω. Let us show that (fζδ)ε ⇀ f

in W 1,p
0,B(Ω). Indeed, we can deduce from (5.6) that

|∇
(
f δ
)
ε

(x)| ≤ C1M(∇f δ)(x), ∀ ε > 0, (5.7)

whereM(f)(x) = sup
Q

1

|Q|

ˆ
Q
|f(y)| dy is the Hardy-Littlewood maximal function.

It is also known that [12, p.174]

α, 1/α ∈
⋂
r>1

Ar ⇔ lnα ∈ closureBMOL
∞(RN ). (5.8)

Since lnα ∈ closureBMO L
∞(RN ) is equivalent to lnαp ∈ closureBMO L

∞(RN ),
it follows from (5.8) and (2.2)–(2.3) that αp, βp ∈ Ap. Then, by the celebrated
Mackengoupt theorem [22], we have

αp ∈ Ap ⇔
ˆ
RN
|M(∇f δ)|pαp dx ≤ C(α, p)

ˆ
RN
|∇f δ|pαp dx,

βp ∈ Ap ⇔
ˆ
RN
|M(∇f δ)|pβp dx ≤ C(β, p)

ˆ
RN
|∇f δ|pβp dx.

Since the norms |ξ| and
√

(ξ,Bξ) are equivalent in RN , it follows that

βp, αp ∈ Ap ⇔
ˆ
RN
|
(
M(∇f δ), BM(∇f δ)

)
|
p
2 dx

≤ C2

ˆ
RN
|
(
∇f δ, B∇f δ

)
|
p
2 dx (5.9)
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for some positive constant C2 depending on α, β, and p. Using the fact that each
of the matrices A ∈ Mad(Ω) is assumed to be zero-extended outside of Ω, we
deduce from (5.7) and (5.9)
ˆ

Ω
|
(
∇
(
f δ
)
ε
,B∇

(
f δ
)
ε

)
|
p
2 dx =

ˆ
RN
|
(
∇
(
f δ
)
ε
, B∇

(
f δ
)
ε

)
|
p
2 dx

≤ C
ˆ
RN
|
(
∇f δ, B(∇f δ)

)
|
p
2 dx

= C

ˆ
Ω
|
(
∇f δ, B(∇f δ)

)
|
p
2 dx ≤ C‖f δ‖p

W 1,p
0,B(Ω)

< +∞. (5.10)

Following the similar reasoning, it can be shown that
ˆ

Ω
|
(
f δ
)
ε
|p dx ≤ C

ˆ
Ω
|f δ|p dx ≤ C‖f δ‖p

W 1,p
0,B(Ω)

< +∞. (5.11)

Hence, the sequence
{(
f δ
)
ε

}
ε>0

is bounded in ‖ · ‖
W 1,p

0,B(Ω)
-norm. Therefore, in

view of the pointwise convergence: (fζδ)ε → fζδ almost everywhere in Ω, we can
deduce the weak convergence (fζδ)ε ⇀ fζδ inW

1,p
0,B(Ω). Then by Mazur’s theorem,

the element f δ := fζδ can be attained in the strong topology of W 1,p
0,B(Ω) by the

convex combinations of
{(
f δ
)
ε

}
ε>0

. It means that for any given η > 0 it can be
found a convex combination f δ∗ ∈ C∞0 (Ω) of a finite number of elements of the
sequence

{(
f δ
)
ε

}
ε>0

such that

‖f δ∗ − f δ‖W 1,p
0,B(Ω)

<
η

2
.

Besides, the property (5.2) implies that

‖f − f δ‖
W 1,p

0,B(Ω)
<
η

2
for δ small enough.

Hence, for a given function f ∈W 1,p
0,B(Ω) and arbitrary positive η, we have

‖f − f δ∗‖W 1,p
0,B(Ω)

< η.

Thus, we can formulate the obtained result as follows:

Theorem 5.1. Assume the set of admissible matrices Mad(Ω) is such that in
addition to its definition in the form (2.5), the condition (5.1) holds true for some
positive small enough parameter δ. Then the set of smooth compactly supported
functions C∞0 (Ω) is dense in W 1,p

0,B(Ω) or, what is equivalent, we have the equality
H1,p

0,B(Ω) = W 1,p
0,B(Ω).
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5. V. Chiadò Piat, F. Serra Cassano, Some remarks about the density of smooth
functions in weighted Sobolev spaces, J. Convex Analysis, No. 2, 1 (1994), 135–142.

6. M. Chicco, M. Venturino, Dirichlet problem for a divergence form elliptic
equation with unbounded coefficients in an unbounded domain, Annali di
Matematica Pura ed Applicata, 178 (2000), 325–338.

7. C. D’Apice, U. De Maio, P.I. Kogut, R. Manzo, Solvability of an optimal
control problem in coefficients for ill-posed elliptic boundary value problems,
Electronic Journal of Differential Equations, 2014 (166) (2014), 1–23.

8. C. D’Apice, U. De Maio, O. P. Kogut, Optimal control problems in coefficients
for degenerate equations of monotone type: shape stability and attainability
problems, SIAM J. Control Optim., 50 (3) (2012) 1174–1199.

9. C. D’Apice, U. De Maio, O. P. Kogut, On shape stability of Dirichlet optimal
control problems in coefficients for nonlinear elliptic equations, Adv. Differential
Equations, 15 (7-8) (2010) 689–720.

10. P. Drabek, A. Kufner, F. Nicolosi, Non-Linear Elliptic Equations, Singular
and Degenerate Cases, Walter de Cruyter, Berlin, 1997.

11. T. Durante, O. P. Kupenko, R. Manzo, On attainability of optimal controls in
coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche
di Matematica, 66 (2) (2017) 259–292.

12. J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and
Related Topics, North Holland Math. Studies, Vol.116, Amsterdam, North-Holland,
1985.

13. F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math., 14(1961), 415–426.

14. T. Horsin, P.I. Kogut, Optimal L2-control problem in coefficients for a linear
elliptic equation. I. Existence result, Mathematical Control and Related Fields, 5
(1) (2015), 73–96.

15. T. Horsin, P.I. Kogut, On unbounded optimal controls in coefficients for ill-posed
elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (1-2) (2016),
155-188.

16. P.I. Kogut, On approximation of an optimal boundary control problem for linear
elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical
Systems - Series A, 34 (5) (2014), 2105–2133.

17. P.I. Kogut, G. Leugering, Optimal Control Problems for Partial Differential
Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Series:
Systems and Control, Birkhäuser Verlag, Boston, 2011.
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1. Introduction

The aim of this paper is to study optimal control problems associated to
degenerate elliptic variational inequalities in the so-called class of H-admissible
solutions. Dealing with degenerate problems leads us to the concept of weighted
Sobolev spaces such as W (Ω, ρdx) (see for example [5]), where ρ is degenerate
(in some sense) weight function, such that the differential operator associated to
our problem is not coercive in the classical sense. Hence, the classical approach to
investigate mentioned problems can’t be used. In [17] was proposed an alternative
method for solving optimal control problems for degenerate variational elliptic
inequality, using Hardy-Poincare inequality.

It is known that smooth functions are, in general, not dense in the space
W (Ω, ρdx) that leads to the issues related to non-uniqueness of the setting of
correspondent boundary value problem and as a consequence, to several possible
settings of an optimal control problem associated to the mentioned control object.
If we consider the space H(Ω, ρdx) which is the closure of C∞0 (Ω) in W (Ω, ρdx),
then H(Ω, ρdx) 6= W (Ω, ρdx), in general (see, for example [15]). In literature this
fact is called the Lavrentiev phenomenon.

In applications a degenerate weight function ρ appears as the limit of the
sequence of non-degenerate weights ρε, for which the corresponding “approximate”
problem is solvable. In this paper we interested in attainability of H-optimal
solutions to degenerated problems via optimal solutions of non-degenerated prob-
lems, namely, we show that each optimal solution to the degenerate problem can
∗Department of Integral and Differential Equations, Taras Shevchenko National University of Kyiv,

64/13, Volodymyrska Street, Kyiv, Ukraine, 01601, zadoianchuk.nv@gmail.com

c© N.V. Kasimova, 2018.
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be attained by admissible solutions to perturbed problems, however there exists
at least one optimal solution of degenerated problem which can be attained by
optimal solutions to appropriate perturbed problems.

2. Notations and preliminaries

Let Ω ⊂ RN (N ≥ 3) be an open bounded set with regular boundary ∂Ω such,
that 0 ∈ RN is an inner point of Ω. Hereafter we will denote a locally convex
space of all infinitely differentiable functions with supports in Ω by C∞0 (Ω).

Let ρ : Ω→ R be a given function such that: ρ(x) > 0 a.e. on Ω,

ρ ∈ L1(Ω), ρ−1 ∈ L1(Ω), ∇ ln ρ ∈ L2(Ω;RN ) i ρ+ ρ−1 /∈ L∞(Ω). (2.1)

Hereafter, we assume that there exists a closed subset O of the set Ω such
that

dist(O, ∂Ω) = ε, ρ > ε м.с. в Ω \ O, i ρ ∈ L∞(Ω \ O) (2.2)

for some ε > 0. In other words we assume that conditions (2.1) are not typical
for boundary layer of the set Ω.

Weighted spaces. We call a nonnegative function ρ with properties (2.1)–(2.2)
degenerate and consider weighted Hilbert spaces L2(Ω, ρ dx) and L2(Ω, ρ−1 dx),
saying that

f ∈ L2(Ω, ρ dx) if ‖f‖2L2(Ω,ρ dx) =

ˆ
Ω
f2ρ dx < +∞,

and g ∈ L2(Ω, ρ−1dx) if ‖g‖2L2(Ω,ρ−1 dx) =

ˆ
Ω
g2ρ−1 dx < +∞.

