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STEPS TO THE FUTURE

IrinaG. Balanenko∗

Abstract. Historical milestones and directions of scienti�c research. To the 100th anniversary

of the Oles Honchar Dnipro National University and the 52nd anniversary of the Department

of Di�erential Equations

University is a special concept in the memory of many generations of people
who have somehow connected their destiny with it. These people have showed the
samples of diligence and honor, a high sense of duty and dignity, and devotion
to the chosen case with their work, professional accomplishments and scienti�c
discoveries, honest daily work. They have created the centenary chronicle of the
alma mater, one of the most prestigious higher educational institutions in Ukraine.

Oles Honchar Dnipro National University today combines the best traditions
of classical higher education, powerful potential of the world-famous research
schools and modern trends in the introduction of innovative technologies.

The multi-volume history of the university created of human lives, personalities
who began to form university traditions, determined the ways of further develop-
ment, prepared a new generation of scholars that was so necessary for the develop-
ment of the state has been made for 100 glorious, though di�cult, years of our
university.

Its glorious history goes back to 1918, when under the rule of Hetman Skoro-
padsky the Statute of Katerynoslav University was approved. The formation and
growth of the university are closely connected with the names of such outstanding
scholars as academicians L.V. Pisarzhevsky, A.N. Dynnyk, F.V. Taranovsky and
D.I. Yavornytsky [1]. It is symbolic that the �rst educational building of the
university was Prince Potiomkin's palace because the idea to set up an institution
of higher learning in the city emerged when he was the governor of the region in
the late 18th century. At that time Tsarina Catherine II issued an edict about the
foundation of a university in Katerynoslav, "in which not only sciences but also
arts are obliged to be taught".

Glimpses of DNU's glorious past re�ect the dramatic history of the country
in which the university has grown and gained �rm standing and international
recognition. About 30 research schools have sprung up here making the institution
a leader in the university and academic science. Creation of a powerful trend in
space engineering design in post-war years made DNU a unique classical university.

Pride and joy of the university are its alumni. Among those who emerged from
the lecture halls of DNU are well-known writers Oles Honchar, Pavio Zahrebelny,
Valerian Pidmohylny, academicians Serhiy Nikolsky, Volodymyr Mossakovsky,
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2 I.G. Balanenko

Oleh Trubachov, Viktor Pylypenko, prominent political and public �gures. Five
of our alumni have been given the highest award of the country - the title of
Hero of Ukraine. They are the renowned humanist of today Pavio Zahrebelny
and famous space engineering designers who have created modern space image
of our country: Stanislav Koniukhov, Yuri Alexeyev, Volodymyr Komanov and
Volodymyr Sichovy [3].

Traditions of the past generations are being upheld and developed today by
the researchers, teachers and students of the university. By the results of the polls
among experts and students DNU hold a �rm position in the annual "Sophia of
Kyiv" rating competition among institutions of higher education of Ukraine and
International exhibition "Modern Education in Ukraine" [6].

University's compliance with world educational standards has been recognized
by the foreign colleagues. As of today there are about 50 bilateral cooperation
agreements between DNU and leading educational and research institutions of
Germany, France, Italy, Spain, Great Britain, Poland, Russia, Turkey, China,
Brazil and the United States. Our university is an o�cially recognized regional
leader by the quantity and quality of successfully realized international TEMPUS/
TASIS projects .

DNU is also a member of several international university associations, the most
known of which are UNINET and "Eurasian Forum". Last year alone 47 foreign
delegations, both educational and governmental, visited DNU. The university has
become alma mater for alumni from 49 countries.

The history of the Dnipro National University would be incomplete without
the history of the Department of Di�erential Equations.

A special fortune of the university, transforming it in September 1966 into
one of the leading (under the terminology of that time - the basic) institution
of higher education of Ukraine and the former Soviet Union, is quite rightly
associated with the name of the academician, the Hero of the Socialist Labor,
rector V. I. Mossakovskyi, who consistently headed the team for 22 years (1964�
1986) [4].

As a basic institution, the university was assigned the role of a coordinating
scienti�c and methodological center in the region. It became a kind of ground for
innovations in the system of higher education. The new research laboratories and
departments were created.

Department of di�erential equations was created in 1966 on the Mechanics and
Mathematics Faculty of the Dnipropetrovsk State University. Associate Professor
B. I. Kryukov headed by of the Department. Sta� of the Department was as follows
in 1966: Associate Professor B. I. Kryukov, Associate Professor V.A. Ostapenko,
senior lecturer O.V. Zenkin, Assistant I. N. Shields, Assistant L. I. Shelest, senior
laboratory L.V. Lybina.

The Laboratory of "Vibration Machines" (Head Assoc.Prof. E.A. Logvinenko)
was organized at the Department in 1969. The study of the dynamics of vibration
non-linear systems which are generating asymmetric vibrations were conducted
in this Laboratory. The methods of calculation and design principles of new
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resonance vibration machines have been developed as a result. Here were designed,
manufactured and introduced asymmetric vibration platforms, cluster plants,
screen machines which allow to not only intensify the processes but the reduce
the consumption of energy and materials and the fall of noise level up to sanitary
standards. Division "Vibrational Technics" at the Department of Di�erential
Equations was created with the aim of the implementation acceleration of the
research results in 1971 [5].

A number of scienti�c and engineering organizations with priority of vibrational
Technics were created in capital of USSR given the high economic e�ciency of the
new vibrational equipment, which was created the department sta�, and the need
the wide implementation into constructional industry of country. The government
had decided to transfer of Prof. B. I. Kryukov, Assoc.Prof. E.A. Logvinenko (Head
of Department), Ph.D. L.M. Litvin (Chief designer Department) as the heads of
these organizations. At the end of the work (in 1979) these scientists were awarded
the State Prize for the development of the theory of nonlinear systems, which are
generating asymmetric vibrations, calculation methods and design principles of
resonant vibration of machines and widespread adoption of scienti�c achievements
in industry. All the theoretical and experimental studies were carried out at the
Department of Di�erential Equations at the Dnepropetrovsk University.

Fig. 1. Asymmetric vibration platform.
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In time the workload and the number of employees of the Department were
increased. The skills of teachers are constantly improved. Professor V.A. Ostapen-
ko (1975�1995), Professor N.V. Poliakov (1995�2014), Professor P. I. Kogut from
2014 (to the present) were headed the Department after Prof. B. I. Kryukov.

The present time of the native educational institution, its destiny, fame, achie-
ve ments, outstanding scienti�c schools, well-known names in science and educa-
tion, are closely connected with the people who studied and worked in it.

Prof. I. N. Shitov, Prof. V.A. Tychinin, Prof. M.V. Dmitriev, Assoc. Prof.
V. I. Perechrest, Assoc. Prof. O.V. Zenkin, Assoc. Prof. G. I. Skorokhod, Assoc.
Prof. V.B. Spivakovsky (Israel), Assoc. Prof. V.B. Kamen (USA), Assoc. Prof.
T.V. Ridvanskaya, Assoc. Prof. A.A. Busurulov, Senior Lecture S.M. Ilyinà,
Assistant E. S. Mnouchkina, Assistant V. Z. Kachan, Assistant N.D. Pashkovskaya,
Assistant S.A. Tyr worked at the Department at various times.

Fig. 2. Department of Di�erential Equations.

Since 1968 the scienti�c seminar "Di�erential equations and their applications"
has worked at the department and a collection of scienti�c works with the same
name has been published.

Among the research areas are the followings: the theory of di�raction and wave
resonators, investigation of inverse problems for di�erential equations, investigation
of gas-air tract of internal combustion engines, investigation of nonlocal and
conditional symmetries of nonlinear equations of mathematical physics, setting
and solving of inverse problems for di�erential equations, construction of exact
solutions and asymptotic of solutions of nonlinear di�erential equations, solution
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of dynamic problems of the theory of elasticity, related problems of nonlinear
thermoplasticity (two-phase problem), qualitative theory of di�erential equations,
asymptotic methods in the theory of di�erential equations, mathematical modeling
of dynamic systems, mathematical bases of the method of boundary integral
equations, methods for solving incorrect problems.

Fundamental results were obtained in the directions:

� solving nonlinear boundary value problems of immersion of bodies in a liquid;

� asymptotic methods for solving nonlinear di�erential equations with partial
derivatives;

� construction of new solutions of the Euler and Navier-Stokes hydrodynamic
equations;

� integral images of problem solving for elliptic equations;

� solving inverse problems for di�erential equations with approximated coe�-
cients;

� analytical solutions of boundary value problems for growing bodies, taking
into account phase transitions.

Over the years the range of tasks was extended. The new problems were
determined by the new needs of the national economy and the state, new scienti�c
interests, the topics of contractual and state budget subjects of scienti�c research.

Fig. 3. The scienti�c seminar.

In 1997-1998 Department participated in scienti�c and applied research on the
program "Sea Launch" together with the design department "Southern".

Five doctoral theses (V.A. Ostapenko, I.N. Shitov, M.V. Dmitriev, V.A. Tychi-
nin, N.V. Poliakov) and 21 master's theses were protected since the establishment
of the Department to the currently.
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Many graduates of the Department of Di�erential Equations became later
teachers of the Dnipropetrovsk and other universities of Ukraine and other count-
ries, and succeeded in various spheres of scienti�c and educational, economic and
industrial, public and political life. More than 700 mathematicians have been
trained by the Department for 50 years.

The university school of mathematical theory of controlled systems, aerohyd-
romechanics and energy-mass transfer is well-known in Ukraine and abroad. The
newest theories of di�erential equations are directly used for the creation of
nanomaterials, solving problems of optimization of structures, calculating the
dynamics of complex mechanical systems, solving environmental problems and
�ltration of systems with numerous microstructures, calculating the destruction
of materials, and the creation of novel materials with prede�ned properties [5].

The Department has close educational and scienti�c links with the Institute of
Mathematics of the National Academy of Sciences of Ukraine, the Kyiv National
University, the Donetsk State University, the universities of Erlangen (Germany),
Salerno (Italy), Naples (Italy), Bilbao (Spain), Moscow State University (Russia),
Technical University of Cottbus (Germany), Lodz Polytechnic University (Poland)
Technical University of Koblitz (Germany), as well as with universities in the USA,
France, Israel and Russia.

Main scienti�c interests of the department now:
� Mathematical Modeling, Optimization and Control of Dynamical Systems

and Processes in Science and Engineering;
� Optimal Control Problems for Partial Di�erential Equations with Control

and State Constraints;
� Optimization of Tra�c Flows on Networks;
� Optimal Control Problems for Nonlinear Hyperbolic Conservation Lows;
� Asymptotic Analysis of Optimization Problems on Reticulated Structures

(perforated domains, thick multi-structures, thick junctions);
� Homogenization and Variational Convergence of Optimal Control Problems.
� Optimal Control Problems on Thick Periodic Graphs;
� Optimal Control Problems in Coe�cients for Nonlinear PDE;
� Optimization Theory in Partially Ordered Normed Spaces;
� Inverse Problem Theory and Methods for Model Parameter Estimation;
� Exact and Approximate Methods of the Theory of Di�erential and Integral-

Di�erential Equations;
� Mathematical Modeling and Simulation of the Heat and Mass Transfer

Processes with Nonequilibrium Relaxation.
On a regular base the department conducts the scienti�c seminar on "Modern

Problems of Optimization and Mathematical Modeling" for research fellows, post-
graduates, and senior students.

In 2013�2016 the research on the state budget subject "Modeling and optimiza-
tion of nonlinear evolution systems" was conducted, since 2017 the research on
the subject "Optimization of nonlinear systems with distributed parameters: qua-
litative analysis, approximation of solutions, necessary optimality conditions" has
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been carried out.
Sta� of the Department now: Peter I. Kogut � Prof. Dr., Head of the Depart-

ment, Mykola V. Poliakov � Corresponding Member of National Academy of
Sciences of Ukraine, Prof. Dr., Professor, the Rector of Oles Honchar Dnipro
National University, Andrii V. Siasiev � Ph.Dr., Associate Professor, Deputy
Dean for Research of Faculty of Mechanics and Mathematics. Ph.Dr., Associate
Professors: Vladimir L. Borsch, Marina V. Matyash, Yurii L. Menshikov, Eugene
V. Turchin, Svitlana A. Gorbonos, Yurii P.Sovit, Olga S. Filippova, Eugene A. Ma-
karenkov, Tamara A. Bozhanova, Irina G. Balanenko.