We define the space W = W (Ω, ρdx) as a set of functions y ∈W 1,1
0 for which

the norm

‖y‖ρ :=

(ˆ
Ω
y2ρ dx+

ˆ
Ω
|∇y|2RNρ dx

)1/2

(2.3)

is finite, and the space H = H(Ω, ρdx) as the closure of the space C∞0 (Ω) with
respect to the norm (2.3).

Note, that spaces W and H are reflexive Banach spaces with respect to the
norm (2.3) due to the estimate

ˆ

Ω

|∇y|dx ≤

ˆ
Ω

ρ|∇y|22dx

1/2ˆ
Ω

ρ−1dx

1/2

≤ C‖y‖ρ,

where |η|2 =

(
N∑
k=1

|ηk|2
)1/2

.

Since the smooth functions are in general not dense in the weighted Sobolev
space W , it follows that H 6= W ; that is for a “typical” degenerate weight ρ
the identity W = H is not always valid (for corresponding examples we refer to
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[1,12,13]). However, if ρ is a non-degenerate weight function, that is, ρ is bounded
between two positive constants, then it is easy to verify that W = H = H1

0 (Ω).
We recall that the dual space of H is H∗ = W−1,2(Ω, ρ−1dx) (for more details
see [5]).
Remark 2.1. [16, Remark 1] In the case when the weight ρ−1 ∈ L1(Ω), the space
H(Ω, ρdx) is continuously embedded into the space W 1,1

0 (Ω).
Let us consider the next concept [17]

Definition 2.1. We say ρ : Ω → R is the weight function of potential type if ρ
satisfies conditions (2.1)–(2.2) and there exists such constant Ĉ(Ω) > 0, that the
following inequality is fulfilled:

−Ĉ(Ω) ≤ −4 ln ρ(x)− 1

2
|∇ ln ρ|2RN <

2λ∗
|x|2RN

=
(N − 2)2

2|x|2RN
in Ω. (2.4)

In this case the function V (x) = −4 ln ρ(x)− 1
2 |∇ ln ρ|2RN is called Hardy potential

for the weighted function ρ.

Elliptic Variational Inequalities.
Let V be a Banach space and K ⊂ V be a closed convex subset. Suppose also

that A : K → V ∗ is a nonlinear operator and f ∈ V ∗ is a given element of the
dual space.

Let us consider the following variational problem: to find an element y ∈ K
such that

〈Ay, v − y〉V ≥ 〈f, v − y〉V , ∀v ∈ K. (2.5)

Referring to [9], we make use of the following assumptions.
Hypothesis 1. There exists a reflexive Banach space X such that X ⊂ V ∗,

the imbedding X ↪→ V ∗ is continuous, and X is dense in V ∗.
Hypothesis 2. There can be found a duality mapping J : X → X∗ such that

∀y ∈ K, ∀ε > 0 there exists an yε ∈ K such that A(yε) ∈ X and

yε + εJ (A(yε)) = y.

Theorem 2.1. [9, Theorem 8.7] Assume that Hypothesis 1 and Hypothesis 2
hold true. Let operator A : V → V ∗ be monotone, semicontinuous, bounded and
satisfy the following assumption: there exist an element v0 ∈ K such that

〈Ay, y − v0〉V
‖y‖V

→ +∞ as ‖y‖V →∞, y ∈ K.

Then for any solution y of variational inequality (2.5) the inclusion Ay ∈ X takes
plase provided f ∈ X.

Smoothing. Throughout the paper ε denotes a small parameter which varies
within a strictly decreasing sequence of positive numbers converging to 0. When
we write ε > 0, we consider only the elements of this sequence, while writing
ε ≥ 0, we also consider its limit ε = 0.
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Definition 2.2. We say that a weight function ρ with properties (2.1)-(2.2) is
approximated by non-degenerated weight functions {ρε}ε>0 on Ω if:

ρε(x) > 0 a.e. inΩ, ρε, (ρε)−1 ∈ L∞(Ω), ∀ε > 0, (2.6)

ρε → ρ, (ρε)−1 → ρ−1 in L1(Ω) as ε→ 0. (2.7)

Remark 2.2. The family {ρε}ε>0 satisfying properties (2.6)-(2.7) is called the
non-degenerate perturbation of the weight function ρ.

Examples of such perturbations can be constructed using the classical smooth-
ing. For instance, let Q be some positive compactly supported function such that
L∞RN ,

´
RN

Q(x)dx = 1, and Q(x) = q(−x). Then, for a given weight function

ρ ∈ L1
loc(RN ), we can take ρε = (ρ)ε, where

(ρ)ε(x) =
1

εN

ˆ

RN

Q

(
x− z
ε

)
ρ(z)dz =

ˆ

RN

Q(z)ρ(x+ εz)dz. (2.8)

In this case we say that the perturbation {ρε = (ρ)ε}ε>0 of the original degenerate
weight function ρ is conctructed by the “direct” smoothing scheme.

Lemma 2.1. [10] If ρ, ρ−1 ∈ L1
loc(RN ) then the “direct” smoothing {ρε = (ρ)ε}ε>0

possesses properties (2.6)-(2.7).

Weak compactness criterion in L1(Ω). Throughout the paper we will often use
the concepts of weak and strong convergence in L1(Ω). Let {aε}ε>0 be a bounded
sequence in L1(Ω). We recall that {aε}ε>0 is called equi-integrable if for any δ > 0
there exists τ = τ(δ) such that

´
S

|aε|dx < δ for every ε > 0 and every measurable

subset S ⊂ Ω of Lebesgue measure |S| < τ . Then the following assertions are
equivalent:

(i) A sequence {aε}ε>0 is weakly compact in L1(Ω).

(ii) The sequence {aε}ε>0 is equi-integrable.

(iii) Given δ > 0 there exists λ = λ(δ) such that sup
ε>0

´
{|aε|>δ}

|aε|dx < δ.

Theorem 2.2. (Lebesgue’s Theorem). If a bounded sequence {aε}ε>0 ⊂ L1(Ω) is
equi-integrable and aε → a almost everywhere on Ω, then aε → a in L1(Ω).

Radon measures and convergence in variable spaces. By a nonnegative Radon
measure on Ω we mean a nonnegative Borel measure which is finite on every
compact subset of Ω. The space of all nonnegative Radon measures on Ω will
be denoted by M+(Ω). If µ is a nonnegative Radon measure on Ω, we will use
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Lr(Ω, dµ), 1 ≤ r ≤ ∞, to denote the usual Lebesgue space with respect to the
measure µ with the corresponding norm

‖f‖Lr(Ω,dµ) =

ˆ
Ω

|f(x)|rdµ

1/r

.

Let {µε}ε>0, µ be Radon measures such that µε is ∗-weakly convergent to µ in
M+(Ω); that is,

lim
ε→0

ˆ

Ω

ϕdµε =

ˆ

Ω

ϕdµ ∀ϕ ∈ C0(RN ), (2.9)

where C0(RN ) is the space of all compactly supported continuous functions. A
typical example of such measures is dµε = ρε(x)dx, dµ = ρ(x)dx, where 0 ≤ ρε ⇀
ρ in L1(Ω). Let us recall the definition and main properties of convergence in the
variable L2-space [13].

1. A sequence {vε ∈ L2(Ω, dµε)} is called bounded if

lim sup
ε→0

ˆ

Ω

|vε|2dµε < +∞.

2. A bounded sequence {vε ∈ L2(Ω, dµε)} converges weakly to v ∈ L2(Ω, dµ) if

lim
ε→0

ˆ

Ω

vεϕdµε =

ˆ

Ω

vϕdµ

for any ϕ ∈ C∞0 (Ω) and we write vε ⇀ v in L2(Ω, dµε).
3. The strong convergence vε → v in L2(Ω, dµε) means that v ∈ L2(Ω, dµ) and

lim
ε→0

ˆ

Ω

vεzεdµε =

ˆ

Ω

vzdµ as zε ⇀ z in L2(Ω, dµε). (2.10)

The following convergence properties in variable spaces hold:
(a) Compactness criterium: if a sequence is bounded in L2(Ω, dµε), then this

sequence is compact with respect to the weak convergence.
(b) Property of lower semicontinuity : if vε ⇀ v in L2(Ω, dµε), then

lim inf
ε→0

ˆ

Ω

|vε|2dµε ≥
ˆ

Ω

v2dµ. (2.11)

(c) Criterium of strong convergence: vε → v if and only if vε ⇀ v in L2(Ω, dµε)
and

lim
ε→0

ˆ

Ω

|vε|2dµε =

ˆ

Ω

v2dµ. (2.12)

Let us recall some well-known results concerning the convergence in the variable
space L2(Ω, dµε).
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Lemma 2.2. [10,13,15] If {ρε}ε>0 is non-degenerate perturbation of the weight
function ρ(x) ≥ 0, then:

(A1) ((ρε)−1)→ ρ−1 in L2(Ω, ρεdx).

(A2) [vε ⇀ v in L2(Ω, ρεdx)]⇒ [vε ⇀ v in L1(Ω)].

(A3) If a sequence {vε ∈ L2(Ω, ρεdx)}ε>0 is bounded, then the weak convergence
vε → v in L2(Ω, ρεdx) is equivalent to the weak convergence ρεvε ⇀ ρv in
L1(Ω).

(A4) If a ∈ L∞ and vε ⇀ v in L2(Ω, ρεdx), then avε ⇀ av in L2(Ω, ρεdx).

Variable Sobolev spaces. Let ρ(x) be a degenerate weight function and let
{ρε}ε>0 be a non-degenerate perturbation of the function ρ in the sense of Defini-
tion 2.2. We denote by H(Ω, ρεdx) the closure of C∞0 (Ω) with respect to the norm
‖ · ‖ρε . Since for every ε the function ρε is non-degenerate, that is, ρε is bounded
between two positive constants, the space H(Ω, ρεdx) (and the spaces L2(Ω, ρεdx)
and L2(Ω, (ρε)−1dx) ) coincides with the classical Sobolev space H1

0 (Ω) (with
L2(Ω)).

Definition 2.3. We say that a sequence {yε ∈ H(Ω, ρεdx)}ε>0 converges weakly
to an element y ∈W as ε→ 0, if the following hold: (i) This sequence is bounded.
(ii) yε ⇀ y in L2(Ω, ρεdx). (iii) ∇yε ⇀ ∇y in L2(Ω, ρεdx)N .

Compensated Compactness Lemma in variable Lebesgue and Sobolev spaces.
Let p, q such that 2 ≤ p < ∞, 1/p+ 1/q=1 and let {ρε}ε>0 be a non-degenerate
perturbation of a weight function ρ. We associate to every ρε the space

X(Ω, ρεdx) =
{
~f ∈ Lq(Ω, ρεdx)N | div

(
ρε ~f
)
∈ Lq(Ω)

}
∀ε > 0 (2.13)

with the norm

‖~f‖X(Ω,ρεdx) =
(
‖~f‖q

Lq(Ω,ρεdx)N
+ ‖div

(
ρε ~f
)
‖qLq(Ω)

)1/q
.

We say that a sequence
{
~fε ∈ X(Ω, ρεdx)

}
ε>0

is bounded if

lim sup
ε→0

‖~fε‖X(Ω,ρεdx) < +∞.

In order to discuss the problem of H-attainability we need the following result.

Lemma 2.3. [3] Let {ρε}ε>0 be a non-degenerate perturbation of a weight func-
tion ρ(x) > 0. Let

{
~f ∈ Lq(Ω, ρεdx)N

}
ε>0

and {gε∈H(Ω,ρεdx)}ε>0 be sequences

such that {~fε}ε>0 is bounded in the variable space X(Ω, ρεdx), ~fε ⇀ ~f weakly in
Lq(Ω, ρεdx)N , {gε}ε>0 is bounded in the variable space H(Ω, ρεdx), gε ⇀ g in
Lp(Ω), and ∇gε ⇀ ∇g in Lp(Ω, ρεdx)N . Then

lim
ε→0

ˆ

Ω

ϕ
(
~fε,∇gε

)
RN

ρεdx =

ˆ

Ω

ϕ
(
~f,∇g

)
RN

ρdx, ∀ϕ ∈ C∞0 (Ω). (2.14)
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Further, we consider a special “lifting” operator

Tε : Lp(Ω, ρdx)→ Lp(Ω, ρεdx)

defined as followsˆ

Ω

Tεyϕρ
εdx =

ˆ

Ω

y(ϕ)ερdx ∀ϕ ∈ C∞0 (Ω), ∀ε > 0. (2.15)

Firstly this operator was constructed in [14] for the case of an arbitrary measure.
Let us consider the following well-known result.

Lemma 2.4. [10, Lemma 7.2] Let ρ ∈ L1
loc(RN ) be a degenerate weight function

and let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of ρ. Then for every element
y ∈ Lp(Ω, ρdx) there exists a sequence {Tεy ∈ Lp(Ω, ρεdx)}ε>0 such that Tεy → y
in Lp(Ω, ρεdx).

Let us recall that a function a ∈ L2(Ω, ρdx) and a vector b ∈ L2(Ω, ρdx)N are
related by the equality

div(ρb) = a if
ˆ

Ω

(b,∇ϕ)RNρdx = −
ˆ

Ω

aϕρdx ∀ϕ ∈ C∞0 (Ω). (2.16)

In a similar way, for aε ∈ L2(Ω, ρεdx) and b ∈ L2(Ω, ρεdx)N , we have

div(ρεbε) = aε if
ˆ

Ω

(bε,∇ϕ)RNρ
εdx = −

ˆ

Ω

aεϕρεdx ∀ϕ ∈ C∞0 (Ω). (2.17)

Note that by arguments of completion, the above identities can be extended to
test functions from H and H(Ω, ρεdx), respectively.

Lemma 2.5. [10, Lemma 7.3] If a ∈ L2(Ω, ρdx) and b ∈ L2(Ω, ρdx)N are related
by (2.16), then aε = Tεa and bε = Tεb are related by (2.17).

Following [10,11] we can give a dual description of the weighted Sobolev space
H. Let us consider two spaces: the first isX2

ρ as the closure of the set {(y,∇y), y ∈
C∞0 (Ω)} in L2(Ω, ρdx)×L2(Ω, ρdx)N , hence, the elements of this space are pairs
(y, v), where y is a function in H and v = ∇y is its gradient. The second space
X̃2
ρ consists of pairs (y, v), where y ∈ L2(Ω, ρdx) abd v ∈ L2(Ω, ρdx)N are such

that ˆ

Ω

yaρdx = −
ˆ

Ω

(v, b)RNρdx (2.18)

for any (a, b) satisfying the conditions

a ∈ L2(Ω, ρdx), b ∈ L2(Ω, ρdx)N , a = div(ρb) (2.19)

It is easy to see that X2
ρ and X̃2

ρ are closed in L2(Ω, ρdx)N+1 and X2
ρ ⊆ X̃2

ρ .
Moreover, from [10, Lemma 7.4] (or [11, Theorem 1]) we have that X2

ρ = X̃2
ρ .

The next Theorem establishes the possibility of passing to the limit as ε→ 0
in variable space H(Ω, ρεdx).
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Theorem 2.3. [10, Theorem 7.1] Let ρε = (ρ)ε be a direct smoothing of a
degenerate weight ρ ∈ L1

loc(RN ) and let yε ∈ H(Ω, ρεdx), yε ⇀ y in L2(Ω, ρεdx),
∇yε ⇀ v in L2(Ω, ρεdx)N . Then y ∈ H and v = ∇y.

3. Setting of the Optimal Control Problem

Let K be a non-empty convex closed subset of the space W , and let K be
sequentialy closed with respect to the norm

‖y‖2 :=

ˆ
Ω
y2ρ dx+

ˆ
Ω

∣∣∣∇y +
y

2
∇ ln ρ

∣∣∣2
RN

ρ dx. (3.1)

Let yad ∈ L2(Ω), f ∈ L2(Ω, ρ−1 dx) and u0 ∈ L2(Ω, ρ−1 dx) be given dis-
tribution, and U∂ be a non-empty convex closed subset in L2(Ω, ρ−1 dx) such
that

U∂ = {u ∈ L2(Ω, ρ−1 dx) : ‖u− u0‖L2(Ω,ρ−1 dx) ≤ R}. (3.2)

Hereinafter functions u ∈ U∂ are considered to be admissible controls.
The main object we deal with in the paper is the following optimal control

problem for the variational inequality with control in the right hand side:

I(u, y) =
1

2
‖y − yad‖2L2(Ω,ρdx) → inf, (3.3)

u ∈ U∂ , y ∈ K, (3.4)ˆ
Ω

(∇y,∇v −∇y)RN ρ dx ≥
ˆ

Ω
(f + u) (v − y) dx, ∀ v ∈ K. (3.5)

Let us consider the following linear operator related to the variational inequa-
lity (3.5):

A : W 1,2
0 (Ω; ρ dx)→

(
W 1,2

0 (Ω; ρ dx)
)∗
,

that is defined by the rule:〈
Ay, v − y

〉
H(Ω;ρdx)

=

ˆ
Ω

(∇y,∇v −∇y)RN ρ dx ∀v ∈ K.

Here
〈·, ·〉H(Ω;ρdx) : (H(Ω; ρdx))∗ ×H(Ω; ρdx)→ R

is the duality pairing. It is clear that

Ay = −div(ρ(x)∇y).

Similarly to [4] let us consider the next definitions.

Definition 3.1. We say that a function y = y(u, f) ∈ K is a W -solution to
degenerate variational inequality (3.4)-(3.5) if

〈− div(ρ(x)∇y), v − y〉W ≥ 〈f + u, v − y〉W (3.6)

holds for any v ∈ K.
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Definition 3.2. Let K̃ be a closure in the space C∞0 (Ω) of the set K ∩ C∞0 (Ω).
We say that a function y = y(u, f) ∈ K̃ is an H-solution to variational inequality
(3.4)-(3.5) if

〈−div(ρ(x)∇y), v − y〉H(Ω;ρdx) ≥ 〈f + u, v − y〉H(Ω;ρdx) (3.7)

holds for any v ∈ K̃.

Remark 3.1. It is easy to say that the set K̃ ⊂ H is closed and convex.
Let us remark that in the case when the function ρ is a weight function

of potential type in the sense of Definition 2.1 we can prove the existence and
uniqueness ofW -solution for the inequality (3.4)-(3.5), namely the following result
takes place:

Theorem 3.1. [17, Теорема 2] Let ρ : Ω→ R+ be a weight function of potential
type. Then for given f ∈ L2(Ω, ρ−1dx) and u ∈ U∂ the variational inequality (3.4)–
(3.5) has unique solution y = y(u, f) ∈ K such that y = z/

√
ρ and z ∈ H1

0 (Ω).

Remark 3.2. Similar result with Theorem 3.1 concerning existence and uniqueness
of H-solution to problem (3.4)-(3.5) can be easily obtained using similar argumen-
tation.

Taking this fact into account we can introduce two sets of admissible pairs to
the optimal control problem (3.3)-(3.5):

ΞW = {(u, y) ∈ U∂ ×W | y ∈ K, (u, y) are related by (3.6)}, (3.8)

ΞH = {(u, y) ∈ U∂ ×H | y ∈ K̃, (u, y) are related by (3.7)}. (3.9)

Hence for the given control object described by relations (3.4)-(3.5) with both
fixed control constrains (u ∈ U∂) and fixed cost functional (3.3), we have two
different statement of the original optimal control problem, namely〈

inf
(u,y)∈ΞW

I(u, y)

〉
and

〈
inf

(u,y)∈ΞH
I(u, y)

〉
.