"The Bulletin of Dnipropetrovsk University. Series: Communications in Mathe-
matical Modeling and Di�erential Equations Theory" is concerned with the theory
and the application of partial di�erential equations, dynamical systems, optimal
control theory and other related topics. The journal had been founded in 2009.
The goal is to provide a complete and reliable source of mathematical methods and
results in this �eld. The journal will also accept papers from some related �elds
such as functional analysis, probability theory and stochastic analysis, inverse
problems for di�erential equations, optimization, numerical computation, mathe-
matical �nance, game theory, system theory, etc., provided that they have some
intrinsic connections with control theory and di�erential equations [6].

Since 2016 a collection of scienti�c works for students and postgraduates
"Di�erential equations and their applications" is published.

We hope that "Journal of Optimization Di�erential Equations and Their
Applications" will not only become the descendant of previous editions, but
also provide an opportunity to broaden the range of issues to be solved and the
geography of its authors and readers.
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ON EXISTENCE OF BOUNDED FEASIBLE SOLUTIONS
TO NEUMANN BOUNDARY CONTROL PROBLEM FOR
p-LAPLACE EQUATION WITH EXPONENTIAL TYPE

OF NONLINEARITY

Peter I. Kogut∗, Rosanna Manzo†, MykolaV. Poliakov‡

Abstract. We study an optimal control problem for mixed Dirichlet-Neumann boundary

value problem for the strongly non-linear elliptic equation with p-Laplace operator and

L1-nonlinearity in its right-hand side. A distribution u acting on a part of boundary of

open domain is taken as a boundary control. The optimal control problem is to minimize

the discrepancy between a given distribution yd ∈ L2(Ω) and the current system state. We

deal with such case of nonlinearity when we cannot expect to have a solution of the state

equation for any admissible control. After de�ning a suitable functional class in which we

look for solutions and assuming that this problem admits at least one feasible solution,

we prove the existence of optimal pairs. We derive also conditions when the set of feasible

solutions has a nonempty intersection with the space of bounded distributions L∞(Ω).

Key words: existence result, optimal control, p-Laplace operator, elliptic equation,

bounded solutions.
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Communicated by Prof. O.V. Kapustyan

1. Introduction

Let Ω be a bounded open subset of RN (N ≥ 1). We assume that its boundary
∂Ω is of the class C1. So, the unit outward normal ν = ν(x) is well-de�ned for
HN−1-a.a. x ∈ ∂Ω, where a.a. means here with respect to the (N−1)-dimensional
Hausdor� measure HN−1. We also assume that the boundary ∂Ω consists of two
disjoint parts ∂Ω = ΓD ∪ ΓN , where the sets ΓD and ΓN have positive (N − 1)-
dimensional measures. Let F : R→ [0,+∞) be a mapping such that F ∈ C1

loc(R),
F is a non-decreasing positive function, and there exists a constant CF > 0
satisfying

F ′(z) ≥ CFF (z), ∀ z ∈ R and

∣∣∣∣ˆ 0

−∞
zF ′(z) dz

∣∣∣∣ < +∞. (1.1)

Further we de�ne the function f ∈ Cloc(R) as follows: f(z) = F ′(z).
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Dnipro, 49010, Ukraine, p.kogut@i.ua
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Dnipro, 49010, Ukraine, rectort@dnu.dp.ua

c© P. I. Kogut, R. Manzo, M.V. Poliakov, 2018.
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Let p, r, and q be real numbers such that p ≥ 2, q ≥ pN
pN−N+p , and r ≥ p′,

where p′ = p
p−1 is the conjugate exponent to p.

We are concerned with the following optimal control problem for a nonlinear
elliptic equation with p-Laplace operator:

Minimize J(u, y) =
1

2

ˆ
Ω
|y − yd|2 dx+

1

p′

ˆ
ΓN

|u|p′ dx+
α

r

ˆ
Ω
|f(y)|r dx, (1.2)

subject to constraints

−div
(
|∇y|p−2∇y

)
= f(y) + g in Ω, (1.3)

y = 0 on ΓD, |∇y|p−2∂νy = u on ΓN , (1.4)

u ∈ Aad ⊂ Lp
′
(ΓN ), y ∈W 1,p

0 (Ω; ΓD), (1.5)

where α > 0 is a given weight which is assumed to be small enough, Aad is a closed
convex subset of Lp

′
(ΓN ), g ∈ Lq(Ω) and yd ∈ L2(Ω) are given distributions.

Let C∞0 (RN ; ΓD) =
{
ϕ ∈ C∞0 (RN ) : ϕ = 0 on ΓD

}
. In what follows we asso-

ciate with the optimal control problem (1.2)�(1.5) the Banach space W 1,p
0 (Ω; ΓD)

which we de�ne as the closure of C∞0 (RN ; ΓD) with respect to the norm

‖y‖
W 1,p

0 (Ω)
=

(ˆ
Ω
|∇y|p dx

)1/p

.

So, we can suppose that each element of the space W 1,p
0 (Ω; ΓD) has zero trace at

the ΓD-part of boundary ∂Ω. Let W−1,p′(Ω; ΓD) :=
(
W 1,p

0 (Ω; ΓD)
)∗

be the dual

space to W 1,p(Ω; ΓD).

De�nition 1.1. We say that (u, y) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) is a feasible solution

to the problem (1.2)�(1.5) if

• u is an admissible control, i.e. u ∈ Aad;

• J(u, y) < +∞;

• the function y = y(u) is a weak solution to the boundary value problem
(BVP) (1.3)�(1.4) for a given control u, i.e. y ∈W 1,p

0 (Ω; ΓD) and the integral
identity

ˆ
Ω
|∇y|p−2 (∇y,∇ϕ) dx =

ˆ
Ω
f(y)ϕdx+

ˆ
ΓN

uϕdHN−1 +

ˆ
Ω
gϕ dx (1.6)

holds for every test function ϕ ∈ C∞0 (RN ; ΓD).

We denote by Ξ the set of all feasible solutions to the problem (1.2)�(1.5).