Having assumed thatW 6= H for a given degenerate weight function ρ ≥ 0, we can
come to the effect which is usually called the Lavrentieff phenomenon. It means
that for some u ∈ U∂ and f ∈ L2(Ω, ρ−1dx) an H-solution to problem (3.4)-(3.5)
does not coincide with its W -solution [13].
Remark 3.3. In view of Theorem 3.1 and Remark 3.2, the set ΞH is always
nonempty.

Let us consider the following concept.

Definition 3.3. We say that a pair (u0, y0) ∈ L2(Ω, ρ−1dx)×H is an H-optimal
solution to problem (3.3)-(3.5) if (u0, y0) ∈ ΞH and

I(u0, y0) = inf
(u,y)∈ΞH

I(u, y)

.
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Note that optimal control problem (3.3)-(3.5) is solvable, namely the following
result takes place.

Theorem 3.2. Let ρ(x) > 0 be a degenerate weight function of potential type.
Then the set of H-optimal solutions to problem (3.3)-(3.5) is non-empty ∀f ∈
L2(Ω, ρ−1dx).

4. Attainability of H-optimal Solutions

In this section we propose a regular algorithm of approximation (perturbation)
for the original degenerate optimal control problem (3.3)-(3.5) and it will be
shown that H-optimal solutions of mentioned problem can be attained by optimal
solutions of perturbed problems. Note that in view of Theorem 3.2 that the set
of H-optimal solutions to the problem (3.3)-(3.5) is non-empty.

Let ρ be a degenerate weight function with properties (2.2)-(2.1), and let
{ρε}ε>0 be a non-degenerate perturbation of ρ in the sense of Definition 2.2

Definition 4.1. We say that a bounded sequence

{(uε, yε) ∈ Y(Ω, ρεdx) = L2(Ω, (ρε)−1dx)×H(Ω, ρεdx)}ε>0

w-converges to (u, y) ∈ L2(Ω, ρ−1dx) × W in the variable space Y(Ω, ρεdx) as
ε → 0, if uε ⇀ u in L2(Ω, (ρε)−1dx), yε ⇀ y in L2(Ω, ρεdx), ∇yε ⇀ ∇y in
L2(Ω, ρεdx)N .

Definition 4.2. We say that a minimization problem〈
inf

(u,y)∈ΞH
I(u, y)

〉
(4.1)

is a weak variational limit (or variational w-limit) of the sequence{〈
inf

(uε,yε)∈Ξε
Iε(uε, yε)

〉
; Ξε ⊂ Y(Ω, ρεdx), ε > 0

}
, (4.2)

with respect to w-convergence in variable space Y(Ω, ρεdx), if the following con-
ditions are satisfied:

(1) if {εk} is a subsequence of {ε} such that εk → 0 as k →∞, and a sequence
{(uk, yk) ∈ Ξεk}ε>0 w-converges to a pair (u, y), then

(u, y) ∈ ΞH ; I(u, y) ≤ lim inf
k→∞

Iεk(uk, yk); (4.3)

(2) for every pair (u, y) ∈ ΞH and any value δ > 0 there exists a realizing
sequence {(ûε, ŷε) ∈ Y(Ω, ρεdx)}ε>0 such that

(ûε, ŷε) ∈ Ξε ∀ε > 0, (ûε, ŷε) w − converges to (û, ŷ), (4.4)

‖u− û‖L2(Ω,ρ−1dx) + ‖y − ŷ‖ρ ≤ δ, I(u, y) ≥ lim sup
ε→0

Iε(ûε, ŷε)− δ. (4.5)
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The last definition is motivated by the following property of variational w-
limits (for the details we refer to [2]).

Theorem 4.1. Assume that (4.1) is a weak variational limit of the sequence
(4.2), and the constrained minimization problem (4.1) has a solution. Suppose
{(u0

ε, y
0
ε) ∈ Ξε} is a sequence of optimal pairs to (4.2). Then there exists a pair

(u0, y0) ∈ ΞH such that (u0
ε, y

0
ε) w-converges to (u0, y0), and

inf
(u,y)∈ΞH

I(u, y) = I(u0, y0) = lim
ε→0

inf
(uε,yε)∈Ξε

Iε(uε, yε).

Let us consider the sequences {Kε}ε>0 and {U ε∂}ε>0 of non-empty convex
closed subsets, which sequentially converges to sets K̃ and U∂ , respectively, in
the sense of Kuratovski as ε → 0 with respect to weak topology of spaces
H(Ω, ρεdx) and L2(Ω, (ρε)−1dx), respectively, and let Hypothesis 2 hold true for
X = L2(Ω, (ρε)−1dx) and V = H(Ω, ρεdx) ∀ε > 0. Taking into account Theorem
4.1, we consider the following collection of perturbed optimal control problems
for non-degenerate elliptic variational inequalities:

Minimize

Iε(u, y) =
1

2

ˆ

Ω

|y(x)− yad|2dx

 , (4.6)

u ∈ U ε∂ , y ∈ Kε, (4.7)

〈−div(ρε(x)∇y), v − y〉H(Ω;ρεdx) ≥ 〈f + u, v − y〉H(Ω;ρεdx) ∀v ∈ Kε, (4.8)

where the elements yad ∈ L2(Ω), f ∈ L2(Ω, ρ−1dx) ⊂ L2(Ω, (ρε)−1dx) are the
same as for original problem (3.3)-(3.5). For every ε > 0 we define Ξε as a set of
all admissible pairs to the problem (4.6)-(4.8), namely (u, y) ∈ ΞH if and only if
the pair (u, y) satisfies (4.7)-(4.8).

Let us discuss the optimality conditions for problem (4.6)-(4.8). Let V =
H(Ω, ρεdx), H = L2(Ω). Taking into account suggestions of the section 2, we
have that V and H are Hilbert spaces, and V ↪→ H continuously and V is dense
in H. Let us denote by (·, ·) the scalar product in H. Let us identify H with its
conjugated H∗, and let V ∗ be the space conjugated to V . Then V ⊂ H ⊂ V ∗ and
every space is dense in the next one and corresponding embeddings are continuous.
Let U = L2(Ω, (ρε)−1dx) be the control space (which coincides with L2(Ω)),
U ε∂ is convex and closed in U by the construction. Let us consider an operator
A : V → V ∗, Ay = −div(ρε(x)∇y), and functions f and yad as in previous
suggestions. For every control u ∈ U the state y(u) is defined as the solution to
the following problem

Ay = f + u, y ∈ H(Ω, ρεdx). (4.9)

Let us consider for every u ∈ U the cost functional

J(u, y) =
1

2
‖y(u)− yad‖2H . (4.10)
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The optimal control problem is to find such pair (u, y) ∈ U ε∂ ×H(Ω, ρεdx) that

J(u, y) = inf
(v,y(v))∈Uε∂×H(Ω,ρεdx)

J(v, y(v)) with conditions (4.9). (4.11)

It is known that the solution of the optimal control problem is characterized by
the inequality

J ′u(u, y(u))(v − u) ≥ 0, ∀v ∈ U ε∂ . (4.12)

Since, A is an isomorphism of the space V to V ∗ (see for details [8]), then y(u) =
A−1(f + u), and then

y′(u)(v − u) = A−1(v − u) = y(v)− y(u).

Hence, (4.12) is equivalent to the following inequality:

(y(u)− yad, y(v)− y(u)) ≥ 0, ∀v ∈ U ε∂ . (4.13)

Let A∗ ∈ L(V, V ∗) be the conjugate operator to A and it is an isomorphism of
V on V ∗ as well as A. For the control v ∈ U ε∂ let us define the conjugate state
p(v) ∈ V by the next relation:

A∗p(v) = y(v)− yad. (4.14)

Then

(A∗p(u), y(v)− y(u)) = (y(u)− yad, y(v)− y(u)) = (p(u), Ay(v)−Ay(u))

= (p(u), v − u) = (p(u), v − u)U =

ˆ

Ω

p(u)(v − u)dx ≥ 0,

since p(u) ∈ V ⊂ L2(Ω, ρεdx), v − u ∈ L2(Ω, (ρε)−1dx). Similarly to [1, Theorem
1.4], obtained results can be formulated as the following theorem.

Theorem 4.2. Let a(u, v) = (Au, v) be a bilinear continuous and coercive form
on V , and cost functional be as in (4.10). The element u ∈ U ε∂ is the optimal
control if and only if the following relations are fulfilled:

−div(ρε(x)y) = f + u in Ω, y ∈ V,

−div(ρε(x)p) = y − yad in Ω, p ∈ V,ˆ

Ω

p(u)(v − u)dx ≥ 0, ∀v ∈ U ε∂ .

Remark 4.1. Let us recall that sequential K-upper and K-lower limits of a se-
quence of sets {Ek}k∈N are defined as follows, respectively:

Ks − limEk = {y ∈ X : ∃σ(k)→∞ , ∃yk → y, ∀k ∈ N : yk ∈ Eσ(k)},

Ks − limEk = {y ∈ X : ∃yk → y ∃k ≥ k0 ∈ N : yk ∈ Ek}.
The sequence {Ek}k∈N sequantially converges in the sense of Kuratovski to the
set E (shortly, Ks-converges), if E = Ks − limEk = Ks − limEk.
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Lemma 4.1. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight
function ρ ≥ 0. Let {(uε, yε) ∈ Ξε}ε>0 be a sequence of admissible pairs to
the problem (4.6)-(4.8). Then there exists a pair {(u∗, y∗)} and a subsequence
{(uεk , yεk)}k∈N of {(uε, yε) ∈ Ξε}ε>0 such that (uεk , yεk) w-converges to {(u∗, y∗)}
as k →∞ and (u∗, y∗) ∈ ΞH .

Proof. Let us consider the following variational inequality:

〈−div(ρε∇yε), vε − yε〉H(Ω,ρεdx) ≥ 〈f + uε, vε − yε〉H(Ω,ρεdx), ∀vε ∈ Kε. (4.15)

Let us show the bondedness of the sequence {yε}ε>0 in the space H(Ω, ρεdx). Let
us suppose that ‖yε‖H(Ω,ρεdx) →∞ as ε→ 0. Then on the one hand

〈−div(ρε∇yε), yε − vε〉H(Ω,ρεdx)

‖f + uε‖L2(Ω,(ρε)−1dx)‖yε − vε‖L2(Ω,ρεdx) (4.16)

≤ ‖f + uε‖L2(Ω,(ρε)−1dx)‖yε − vε‖H(Ω,ρεdx), ∀vε ∈ Kε, ∀ε > 0.

On the other hand , for arbitrary fixed element v ∈ K̃ let us consider the sequence
{vε ∈ Kε}ε>0 such that vε ⇀ v in H(Ω, ρεdx) (note, that such sequence always
exists provided K̃ = Ks − limKε), and taking into account the definition and
properties of the spaceH(Ω, ρεdx) and operator A : H(Ω, ρεdx)→ (H(Ω, ρεdx))∗,
Ayε = −div(ρε∇yε), we obtain such estimations:

〈Ayε, yε〉H(Ω,ρεdx) =

ˆ

Ω

(∇yε,∇yε)RNρεdx ≥ C1‖yε‖2H(Ω,ρεdx), C1 > 0,

〈Ayε, yε − vε〉H(Ω,ρεdx) ≥ C1‖yε‖2H(Ω,ρεdx) − ‖∇yε‖L2(Ω,ρεdx)N ‖∇vε‖L2(Ω,ρεdx)N .

Hence, we have the following relations

〈−div(ρε∇yε), yε − vε〉H(Ω,ρεdx)

‖yε − vε‖H(Ω,ρεdx)

≥
C1‖yε‖2H(Ω,ρεdx) − ‖∇yε‖L2(Ω,ρεdx)N ‖∇vε‖L2(Ω,ρεdx)N

‖yε‖H(Ω,ρεdx) + ‖vε‖H(Ω,ρεdx)

≥
C1‖yε‖2H(Ω,ρεdx) − C2‖yε‖H(Ω,ρεdx)‖vε‖H(Ω,ρεdx)

‖yε‖H(Ω,ρεdx) + ‖vε‖H(Ω,ρεdx)

≥ ‖yε‖H(Ω,ρεdx)

(
C1‖yε‖H(Ω,ρεdx) − C2‖vε‖H(Ω,ρεdx)

‖yε‖H(Ω,ρεdx) + ‖vε‖H(Ω,ρεdx)

)

= ‖yε‖H(Ω,ρεdx)

C1 − C2
‖vε‖H(Ω,ρεdx)

‖yε‖H(Ω,ρεdx)

1 +
‖vε‖H(Ω,ρεdx)

‖yε‖H(Ω,ρεdx)

→∞, ε→ 0, C2 > 0



50 N.V. Kasimova

since the sequence {vε}ε>0 is bounded in H(Ω, ρεdx). The obtained contradiction
with (4.16) implies that {yε}ε>0 is bounded in H(Ω, ρεdx). Note that from defi-
nition of sets U ε∂ we have that the sequence {uε ∈ U ε∂}ε>0 is bounded in the space
L2(Ω, (ρε)−1dx).

Hence, there exists a subsequence {εk} of the sequence {ε}, converging to 0 and
elements u∗ ∈ L2(Ω, ρ−1dx), y∗ ∈ L2(Ω, ρdx), ~v ∈ L2(Ω, ρdx)N such that uεk ⇀
u∗ in L2(Ω, (ρε)−1dx), yεk ⇀ y∗ in L2(Ω, ρεdx), ∇yεk ⇀ ~v in L2(Ω, (ρε)−1dx)N .
By Theorem 2.3, we have that y∗ ∈ H and v = ∇y∗ and, moreover, we have
y∗ ∈ K̃ and u∗ ∈ U∂ .

In order to prove the lemma, it is left to pass to the limit in the inequality
(4.15) as ε → 0. Let us take in Hypothesis 1 V = H(Ω, ρεkdx), X = L2(Ω). In
this case it is easy to see that the imbedding X ↪→ V ∗ is dense and continuous,
and the imbedding H(Ω, ρεkdx) ↪→ L2(Ω) is compact and dense (for details we
refer to [7]). Since f ∈ L2(Ω, ρ−1dx) ⊂ L2(Ω, (ρεk)−1dx) ⊂ L2(Ω), then in view
of Theorem 2.1 we have div(ρεk∇yεk) ∈ L2(Ω) ∀k ∈ N. Let us consider the next
relation ˆ

Ω

div(ρεk∇yεk)ϕdx = −
ˆ

Ω

(∇yεk ,∇ϕ)RNρ
εkdx

→ −
ˆ

Ω

(∇y∗,∇ϕ)RNρdx =

ˆ

Ω

div(ρ∇y)ϕdx, ∀ϕ ∈ C∞0 (Ω), as k →∞.

Hence, div(ρεk∇yεk) ⇀ div(ρ∇y) in L2(Ω) so the sequence {div(ρεk∇yεk)}k∈N is
bounded in L2(Ω).

Let us consider the sequence gεk := vεk − yεk . We know that the sequence
{gεk}k∈N is bounded in H(Ω, ρεkdx) and gεk ⇀ g := v − y∗ in H(Ω, ρεkdx) as
k → ∞, where {vεk ∈ Kεk}k∈N weakly converges to v ∈ K̃ in H(Ω, ρεkdx). In
view of properties of spaces L2(Ω, ρεkdx) we have that the sequence {gεk}k∈N is
bounded in L2(Ω) and gεk ⇀ g := v − y∗ in L2(Ω). Taking into account Lemma
2.3 we obtain

〈−div(ρεk(x)∇yεk), vεk − yεk〉H(Ω,ρεkdx)

→ 〈−div(ρ(x)∇y), v − y∗〉H(Ω,ρdx), as k →∞. (4.17)

Let us consider the right hand side of the inequality (4.15).
ˆ

Ω

(f + uεk)(vεk − yεk)dx =

ˆ

Ω

fvεkdx−
ˆ

Ω

fyεkdx+

ˆ

Ω

uεkvεkdx−
ˆ

Ω

uεkyεkdx.

Let us represent the last term by the following way:

−
ˆ

Ω

uεkyεkdx±
ˆ

Ω

uεky
∗dx = −

ˆ

Ω

uεk(yεk − y
∗)dx−

ˆ

Ω

uεky
∗dx.
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Since yεk ⇀ y∗ in L2(Ω, ρεkdx), ∇yεk ⇀ ∇y∗ in L2(Ω, ρεkdx)N , then

ˆ

Ω

|yεk |dx ≤

ˆ
Ω

|yεk |
2ρεkdx

1/2ˆ
Ω

(ρεk)−1dx

1/2

≤ C̃(|Ω|)1/2,

ˆ

Ω

|∇yεk |2dx ≤

ˆ
Ω

|∇yεk |
2ρεkdx

1/2ˆ
Ω

(ρεk)−1dx

1/2

≤ Ĉ(|Ω|)1/2.

Therefore the sequence {yεk}k∈N is equi-integrable on Ω and bounded inW 1,1
0 (Ω).

In view of compact embedding W 1,1
0 (Ω) ↪→ L1(Ω), there exists an element ỹ such

that yεk → ỹ strongly in L1(Ω). However, it is easy to see that yεk ⇀ y∗ in L1(Ω).
Hence, y∗ = ỹ a. e. on Ω. And we have that

´
Ω

uεk(yεk − y∗)dx→ 0, k →∞. Since

uεk ⇀ u∗ in L2(Ω, (ρεk)−1dx) and yεk ⇀ y∗ in H(Ω, ρεkdx), and L2(Ω, (ρεk)−1dx)
is the conjugate space to L2(Ω, ρεkdx), it follows thatˆ

Ω

fvεkdx→
ˆ

Ω

fvdx,

ˆ

Ω

fyεkdx→
ˆ

Ω

fy∗dx,

ˆ

Ω

uεkvεkdx→
ˆ

Ω

u∗vdx,

ˆ

Ω

uεkyεk →
ˆ

Ω

u∗y∗dx.

Hence, the limit inequality for the inequality (4.15) has the form:

〈−div(ρ(x)∇y∗), v − y∗〉H(Ω,ρdx) ≥ 〈f + u∗, v − y∗〉H(Ω,ρdx). (4.18)

Moreover, in view of previous suggestions, we have

lim
k→∞
〈−div(ρεk∇yεk), vεk − yεk〉H(Ω,ρεkdx)

= 〈−div(ρ(x)∇y∗), v〉H(Ω,ρdx) − lim sup
k→∞

ˆ

Ω

(∇yεk ,∇yεk)RNρεkdx

≥ 〈f + u∗, v − y∗〉H(Ω,ρdx),

or
lim sup
k→∞

ˆ

Ω

(∇yεk ,∇yεk)RNρεkdx

≤ 〈−div(ρ(x)∇y∗), v〉H(Ω,ρdx) − 〈f + u∗, v − y∗〉H(Ω,ρdx), ∀v ∈ K̃.
Having put in the last inequality v = y∗, we get

lim sup
k→∞

ˆ

Ω

|∇yεk |
2ρεkdx ≤

ˆ

Ω

|∇y∗|2ρdx,

that together with the property of the lower semicontinuity with respect to the
weak convergence in L2(Ω, ρεkdx), gives us that ∇yεk → ∇y∗ in L2(Ω, ρεkdx)N ,
k →∞.The proof is complete.
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As an evident consequence of this lemma and the lower semicontinuity pro-
perty of the cost functional (4.6) with respect to w-convergence in the variable
space Y(Ω, ρεdx), we have the following conclusion.