Equations like (1.3) appear in a number of applications. In particular, it
has been applied for the description of a ball of isothermal gas in gravitational
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equilibrium, proposed by lord Kelvin [7] in the study of stellar structures [7]. It
has been also actively investigated in connection with combustion theory (see,
for instance, [9, 12, 14]). However, it is well known that the indicated BVP is
ill-posed, in general. It means that there is no reason to assert the existence of
weak solutions to (1.3)�(1.4) for given g ∈ Lq(Ω) and u ∈ Lp′(ΓN ), or to suppose
that such solution, even if it exists, is unique (see, for instance, I.M. Gelfand [12],
H. Brezis and J.L. V�azquez [3], M.G. Crandall and P.H. Rabinowitz [13], F. Mignot
and J.P. Puel [22], T. Gallou�et, F. Mignot and J.P. Puel [11], H. Fujita [10],
R.G. Pinsky [24], R. Ferreira, A. De Pablo, J.L. Vazquez [8]). In view of this it
is worth to emphasize the following result (see [2]): there exists a �nite positive
number λ∗, called the extremal value, such that the boundary value problem

−∆y = λey + v in Ω, y = 0 on ∂Ω (1.7)

has at least a classical positive solution y ∈ C2(Ω) provided 0 < λ < λ∗ and v = 0,
while no solution exists, even in the weak sense, for λ > λ∗. In the case λ = λ∗

and v = 0, this problem admits the existence of the so-called singular solutions
u ∈ H1

0 (Ω) that do not belong to L∞(Ω). Thus, in the context of the optimal
control problem that we deal with in this paper, there is no reason to suppose
that a weak solution to (1.3)�(1.4) for given u ∈ Lp′(ΓN ), and g ∈ Lq(Ω), even
if it exists, is unique and bounded. Moreover, to the best knowledge of authors,
the existence and uniqueness of the weak solutions to the original BVP is an
open question for nowadays. In view of this, we adopt the so-called non-triviality
assumption:

Hypothesis A. For given f ∈ Cloc(R), g ∈ Lq(Ω), yd ∈ L2(Ω), and Aad, the
set of feasible solutions Ξ is nonempty.

Before proceeding further, it is worth to note here that some optimal control
problems, related with the Dirichlet problem (1.7), was �rst discussed in detail
by Casas, Kavian, and Puel [5]. The questions of existence and uniqueness of
optimal solutions were treated and optimality systems have been derived and
analyzed in [5]. At the same time, analogous results for the case of nonlinear
elliptic equations (1.3) with mixed boundary conditions (1.4) remain arguably
open. Some related questions in this �eld can be found in the recent papers [15,16]
(see also [6, 18, 19]).

We also emphasize that the corresponding strongly nonlinear di�erential ope-
rator −div(|∇y|p−2∇y)− f(y) is not monotone and, in principle, has degeneracy
as∇y tends to zero. Moreover, when the term |∇y|p−2 is regarded as the coe�cient
of the Laplace operator, we have also the case of unbounded coe�cients. Because
of this and speci�c properties of the function f(y), there are serious hurdles to
deduce an a priori estimate for the weak solutions of BVP (1.3)�(1.4) even in the
standard Sobolev space W 1,p

0 (Ω). On the other hand, the existence of bounded
feasible solutions to the problem (1.2)�(1.5) is a crucial characteristic for the
wide spectrum of investigations related with this problem: di�erentiability of the
state y(u) with respect to the boundary control u, deriving and substantiation
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of optimality conditions, and many others (see, for instance, [4]). In view of this,
our main concern in this paper is to discuss the existence of bounded feasible
solutions to the optimal control problem (1.2)�(1.5). In particular, we are focused
on the following question: Let (u, y) be a feasible solution to the problem (1.2)�
(1.5). Which conditions should be imposed on p, r, q, Ω, ΓN , u ∈ Lp

′
(ΓN ), and

g ∈ Lq(Ω) in order to guarantee the inclusions y ∈ L∞(Ω) and/or y ∈ L∞(∂Ω)?
As was shown in the recent paper of the �rst author [17], the existence of at
least one feasible pair (u, y) with the extra property y ∈ W 1,p

0 (Ω; ΓD) ∩ L∞(Ω)
plays a crucial role for the substantiation of attainability of optimal pairs to the
problem (1.2)�(1.5) by optimal solutions of some �ctitious optimization problem
for quasi-linear elliptic equations with coercive and monotone operators.

The plan of the paper is as follows. In Section 2 we give some preliminaries
concerning the original problem (1.2)�(1.5). In particular, we give the formal
statement of the boundary value problem and establish the necessary background
to its study. We also study in this section some auxiliary properties of the feasible
solutions to the Dirichlet-Neumann boundary value problem (1.3)�(1.4). In par-
ticular, we show that an a priori estimate for the weak solutions in W 1,p

0 (Ω)
can be derived if only such solutions are feasible to the original optimal control
problem. The key result of this section is Proposition 2.2, which gives the grounds
to suppose that the set of feasible solutions with Lp

′
(Ω)-bounded nonlinearity

f(y) is weakly closed in W 1,p
0 (Ω). The existence of optimal boundary controls is

discussed in Theorem 2.2. We give the proof of our main results in Section 3 and
they can be stated as follows.

Theorem 1.1. Let p, q, r be exponents such that

1 ≤ p < N, q > max

{
N

p
;

p

p− 1

}
and r > max

{
N

p
;

p

p− 1

}
. (1.8)

Let (u, y) be a feasible solution to the problem (1.2)�(1.5) and let u ∈ Lt(ΓN ) for

some

t > max

{
N − 1

p− 1
;

p

p− 1

}
. (1.9)

Then

y ∈W 1,p
0 (Ω; ΓD) ∩ L∞(Ω) and γ0(y) ∈W 1/p′,p(ΓN ) ∩ L∞(ΓN ),

where γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ) stands for the trace operator.

Theorem 1.2. Let p, q, r be exponents such that

p > N, q ≥ p

p− 1
and r ≥ p

p− 1
. (1.10)

Let (u, y) be a feasible solution to the problem (1.2)�(1.5). Then

y ∈W 1,p
0 (Ω; ΓD) ∩ L∞(Ω).
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2. On Consistency of Optimal Control Problem (1.2)�(1.5)

As we mentioned before, it is unknown whether the original BVP admits at
least one weak solution for any admissible control u ∈ Aad ⊂ Lp

′
(ΓN ) and a

given distribution g ∈ Lq(Ω). Hence, it is not an easy matter to touch directly on
the set of feasible solutions Ξ to the original optimal control problem because its
structure and the main topological properties are unknown in general. To lighten
this problem, we make use of the following observation. Let (u, y) ∈ Lp′(ΓN ) ×
W 1,p

0 (Ω; ΓD) be an arbitrary feasible solution to the problem (1.2)�(1.5) in the
sense of De�nition 1.1. Then f(y) ∈ Lp

′
(Ω) and, therefore, the form [y, ϕ]f :=´

Ω f(y)ϕdx is continuous onto the set

Y =
{
y ∈W 1,p

0 (Ω; ΓD) | (u, y) ∈ Ξ
}
. (2.1)