Corollary 4.1. Let {εk} be a subsequence of indices {ε} such that εk → 0 as
k → ∞, and let {(uk, yk) ∈ Ξεk}k∈N be a sequence of admissible solutions to
corresponding perturbed problems (4.6)-(4.8) such that (uk, yk) w-converges to
(u, y). Then properties (4.3) are valid.

To discuss properties (4.4)-(4.5), we give a result which is reciprocal in some
sense to Lemma 4.1.

Lemma 4.2. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight
function ρ(x) ≥ 0 and let (u, y) ∈ ΞH be any admissible pair. Then there exists a
relizing sequence {(ûε, ŷε) ∈ Y(Ω, ρεdx)}ε>0 such that

(ûε, ŷε) ∈ Ξε ∀ε > 0, ûε ⇀ u in L2(Ω, (ρε)−1dx); (4.19)

ŷε ⇀ y in L2(Ω, ρεdx), ∇ŷε → ∇y in L2(Ω, ρεdx)N . (4.20)

Proof. Let us construct the sequence {(ûε, ŷε)}ε>0 as follows:

ûε(x) =

ˆ

RN

Q(z)u(x+ εz)dz, (4.21)

ŷε ∈ H(Ω, ρεdx) is an H-solution of (4.8) corresponding to u = ûε. (4.22)

Let us show that for every ε > 0 the pair (ûε, ŷε) is admissible to the corresponding
problem (4.6)-(4.8). Indeed, as follows from [10] there exists C > 0 such that

ûε(x) ≤ C
ˆ

Ω

u(x+ εz)dz.

Taking into account the last inequality, properties of functions ρ and u, using the
replacement of variables in double integral, we have:

‖ûε‖2L2(Ω,ρ−1dx) =

ˆ

Ω

ˆ
RN

Q(z)u(x+ εz)dz

2

ρ−1dx

≤
ˆ

Ω

ˆ
Ω

u(x+ εz)dz

2

ρ−1dx ≤ C1

ˆ

Ω

ˆ

Ω

u2(x+ εz)ρ−1dzdx

= C2‖u‖2L2(Ω)‖ρ
−1‖L1(Ω) ≤ C3‖u‖2L2(Ω,ρ−1dx)‖ρ

−1‖L1(Ω) <∞,

where C1, C2, C3 are some positive constants. Hence,

ûε ∈ L2(Ω, ρ−1dx) ⊂ L2(Ω, (ρε)−1dx),
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∀ε > 0. Let Tε : L2(Ω, ρdx) → L2(Ω, ρεdx) is a “lifting” operator, constructed in
(2.15). Since ρ−1u ∈ L2(Ω, ρdx) (for details we refer to [10]), then

lim
ε→0

ˆ

Ω

ûεϕ(ρε)−1dx = lim
ε→0

ˆ

Ω

u(ϕ)ε(ρ
ε)−1dx

= lim
ε→0

ˆ

Ω

ρ−1u(ϕ)ε(ρ
ε)−1ρdx = lim

ε→0

ˆ

Ω

Tε(ρ
−1u)ϕ(ρε)−1ρεdx

= lim
ε→0

ˆ

Ω

Tε(ρ
−1u)ϕdx =

ˆ

Ω

uϕρ−1dx.

Taking into account properties of “lifting” operator (see Theorem 2.4), we have
that ûε ⇀ u in L2(Ω, (ρε)−1dx). In view of the definition of U ε∂ , we have that
ûε ∈ U ε∂ . Thus, we conclude that the sequence {(ûε, ŷε)}ε>0 ∈ Ξε. As a result,
following arguments of the proof of Lemma 4.1, we have that ŷ ⇀ y in L2(Ω, ρεdx)
and ∇ŷε → ∇y in L2(Ω, ρεdx)N as ε→ 0, where y = y(u), for any subsequence of
{ŷε ∈ H(Ω, ρεdx)}ε>0 and, hence, for the entire sequence. Here (u, y) ∈ ΞH is a
given H-admissible solution to problem (3.3)-(3.5). This concludes the proof.

Corollary 4.2. Lemma 4.2 implies the equality I(u, y) = lim
ε→0

Iε(ûε, ŷε).

As an obvious consequence of Definition 4.2, and Lemmas 4.1-4.2 with their
Corollaries, we can give the following conclusion.

Theorem 4.3. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight
function ρ(x) > 0. Then the minimization problem (3.3)-(3.5) is a weak varia-
tional limit of the sequence (4.6)-(4.8) as ε→ 0 with respect to the w-convergence
in the variable space Y(Ω, ρεdx).

5. General cinclusions

In this paper we substantiate the validity of an H-attainability concept. Note
that it can be considered in the case of solvability of initial degenerate optimal
control problem and corresponding approximate problems. In order to verify that
the set of optimal solutions to initial degenerate OCP is not empty, we invoke the
concept of degenerate weight function of potential type (see for details [17]). Also
for non-degenerate perturbed OCPs we construct the optimality conditions. As
far as we show that at least one optimal solution to the problem (3.3)-(3.5) can
be attained by optimal solutions to perturbed problems (4.6)-(4.8), and therefore,
we can apply the derived optimality system for ε > 0 small enough to characterise
the attainable optimal pairs to the initial optimization problem.
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1. Introduction to the formulation

The magnetic induction equation

Bt +∇× (B × u) = 0 (1.1)

is a constitutive part of the governing equations of ideal MHD [5]. In (1.1) u(t,x) is
the velocity field of a moving continuum, B(t,x) is the magnetic induction field,
(t,x) refers to an inertial frame of reference, and the lower index t indicates
the partial derivative with respect to t.

The magnetic induction equation has been studying by many authors, but in
the current study our concern is the following equation

Bt +w · ∇B −B · ∇w = λB , (1.2)

derived by Hornig & Schindler [7] for the evolution of the B-field and discussed
in [2, 3, 11]. In (1.2) w(t,x) is the velocity of the magnetic lines (the vector lines
of the B-field), λ is ‘a scalar free function’.

If the solenoidal nature of the B-field (∇ ·B = 0) is accounted for in (1.1),
then the former converts into the equation

Bt + u · ∇B −B · ∇u+ (∇ · u)B = 0 , (1.3)

exactly the same as the Zorawski criterion [13] for the B-field to be frozen in
the moving continuum. It follows from (1.3) that w⊥=u⊥ and generally w|| 6=u||,
where w(t,x) =w⊥(t,x) +w||(t,x), u(t,x) =u⊥(t,x) + u||(t,x), and the lower
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c© Vladimir L. Borsch, 2018.
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indices mean respectively local orthogonal and tangent directions to a magnetic
line. But (1.2) is surely to differ from the criterion [13], and from this there stems
our interest to the formulation (1.2) of the evolution equation for B(t,x) and
especially to function λ.

2. Preliminaries of the formulation

Following [7] we introduce some diffeomorphic mappings to study the formula-
tion (1.2) of the evolution equation for the magnetic induction.

The first one

x = ϕu(t,X) , X ∈ D(t′) ⊆ R3, t > t′, (2.1)

maps domain D(t′) onto domain D(t), t > t′, whereX are coordinates parametri-
zing domain D(t′) (sometimes called the Lagrangian independent variables), and

X = ϕu(t′,X) (2.2)

is the identical mapping. The inverse mapping

X = ψu(t,x) , x ∈ D(t) , t > t′, (2.3)

acts in the opposite direction (in time).
The partial derivative of (2.1) with respect to time is called the velocity of

the mapping

v(t,X) =
∂ϕu(t,X)

∂t
(2.4)

and is easily presented in the Eulerian independent variables x

u(t,x) = v(t,ψu(t,x)) . (2.5)

Diffeomorphism (2.1) is responsible for the motion of the continuum and is
the only solution to the following Cauchy problem ‘in the whole’

dx

dt
= u(t,x) ,

x(t′) = X ′.

(2.6)

The second one

x = ϕw(t,X) , X ∈ D(t′) ⊆ R3, t > t′, (2.7)

maps domain D(t′) onto domain D(t), t > t′, and

X = ϕw(t′,X) (2.8)

is the identical mapping. The inverse mapping
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X = ψw(t,x) , x ∈ D(t) , t > t′, (2.9)

acts in the opposite direction (in time).
The partial derivative of (2.7) with respect to time is called the velocity of

the mapping

w(t,x) =
∂ϕw(t,X)

∂t

∣∣∣∣
X=ψw(t,x)

. (2.10)

Diffeomorphism (2.7) is responsible for the motion (evolution) of magnetic
field B(t,x) and can be specified through velocity field w(t,x). Newcomb [9]
and Stern [12] discussed some ways of specifying velocity filed w(t,x) having
properties mentioned above.

The solutions to the following Cauchy problem
dx

dσ
= B(t,x) ,

x(σ′) = x′,

x,x′ ∈ D(t) , t > t′, (2.11)

are called the magnetic lines (of the B field) and are given as the following dif-
feomorphism (the third one)

x = ϕB(t,x′, σ) , (2.12)

where σ is a scalar parameter along the magnetic lines.
Diffeomorphism (2.12) is the only solution to the Cauchy problem (2.11), since

B(t,x) =
∂ϕB(t,x′, σ)

∂σ

∣∣∣∣
(x′,σ)

(2.12)→ x

. (2.13)

We note that ϕu, ϕw and ϕB are called sometimes the (phase) flows for fields
u(t,x), w(t,x) and B(t,x), whereas in [3] ϕw and ϕB are called the generating
functions for w(t,x) and B(t,x).

3. The main proposition of the formulation

Now we present a fully geometrical proof of the formulation (1.2) of the evolu-
tion equation for the magnetic induction extended compared to that given in [7].
The proof is based on a reparametrization of diffeomorphism ϕB introduced in [7]
and the commutation condition of flows (proposition 4.2.27 in [1]).

Proposition 3.1. If diffeomorphisms ϕw (2.7) and ϕB (2.12) commute, the latter
being reparametrized the proper way; then the resulted evolution equation for
the B-field is determined uniquely.
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Proof. Let an arbitrary instant t′ be the reference one. This means that the Car-
tesian coordinates x at t′ are considered to be the Lagrangian ones: X=x. Then
take a magnetic line Γ(t′) and parametrize it due to diffeomorphism ϕB as follows

x = ϕB(t′,xM, σ) ,

where M ∈ Γ(t′) is an arbitrary point: xM = ϕB(t′,xM, σM). Choosing an infini-
tesimal increment ∆σ of the parameter we determine point N ∈ Γ(t′):

xN = ϕB(t′,xM, σN) , σN = σM + ∆σ .

At instant t′ + ∆t, where ∆t is an infinitesimal increment of time, diffeomor-
phism ϕw maps magnetic line Γ(t′) onto a magnetic line Γ(t′+ ∆t). The latter is
the image of the former due to diffeomorphism ϕu, if we assume that the magnetic
lines are ‘frozen’ in the moving continuum, this implies that w⊥ = u⊥ and gene-
rally w|| 6= u||.

Diffeomorphism ϕw maps points M,N ∈ Γ(t′) into points M′,N′ ∈ Γ(t′+∆t)
as follows {

xM′ = ϕw(t′ + ∆t,XM) ,

xN′ = ϕw(t′ + ∆t,XN ) ,

and finally, at instant t′ + ∆t diffeomorphism ϕB maps point M′ into point N′′

xN′′ = ϕB(t′ + ∆t,xM′ , σM′′) ,

where σM′′ = σM′ + ∆σ, and xM′ = ϕB(t′ + ∆t,xM′ , σM′).
Generally speaking, N′′ 6= N′, that is there is no commutation of diffeomor-

phisms ϕw and ϕB (Fig. 1, a).
It is clear that for commutation to occur, the parametrization of magnetic

lines due to diffeomorphism ϕB should be changed as

x = ϕ̄B(t,x′, α(t,x′, σ)) , t > t′, (3.1)

where α(t′,x′, σ) = σ, and the bar over the symbol of the diffeomorphism denotes
the proper reparametrization. The evident restriction to be imposed on function α
along magnetic line Γ(t′ + ∆t) for diffeomorphisms ϕw, ϕB and ϕ̄B to commute
(Fig. 1, b) is the following

xN′ = ϕ̄B(t′ + ∆t,xM′ , αN′) , (3.2)

where

αN′ = σM′ + ∆α , ∆α =
∂α(t′ + ∆t,xM′ , σ)

∂σ

∣∣∣
σ=σ

M′
∆σ . (3.3)
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Fig. 1. Evolution of magnetic line Γ between two instants t′ and t′ + ∆t: infinitesimal
quadrilaterals MM′N′N formed by diffeomorphisms ϕw and ϕB without commutation
(a: N′ 6= N′′) and by diffeomorphisms ϕw, ϕB and ϕ̄B with commutation (b: N′ = N′′)

But we can easily find ∆α directly, without finding function α. Indeed, for
the reparametrized diffeomorphism ϕ̄B we have (one should refer to (2.11) and
replace σ with α in the differential equation for the magnetic lines)

dx

dα
= B ,

hence, the required expression for ∆α in (3.2), (3.3) is

∆α =
|xN′ − xM′ |

|B(t′ + ∆t,xM′)|
.

Expanding the expressions for the coordinates of points N, M′ and N′ into
series with respect to ∆t and ∆σ and retaining only the terms of the first order
in ∆t and ∆σ we obtain

xN = ϕB(t′,xM, σM) + ∆σ
∂ϕB(t′,xM, σN)

∂σ
= xM + ∆σB(t′,xM) , (3.4)


xM′ = ϕw(t′,XM) + ∆t

∂ϕw(t′,XM)

∂t

(2.8)
= xM + ∆tw(t′,xM) ,

xN′ = ϕw(t′,XN ) + ∆t
∂ϕw(t′,XN )

∂t

(2.8)
= xN + ∆tw(t′,xN ) .

(3.5)

Using the obtained expressions for the difference xN′ − xM′ yields to
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
xN′ − xM′

(3.5)
= xN − xM + ∆t

(
w(t′,xN)−w(t′,xM)

)
(3.4)
= ∆σB(t′,xM) + ∆t

(
w(t′,xM + ∆σB(t′,xM))−w(t′,xM)

)
= ∆σB(t′,xM) + ∆t∆σB(t′,xM) · ∇w(t′,xM) ,

and the required expression for the proper value of ∆α reduces to the following

∆α =

∣∣∣B(t′,xM) + ∆tB(t′,xM) · ∇w(t′,xM)
∣∣∣∣∣∣∣B(t,xM) + ∆t

∂B(t′,xM)

∂t
+ ∆tw(t′,xM) · ∇B(t′,xM)

∣∣∣∣ ∆σ . (3.6)

Now we consider infinitesimal quadrilateral MM′N′N (Fig. 1, b) and set up
the following commutation equality for diffeomorphisms ϕw, ϕB and ϕ̄B acting
on MM′N′N

ϕ̄B
(
t′ + ∆t,ϕw(t′ + ∆t,XM), σN′

)
= ϕw

(
t′ + ∆t,ϕB(t′,xM, σN)

)
. (3.7)

The necessary and sufficient condition for the above equality to hold is the following
commutation condition [1]

[
∂2

∂σ ∂t
ϕ̄B (t,ϕw(t,X), α(t,x, σ))

]
=

[
∂2

∂t ∂σ
ϕw (t,ϕB(t,x, σ))

]
, (3.8)

where the brackets herein after denote that a quantity enclosed is calculated
at point (t′,xM). Using the defined derivatives (2.10) and (2.13) of ϕw and ϕB
in (3.8) yields to

∂

∂t

[
B (t,ϕw(t,X))

∂

∂σ
α(t,x, σ)

]
=

∂

∂σ

[
w (t,ϕB(t,x, σ))

]
.

The derivative of the term in the brackets at the right hand side of the above
equality is evident

∂ϕB(t′,xM, σM)

∂σ
· ∇w(t′,xM) ≡ B(t′,xM) · ∇w(t′,xM) ,

and the same is true for the product in the brackets at the left hand side

(
∂B(t′,xM)

∂t
+
∂ϕw(t′,xM)

∂t
· ∇B(t′,xM)

)[
∂α

∂σ

]
+B(t′,xM)

[
∂2α

∂σ ∂t

]

≡
(
∂B(t′,xM)

∂t
+w(t′,xM) · ∇B(t′,xM)

)[
∂α

∂σ

]
+B(t′,xM)

[
∂2α

∂σ ∂t

]
.
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To calculate the first derivative on σ and the mixed derivative of function α
we use the divided differences as follows

[
∂α

∂σ

]
= lim

∆t→0
∆σ→0

|xN′ − xM′ |
|B(t′ + ∆t,xM′)|∆σ

= lim
∆t→0
∆σ→0

|xN′ − xM′ ||B(t′,xM)|
|xN − xM||B(t′ + ∆t,xM′)|

= 1 ,

= lim
∆t→0
∆σ→0

|xN′ − xM′ ||B(t′,xM)|
|xN − xM||B(t′ + ∆t,xM′)|

= 1 ,

[
∂2α

∂t ∂σ

]
= lim

∆t→0
∆σ→0

|xN′ − xM′ |
|B(t′ + ∆t,xM′)|

− |xN − xM|
|B(t′,xM)|

∆σ∆t
= lim

∆t→0

∆α

∆σ
− 1

∆t
.

For completing the calculation of the mixed derivative we consider the numerator
of the last expression separately as follows

∆α

∆σ
− 1

(3.6)
=

[∣∣∣B + ∆tB · ∇w
∣∣∣][∣∣∣∣B + ∆t

∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
] − 1

=

[∣∣∣B + ∆tB · ∇w
∣∣∣− ∣∣∣∣B + ∆t

∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
]

[∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
]

×

[∣∣∣B + ∆tB · ∇w
∣∣∣+

∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
]

[∣∣∣B + ∆tB · ∇w
∣∣∣+

∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
]

=

[(
B + ∆tB · ∇w

)2
−
(
B + ∆t

∂B

∂t
+ ∆tw · ∇B

)2
]

[∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
][∣∣∣B + ∆tB · ∇w

∣∣∣+∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
]

=

2∆t

[
B ·

(
∇w

)
·B −B · ∂B

∂t
−w ·

(
∇B

)
·B +O (∆t)

]
[∣∣∣∣B + ∆t

∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
][∣∣∣B + ∆tB · ∇w

∣∣∣+∣∣∣∣B + ∆t
∂B

∂t
+ ∆tw · ∇B

∣∣∣∣
] .
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Replacing the numerator of the expression for the mixed derivative of function α
with the above one and taking the limit at ∆t→ 0 we obtain the final expression
for the mixed derivative

[
∂2α

∂t ∂σ

]
≡ −λ = −

[
1

|B|2

(
1

2

∂|B|2

∂t
+w ·

(
∇B

)
·B −B ·

(
∇w

)
·B
)]

. (3.9)

Gathering all the terms obtained when treating commutation condition (3.8)
we conclude that the required evolution equation for the magnetic induction reads

Bt +w · ∇B −B · ∇w =
1

|B|2

(
1

2

∂|B|2

∂t
+w ·

(
∇B

)
·B −B ·

(
∇w

)
·B
)

︸ ︷︷ ︸
λ

B .

(3.10)
Arbitrariness of point (t′,xM) means that the equation obtained is valid at

any point (t,x) ∈ D(t) and this is denoted by dropping the brackets referring
to point (t′,xM) in (3.8).

4. The Galilean invariance of the formulation

The MHD phenomena in the non-relativistic limit are Galilean invariant [10],
but the original magnetic induction equation (1.1) does not obey the Galilean
transformation. It was Godunov [6] who showed that (1.1) transforms to formula-
tion (1.3) being Galilean invariant if the solenoidal nature of theB-field is accoun-
ted for explicitly. And what about evolution equation (3.10)?