Indeed, in this case, for each ϕ ∈ C∞0 (RN ; ΓD), we have∣∣∣∣ˆ
Ω
f(y)ϕdx

∣∣∣∣ ≤ (ˆ
Ω
|f(y)|p′ dx

)1/p′ (ˆ
Ω
|∇ϕ|p dx

)1/p

≤ |Ω|
1
p′−

1
r

(ˆ
Ω
|f(y)|r dx

)1/r (ˆ
Ω
|∇ϕ|p dx

)1/p

≤ |Ω|
1
p′−

1
r

( r
α
J(u, y)

)1/r
‖ϕ‖

W 1,p
0 (Ω;ΓD)

. (2.2)

Thus, it is easy to show by continuity that the integral identity (1.6) remains valid
for all ϕ ∈W 1,p(Ω; ΓD). Hence, if (u, y) ∈ Ξ then

ˆ
Ω
|∇y|p−2(∇y,∇ϕ) dx =

ˆ
Ω
f(y)ϕdx+

ˆ
ΓN

γ0(ϕ)u dHN−1

+ 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) (2.3)

holds true for all ϕ ∈W 1,p(Ω; ΓD), where

〈·, ·〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) : W−1,p′(Ω; ΓD)×W 1,p(Ω; ΓD)→ R

denotes the duality pairing between W−1,p′(Ω; ΓD) and W 1,p(Ω; ΓD), and

γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN )

stands for the trace operator (see [21, Theorem 8.3]), i.e.

γ0(ϕ) = ϕ|ΓD , ∀ϕ ∈W 1,p(Ω; ΓD) ∩ C(Ω).

We note that the duality pairing 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) is well de�ned

for each ϕ ∈ W 1,p(Ω; ΓD) provided g ∈ Lq(Ω) with q ≥ pN
pN−N+p . Indeed, by

Sobolev embedding theorem, the space W 1,p(Ω; ΓD) is continuously embedded in
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Lp
∗
(Ω) with p∗ = pN

N−p . Hence, by duality arguments,
(
Lp
∗
(Ω)
)∗

is continuously

embedded in W−1,p′(Ω; ΓD). So, if we de�ne

p∗ = (p∗)′ =
pN

pN −N + p
, (2.4)

then we have Lq(Ω) ⊂ Lp∗(Ω) ⊂W−1,p′(Ω; ΓD), ∀ q ≥ pN
pN−N+p . Hence,∣∣∣ 〈g, ϕ〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

∣∣∣ ≤ ‖g‖W−1,p′ (Ω;ΓD)‖ϕ‖W 1,p(Ω;ΓD)

≤ Cem‖g‖Lq(Ω)‖ϕ‖W 1,p(Ω;ΓD), ∀ϕ ∈W 1,p(Ω; ΓD). (2.5)

We also note that, in view of the compactness of the injection W 1/p′,p(ΓN ) ↪→
Lp(ΓN ) and continuity of the trace operator γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ),

‖γ0(ϕ)‖Lp(ΓN ) ≤ Cγ0‖ϕ‖W 1,p(Ω;ΓD), ∀ϕ ∈W 1,p(Ω; ΓD), (2.6)

we have ∣∣∣∣ˆ
ΓN

uγ0(ϕ) dHN−1

∣∣∣∣ ≤ ‖u‖Lp′ (ΓN )‖ϕ‖Lp(ΓN )

≤ Cγ0‖u‖Lp′ (ΓN )‖ϕ‖W 1,p
0 (Ω;ΓD)

< +∞. (2.7)

Taking into account these observations, we immediately arrive at the following
conclusion.

Lemma 2.1. Let (u, y) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) be an arbitrary feasible solution

to the problem (1.2)�(1.5) in the sense of De�nition 1.1. Then this pair is related

by the energy equality

ˆ
Ω
|∇y|p dx =

ˆ
Ω
y f(y) dx+

ˆ
Ω
γ0(y)u dHN−1

+ 〈g, y〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) . (2.8)

It is worth to emphasize that energy equality (2.8) makes sense if only the pair
(u, y) is feasible and it is unknown whether we can guarantee the ful�lment of this
relation for an arbitrary weak solution (u, y(u)) to BVP (1.3)�(1.4). Nevertheless,
taking into account the inequalities (2.2), (2.5), and (2.7), we can deduce from
(2.8) the following result.

Theorem 2.1. For �xed p ≥ 2, r ≥ p′, and q ≥ pN
pN−N+p , let u ∈ L

p′(ΓN ) and

g ∈ Lq(Ω) be given distributions. Let y = y(u) ∈ W 1,p
0 (Ω; ΓD) be a weak solution

to BVP (1.3)�(1.4) such that (u, y) is a feasible pair to optimal control problem
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(1.2)�(1.5). Then∣∣∣∣ˆ
Ω
y f(y) dx

∣∣∣∣ ≤
(

3p
′−1 (p+ 1)

p− 1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
+ 2p

′−1Cp
′
γ0

)

×max {1, J(u, y)}+

(
(p+ 1)

p
3p
′−1 +

1

p′
2p
′−1

)
Cp
′
em‖g‖

p′

Lq(Ω),

(2.9)

‖y‖p
W 1,p

0 (Ω;ΓD)
≤ 3p

′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max {1, J(u, y)}

+ 3p
′−1Cp

′
em‖g‖

p′

Lq(Ω). (2.10)

Proof. Let (u, y) be a given feasible solution. Then relation (2.8) and inequalities
(2.2), (2.5), and (2.7), immediately lead to the following estimate

‖y‖p−1

W 1,p
0 (Ω;ΓD)

≤ ‖f(y)‖Lp′ (Ω) + Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω), (2.11)

where ‖f(y)‖Lp′ (Ω) ≤ |Ω|
1
p′−

1
r
(
r
α J(u, y)

)1/r
< +∞ by the feasibility property of

the pair (u, y). Since p−1 = p/p′ and ‖u‖p
′

Lp′ (ΓN )
≤ p′J(u, y), the a priori estimate

(2.10) is a direct consequence of (2.11).

In order to establish the estimate (2.9), we make use of the energy equality
(2.8) and the standard form of Young's inequality. As a result, we obtain∣∣∣∣ˆ

Ω
y f(y) dx

∣∣∣∣ ≤ ‖y‖pW 1,p
0 (Ω;ΓD)

+
(
Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω)

)
‖y‖

W 1,p
0 (Ω;ΓD)

≤
(

1 +
1

p

)
‖y‖p

W 1,p
0 (Ω;ΓD)

+
1

p′

(
Cγ0‖u‖Lp′ (ΓN ) + Cem‖g‖Lq(Ω)

)p′
≤ p+ 1

p
‖y‖p

W 1,p
0 (Ω;ΓD)

+ 2p
′−1

[
Cp
′
γ0
J(u, y) +

Cp
′
em

p′
‖g‖p

′

Lq(Ω)

]

≤ (p+ 1)3p
′−1

p

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max {1, J(u, y)}

+
(p+ 1)3p

′−1

p
Cp
′
em‖g‖

p′

Lq(Ω) + 2p
′−1

[
Cp
′
γ0
J(u, y) +

Cp
′
em

p′
‖g‖p

′

Lq(Ω)

]
.

After simpli�cation, we arrive at the expected estimate (2.9).

The following Propositions re�ect some interesting properties of feasible so-
lutions. In particular, Proposition 2.1 can be interpreted as some speci�cation
of the well-known Boccardo�Murat Theorem (see L. Boccardo and F. Murat [1,
Theorem 2.1]).
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Proposition 2.1. Assume that q ≥ p′ = p/(p− 1). Let

{(uk, gk, yk)}k∈N ⊂ L
p′(ΓN )× Lq(Ω)×W 1,p

0 (Ω; ΓD)

be a sequence such that

f(yk) ∈ Lp
′
(Ω) for all k ∈ N, (2.12)

uk ⇀ u weakly in Lp
′
(ΓN ), (2.13)

gk ⇀ g weakly in Lq(Ω), (2.14)

yk → y weakly in W 1,p
0 (Ω; ΓD) and a.e. in Ω, (2.15)

f(yk)→ f(y) strongly in L1(Ω), (2.16)

−div
(
|∇yk|p−2∇yk

)
= f(yk) + gk in

(
C∞0 (RN ; ΓD)

)∗
, ∀ k ∈ N, (2.17)

γ0(yk) = 0 and |γ1(yk)|p−2γ1(yk) = uk, ∀ k ∈ N, (2.18)

where γ1(y) = ∂y
∂ν

∣∣∣
ΓN

for all y ∈ C1(Ω) ∩W 1,p
0 (Ω; ΓD). Then

∇yk → ∇y strongly in Lr(Ω)N for any 1 ≤ r < p. (2.19)

Proof. As follows from (2.17)�(2.18), the functions yk are the weak solutions to the
boundary value problem (1.3)�(1.4) for the corresponding controls uk ∈ Lp

′
(ΓN ).

For every ε > 0, let Tε : R→ R be the truncation operator de�ned by

Tε(s) = max
{

min
{
s, ε−1

}
,−ε−1

}
. (2.20)

Since Tε−1 (yk − y) ∈W 1,p
0 (Ω; ΓD), it follows from (2.12) that

ϕ = Tε−1 (yk − y) ∈W 1,p
0 (Ω; ΓD)

can be used as the test function in integral identity (2.3). Hence, for every k ∈ N,
we have the relation
ˆ

Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx =

ˆ
Ω
f(yk)Tε−1 (yk − y) dx

+

ˆ
ΓN

ukγ0(Tε−1 (yk − y)) dHN−1 + 〈gk, Tε−1 (yk − y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

−
ˆ

Ω

(
|∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx = J1 + J2 + J3 − J4. (2.21)

Taking into account the fact that p′ > pN
pN−N+p and q ≥ p′, we can deduce

compactness of the embedding Lq(Ω) ↪→ W−1,p′(Ω; ΓD). Then (2.14) and (2.15)
imply that

gk → g strongly in W−1,p′(Ω; ΓD),

Tε−1 (yk − y)→ 0 weakly in W 1,p
0 (Ω; ΓD) and strongly in Lp(Ω).
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Thus, J3 − J4 tends to zero as k → ∞. As for the term J2, we see that, by
Sobolev embedding theorem, the injection W 1/p′,p(ΓN ) ↪→ Lr(ΓN ) is compact
for all 1 ≤ r < pN−1

N−p . Hence, by duality arguments, (Lr(ΓN ))∗ is compactly

embedded in
(
W 1/p′,p(ΓN )

)∗
. So, if we de�ne

r∗ =

(
N − 1

N − p
p

)′
=
N − 1

N
p′

then we have p′ > r∗ and, therefore, the injection L
p′(ΓN ) ↪→

(
W 1/p′,p(ΓN )

)∗
is

compact as well. Thus, due to (2.13)�(2.15), we have

uk → u strongly in
(
W 1/p′,p(ΓN )

)∗
and

γ0(yk) ⇀ γ0(y) weakly in W 1/p′,p(ΓN ).

As a result, we obtain

J2 =

ˆ
ΓN

ukγ0(Tε−1 (yk − y)) dHN−1 → 0 as k →∞.

It remains to note that condition (2.16) leads to the inequality

J1 ≤ C‖Tε−1 (yk − y) ‖L∞(Ω), ∀ k ∈ N.

Hence, mollifying Tε (yk − y) and the poinwise convergence yk(x) → y(x) a.e. in
Ω imply that

|J1| ≤ C‖Tε−1 (yk − y) ‖L∞(Ω) ≤ C1ε, ∀ k ∈ N. (2.22)

Combining all issues given above, we can �nally deduce that, for a �xed ε > 0,

lim sup
k→∞

ˆ
Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx ≤ C1ε. (2.23)

Let us de�ne now the following functions

dk(x) =
(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇yk −∇y

)
, k ∈ N

and �x θ with 0 < θ < 1. In view of the initial assumptions, it is clear that
{dk}k∈N is a bounded sequence in L1(Ω) and(

|∇yk|p−2∇yk − |∇y|p−2∇y,∇yk −∇y
)
≥ 22−p|∇yk −∇y|p (2.24)

by the strict monotonicity property of the p-Laplace operator. Splitting the set Ω
into

Skε = {x ∈ Ω : |yk(x)− y(x)| ≤ ε} , Gkε = {x ∈ Ω : |yk(x)− y(x)| > ε}
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and using H�older inequality, we get

ˆ
Ω
dθk dx =

ˆ
Skε

dθk dx+

ˆ
Gkε

dθk dx

≤

(ˆ
Skε

dk dx

)θ
|Skε |1−θ +

(ˆ
Gkε

dk dx

)θ
|Gkε |1−θ

≤
(ˆ

Ω

(
|∇yk|p−2∇yk − |∇y|p−2∇y,∇Tε−1 (yk − y)

)
dx

)θ
|Skε |1−θ

+

(ˆ
Ω
dk dx

)θ
|Gkε |1−θ. (2.25)

Since, for a �xed ε, |Gkε | tends to zero as k → ∞, it follows from (2.23), (2.24),
and (2.25) that

lim sup
k→∞

ˆ
Ω

(|∇yk −∇y|p)θ dx ≤ 2θ(p−2) lim sup
k→∞

ˆ
Ω
dθk dx ≤ 2θ(p−2) (C1ε)

θ |Ω|1−θ.