Proposition 4.1. Evolution equation (3.10) is Galilean invariant.

Proof. Let (τ, ξ) be an inertial frame of reference such that{
τ = t ,

ξ = x− ta ,
(4.1)

where a is a constant velocity, then velocity field w(t,x) and magnetic induction
B(t,x) observed in (τ, ξ) and indicated by an asterisk are{

w∗(τ, ξ) = w(t,x)− a ,

B∗(τ, ξ) = B(t,x) .

When changing the frame of reference from (t,x) to (τ, ξ) the partial deriva-
tives transform as follows
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.
∂B

∂t
=
∂B∗

∂τ
+
∂ξ

∂t
·
(
∇ξB∗

)
=
∂B∗

∂τ
− a ·

(
∇ξB∗

)
,

∇xB = ∇ξB∗, ∇xw = ∇ξw∗ +∇ξa = ∇ξw∗,

hence, applying the above transformations to the terms on the left-hand side of
evolution equation (3.10) yields to

∂B∗

∂τ
− a ·

(
∇ξB∗

)
+w∗ ·

(
∇ξB∗

)
+ a ·

(
∇ξB∗

)
−B∗ ·

(
∇ξw∗

)
=
∂B∗

∂τ
+w∗ ·

(
∇ξB∗

)
−B∗ ·

(
∇ξw∗

)
.

The similar transformations are easily applied to the terms in the parentheses
on the right-hand side of evolution equation (3.10) as follows

B∗ · ∂B
∗

∂τ
− a ·

(
∇ξB∗

)
·B∗

+ w∗ ·
(
∇ξB∗

)
·B∗ + a ·

(
∇ξB∗

)
·B∗ −B∗ ·

(
∇ξw∗

)
·B∗

= B∗ · ∂B
∗

∂τ
+w∗ ·

(
∇ξB∗

)
·B∗ −B∗ ·

(
∇ξw∗

)
·B∗.

Gathering all the transformed terms we obtain the following evolution equation
for the magnetic induction in frame of reference (τ, ξ)

B∗τ +w∗ · ∇ξB∗ −B∗ · ∇ξw∗

=
1

|B∗|2

(
1

2

∂|B∗|2

∂τ
+w∗ ·

(
∇ξB∗

)
·B∗ −B∗ ·

(
∇ξw∗

)
·B∗

)
B∗.

The resulted equation is seen to be the same as the evolution equation in
frame of reference (t,x). This completes the proof.

5. The incompleteness of the formulation

Function λ in (3.10) looks if it were obtained directly from (1.2) by the dot
product of the former and the local vector B(t,x) as follows

B ·Bt +w ·
(
∇B

)
·B −B ·

(
∇w

)
·B = λB ·B , (5.1)

nevertheless evolution equation (3.10) is obtainable by direct calculation of mixed
derivative (3.9) in commutation condition (3.8). This is an evidence that evolution
equation (3.10) is incomplete. Actually, the dot product of (3.10) and the local
vector B(t,x) produces the trivial identity 0 = 0, i. e., the evolution equation
being under consideration ‘works’ only in planes normal to the local vectorsB(t,x).
The situation is clarified by the following
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Proposition 5.1. Evolution equation (3.10) for the magnetic induction is incomp-
lete, i. e., it actually includes only two evolution equations for two scalar quantities.

Proof. Let domains D(t), t > t′, be parametrized using Cartesian orthogonal coor-
dinates x = (x1, x2, x3), hence, B=(B1, B2, B3), w=(w1, w2, w3), and evolution
equation (3.10) be rewritten in matrix form as the following quasilinear system
of the first order

A0(U)
∂U

∂t
+

3∑
κ=1

Aκ(U;w)
∂U

∂xκ
= G(U;∇w) , (5.2)

where

U =


B1

B2

B3

, A0(U) =


|B|2 −B1B1 −B1B2 −B1B3

−B2B1 |B|2 −B2B2 −B2B3

−B3B1 −B3B2 |B|2 −B3B3

,

Aκ(U;w) = A0(U) Cκ(w) = Cκ(w) A0(U) , Cκ(w) = wκ diag (1, 1, 1) ,

G(U;∇w) =


|B|2 φ1(B;∇w)− φ(B;∇w)B1

|B|2 φ2(B;∇w)− φ(B;∇w)B2

|B|2 φ3(B;∇w)− φ(B;∇w)B3

,
φ1, φ2, and φ3 being linear forms and φ being a quadratic form in the components
of the B-field as follows

φ(B;∇w) =
3∑

κ=1

3∑
ι=1

BκBι
∂wκ
∂xι

=
3∑
ι=1

Bι

(
3∑

κ=1

Bκ
∂wκ
∂xι

)
=

3∑
ι=1

Bι φι(B;∇w) .

We use matrix notation U for the dependent variables in matrix formulation (5.2)
of evolution equation (3.10) and its constitutive parts and vector notation B in
the scalar functions and the entries of the matrices.

Matrix A0 is singular: det A0 = 0, rank A0 = 2, but being real symmetric it
has real eigenvalues: λ1 = 0, λ2 = |B|2, λ3 = |B|2, and complete sets of the left
(rows) and the right (columns) normalized real eigenvectors

L(U) = R−1(U) = |B|−2


B1B3 B2B3 B3B3

−B1B3 −B2B3 B1B1 +B2B2

−B2B1 B1B1 +B3B3 −B2B3

,
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R(U) = L−1(U) =



B1

B3

−B3

B1

−B2

B1

B2

B3

0 1

1 1 0


.

The left and the right eigenvectors are normalized as above to diagonalize
matrix A0 as follows

L(U) A0(U) R(U) = diag
(
0, |B|2, |B|2

)
≡ Q(U) , A0(U) = R(U) Q(U) L(U) .

Applying this property to system (5.2) yields to

Q(U)

(
L(U)

∂U

∂t
+

3∑
κ=1

Cκ(w) L(U)
∂U

∂xκ

)
= H(U;∇w) , (5.3)

where the source term on the right-hand side has the following explicit form

H(U;∇w) ≡ L(U)G(U;∇w) =


0

|B|2 φ3(B;∇w)− φ(B;∇w)B3

|B|2 φ2(B;∇w)− φ(B;∇w)B2

, (5.4)

whereas the terms on the left-hand side need to be simplified using a proper
transformation of the dependent variables U.

The proper choice of the variable transformation is prompted by the differential
terms on the the left-hand side of system (5.3) leading to the following matrix-
column product

|B|2 L(U) dU =


B1B3 dB1 + B2B3 dB2 + B3B3 dB3

−B1B3 dB1 − B2B3 dB2 + (B1B1 +B2B2) dB3

−B2B1 dB1 + (B1B1 +B3B3) dB2 − B2B3 dB3

,
where scalar multiplier |B|2 represents the non-zero entries of matrix Q(U).

The 1-forms given by the entries of the resulted column vector above and
denoted below respectively as ω1, ω2, and ω3, are evidently to be integrable,
the integrating factors being as follows

θ1(B) =
1

B3

(
B2

1 +B2
2 +B2

3

) , θ2(B) =
1

B2
2

√
B2

1 +B2
3

, θ3(B) =
1

B2
3

√
B2

1 +B2
2

.
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Hence, we find that

θ1(B)ω1 = dv1 = d
√
B2

1 +B2
2 +B2

3 ,

θ2(B)ω2 = dv2 = d

√
B2

1 +B2
3

B2

,

θ3(B)ω3 = dv3 = d

√
B2

1 +B2
2

B3

,

, (5.5)

and the new dependent variables are V(U) = (v1, v2, v3).
Eventually, the first differential equation of system (5.3) vanishes, whereas

the remaining two ones read

∂

∂t

v2

v3

+

3∑
κ=1

wκ 0

0 wκ

 ∂

∂xκ

v2

v3

 =

p2(v1, v2, v3;∇w)

p3(v1, v2, v3;∇w)

, (5.6)

where 
p2(v1, v2, v3;∇w) =

[
θ2(B)h2 (B;∇w)

]
U→V

,

p3(v1, v2, v3;∇w) =
[
θ3(B)h3 (B;∇w)

]
U→V

,

and h2, h3 are two non-zero entries of column vector H (5.4). Both equations of
system (5.6) are coupled through source terms p2 and p3.

Finding the above system completes the proof.

6. Conclusions of the formulation

1. Evolution equation (1.2) is uniquely determined by diffeomorphisms ϕw,
ϕB and ϕ̄B. This means that function λ explicitly depends on the local values
of fieldsB(t,x) andw(t,x) and the partial derivatives ofB(t,x) as it is seen from
formulation (3.10) of the evolution equation, rather than being ‘a free function’.

2. Evolution equation (1.2) is influenced by velocity field w(t,x), nevertheless
substituting velocity field u(t,x) into (1.2) does not convert the former into
magnetic induction equation (1.3), since in both formulations (1.1) and (1.3) of
the magnetic induction equation and in evolution equation (1.2) for the magnetic
induction the velocity fields have quite different meanings.

3. Evolution equation (1.2) is Galilean invariant similarly to formulation (1.3)
of the magnetic induction equation.

4. Evolution equation (1.2) is incomplete, since it is reduced to system (5.6) of
two partial differential equations for dependent variables v2, v3 (5.5). System (5.6)
needs to be supplemented with a constraint imposed on variables (v1, v2, v3), either
algebraic or differential, to admit the well-posed formulations [4, 8] of IBVP.
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5. Variable v1 (5.5) is introduced similarly to variables v2, v3 using the left
eigenvectors but variable v1 turns out to be blind to the sign of component B1 of
the B-field, contrary to variables v2, v3 accounting for the signs of components B2

and B3. Therefore, an other choice for v1 may be more appropriate.
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