Letting ε tend to 0 and θ tend to 1 this implies that |∇yk −∇y|p tends strongly
to 0 in L1(Ω) and thus, there exists a subsequence {kn}n∈N such that

∇ykn(x)→ ∇y(x) a.e. in Ω as kn →∞. (2.26)

Since {∇ykn}n∈N is a bounded sequence in Lp(Ω)N , it follows from Vitali's theorem
that

∇ykn → ∇y strongly in Lr(Ω)N for any 1 ≤ r < p. (2.27)

It remains to note that, in fact, we have the convergence in (2.27) for the whole
sequence {∇yk}k∈N because the limit ∇y in (2.27) is independent of the subse-
quence {kn}n∈N.

Proposition 2.2. Assume that q ≥ p′ and r ≥ p′. Let {(uk, yk)}k∈N ⊂ Ξ be a
sequence of feasible solutions such that

sup
k∈N

J(uk, yk) < +∞, (2.28)

(uk, yk) ⇀ (u, y) weakly in Lp
′
(ΓN )×W 1,p

0 (Ω; ΓD) as k →∞. (2.29)

Then (u, y) ∈ Ξ and

f(yk)→ f(y) strongly in L1(Ω) and weakly in Lr(Ω) as k →∞. (2.30)

Proof. By the Sobolev Embedding Theorem, the injection W 1,p
0 (Ω; ΓD) ↪→ Lp(Ω)

is compact. Hence, the weak convergence yk ⇀ y in W 1,p
0 (Ω; ΓD) implies the

strong convergence in Lp(Ω). Therefore, up to a subsequence, we can suppose that
yk(x) → y(x) for almost every point x ∈ Ω. As a result, we have the pointwise
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convergence: f(yk) → f(y) almost everywhere in Ω. Let us show that this fact
implies the strong convergence (2.30).

With that in mind we recall that a sequence {fk}k∈N is called equi-integrable
on Ω if for any δ > 0, there is a τ = τ(δ) such that

´
S |fk| dx < δ for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Let us show that the
sequence {f(yk)}k∈N is equi-integrable on Ω. To do so, we take m > 0 such that

m > 2Lδ−1, (2.31)

where

L :=

(
3p
′−1 (p+ 1)

p− 1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
+ 2p

′−1Cp
′
γ0

)

×max

{
1, sup
k∈N

J(uk, yk)

}
+

(
(p+ 1)

p
3p
′−1 +

1

p′
2p
′−1

)
Cp
′
em‖g‖

p′

Lq(Ω).

We also set τ = δ/(2f(m)). Then for every measurable set S ⊂ Ω with |S| < τ ,
we haveˆ

S
f(yk) dx =

ˆ
{x∈S : yk(x)>m}

f(yk) dx+

ˆ
{x∈S : yk(x)≤m}

f(yk) dx

≤ 1

m

ˆ
{x∈S : yk(x)>m}

ykf(yk) dx+

ˆ
{x∈S : yk(x)≤m}

f(m) dx

by (2.9)

≤ L

m
+ f(m)|S|

by (2.31)

≤ δ

2
+
δ

2
.

As a result, the assertion (2.30) is a direct consequence of Lebesgue's Convergence
Theorem.

Let us show now that the limit pair (u, y) is a feasible pair to optimal control
problem (1.2)�(1.5). Indeed, in view of the initial assumptions and property (2.30),
the limit passage in the right-hand side of the equality

ˆ
Ω
|∇yk|p−2 (∇yk,∇ϕ) dx =

ˆ
Ω
f(yk)ϕdx+

ˆ
ΓN

ukϕdHN−1

+

ˆ
Ω
gϕ dx, ∀ϕ ∈ C∞0 (RN ; ΓD) (2.32)

becomes trivial. Taking into account Proposition 2.1, we have, up to a subsequence,
the pointwise convergence (2.26). Since the sequence

{
|∇yk|p−2∇yk

}
k∈N is bounded

in Lp
′
(Ω)N , it follows from (2.26) that

|∇ykn |p−2∇ykn → |∇y|p−2∇y almost everywhere in Ω,

|∇ykn |p−2∇ykn ⇀ |∇y|p−2∇y weakly in Lp
′
(Ω)N .

This allows us to pass to the limit as kn →∞ in the left hand side of the equality
(2.32). Thus, y is a weak solution to BVP (1.3)�(1.4) for the given u ∈ Lp′(ΓN ).
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Since the set Aad is convex and closed in Lp
′
(ΓN ), it follows that this set is

sequentially weakly closed in Lp
′
(ΓN ) by the Mazur theorem. Therefore, the weak

convergence (2.29) implies that u ∈ Aad.

It remains to prove that the limit pair (u, y) satis�es the condition J(u, y) <
+∞. With that in mind we take into account the lower semi-continuity of the norm
in Lp

′
(ΓN )×L2(Ω) with respect to the weak convergence in Lp

′
(ΓN )×W 1,p

0 (Ω; ΓD)
and property (2.30). This yields

lim
k→∞

ˆ
Ω
|yk − yd|2 dx

by (2.29)
=

ˆ
Ω
|y − yd|2 dx, (2.33)

lim inf
k→∞

ˆ
Ω
|uk|p

′
dHN−1

by (2.29)

≥
ˆ

Ω
|u|p′ dHN−1. (2.34)

In view of condition (2.28), we have

sup
k∈N
‖f(yk)‖Lr(Ω) < +∞.

Utilizing this fact together with the pointwise convergence

f(yk)→ f(y) a.e. in Ω

that is a consequence of the property (2.30), we get f(yk) ⇀ f(y) in Lr(Ω). Hence,

lim inf
k→∞

ˆ
Ω
|f(yk)|r dx ≥

ˆ
Ω
|f(y)|r dx. (2.35)

As a result, we deduce from (2.33), (2.34), and (2.35) that

J(u, y) ≤ lim inf
k→∞

J(uk, yk) < sup
k∈N

J(uk, yk) < +∞.

Thus, (u, y) is a feasible solution to the problem (1.2)�(1.5) in the sense of
De�nition 1.1. The proof is complete.

Now it is easy to show that, in contrast to the BVP (1.3)�(1.4), the corresponding
optimal control problem (1.2)�(1.5) is well-posed and consistent.

Theorem 2.2. Let p ≥ 2, r ≥ p′, and q ≥ p′ be given exponents. Assume that for

a given distribution g ∈ Lq(Ω) Hypothesis A is ful�lled. Then, for any yd ∈ L2(Ω),
optimal control problem (1.2)�(1.5) has at least one solution.

Proof. Since J(u, y) ≥ 0 for all (u, y) ∈ Ξ, it follows that there exists a non-
negative value µ ≥ 0 such that µ = inf(u,y)∈Ξ J(u, y). Let {(uk, yk)}k∈N be a
minimizing sequence to the problem (1.2)�(1.5), i.e.

(uk, yk) ∈ Ξ ∀ k ∈ N and lim
k→∞

J(uk, yk) = µ.
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So, we can suppose that

J(uk, yk) ≤ µ+ 1 for all k ∈ N. (2.36)

Then taking into account the implicit form of the cost functional (1.2), Theorem 2.1,
and the fact that q ≥ p′ > pN

pN−N+p , we deduce the following estimates

sup
k∈N
‖yk‖pW 1,p

0 (Ω;ΓD)
≤ 3p

′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
max

{
1, sup
k∈N

J(uk, yk)

}
+ 3p

′−1Cp
′
em‖g‖

p′

Lq(Ω)

by (2.36)

≤ 3p
′−1Cp

′
em‖g‖

p′

Lq(Ω)

+ 3p
′−1

[
|Ω|1−

p′
r

( r
α

) p′
r

+ Cp
′
γ0
p ′

]
(µ+ 1), (2.37)

‖uk‖p
′

Lp′ (ΓN )
≤ p′ sup

k∈N
J(uk, yk) ≤ p′(µ+ 1), (2.38)

‖f(yk)‖rLr(Ω) ≤
r

α
sup
k∈N

J(uk, yk) ≤
r

α
(µ+ 1). (2.39)

Thus, without loss of generality, we can suppose that there exists a subsequence
of the minimizing sequence {(uk, yk)}k∈N (still denoted by the same index) and a

pair (u0, y0) ∈ Lp′(ΓN )×W 1,p
0 (Ω; ΓD) such that

(uk, yk) ⇀ (u0, y0) weakly in Lp
′
(ΓN )×W 1,p

0 (Ω; ΓD) as k →∞, (2.40)

yk(x) ⇀ y0(x) a.e. in Ω. (2.41)

Utilizing properties (2.36), (2.40), and (2.41), we deduce from Proposition 2.2
that (u0, y0) ∈ Ξ. To conclude the proof, it remains to take into account the
lower semi-continuity of the cost functional J : Lp

′
(ΓN )×W 1,p

0 (Ω; ΓD)→ R with

respect to the weak convergence in Lp
′
(ΓN ) ×W 1,p

0 (Ω; ΓD) and property (2.30).
This yields

µ = inf
(u,y)∈Ξ

J(u, y) = lim
k→∞

J(uk, yk) ≥ J(u0, y0).

Thus, (u0, y0) ∈ Ξ is an optimal pair to the problem (1.2)�(1.5).

3. On bounded feasible solutions

Before proceeding with the proof of the main result of this paper, we begin
with some preliminaries.

Lemma 3.1. Let 1 ≤ p < N and let s∗ = (N−1)p
N−p . Then the following norms

‖y‖
W 1,p

0 (Ω;ΓD)
:=

(ˆ
Ω
|∇y|p dx

)1/p

,

‖y‖∗ :=

(ˆ
Ω
|∇y|p dx

)1/p

+

(ˆ
ΓN

|γ0(y)|s∗ dHN−1

)1/s∗
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are equivalent for W 1,p
0 (Ω; ΓD).

Proof. Since the inequality ‖y‖
W 1,p

0 (Ω;ΓD)
≤ ‖y‖∗ is obvious, we focus on the

reverse one. With that in mind we remind that by continuity of the trace operator
γ0 : W 1,p(Ω; ΓD)→W 1/p′,p(ΓN ), we have

‖γ0(y)‖W 1/p′,p(ΓN ) ≤ Cγ0‖y‖W 1,p(Ω;ΓD), ∀ y ∈W 1,p(Ω; ΓD).

Since, for p < N , the Sobolev space W 1/p′,p(ΓN ) is continuously embedded in
Ls(ΓN ) for all s ∈ [1, s∗], it follows existence of a constant Cs > 0 such that

‖γ0(y)‖Ls∗ (ΓN ) ≤ Cs‖γ0(y)‖W 1/p′,p(ΓN ) ≤ CsCγ0‖y‖W 1,p(Ω;ΓD), (3.1)

for all y ∈W 1,p(Ω; ΓD). Hence,

1

1 + CsCγ0

(
‖γ0(y)‖Ls∗ (ΓN ) + ‖y‖

W 1,p
0 (Ω;ΓD)

)
≤ ‖y‖

W 1,p
0 (Ω;ΓD)

.

Thus, the indicated norms are equivalent onW 1,p
0 (Ω; ΓD). For our further analysis,

we make use of another representation for the last estimate. As immediately
follows from (3.1), we have

ˆ
Ω
|∇y|p dx ≥ 1

2

[
1

CpsC
p
γ0

‖γ0(y)‖p
Ls∗ (ΓN )

+

ˆ
Ω
|∇y|p dx

]
. (3.2)

The next result re�exes some special properties of composition ofW 1,p
0 (Ω; ΓD)-

functions with regular functions and is a direct consequence of the well-know
Stampacchia Lemma.

Lemma 3.2 ( [20]). Let G : R→ R be a Lipschitz continuous function such that

G(0) = 0. Then for every function y ∈W 1,p
0 (Ω; ΓD) we have:

(i) G(y) ∈W 1,p
0 (Ω; ΓD);

(ii) ∇G(y) = G′(y)∇y almost everywhere in Ω.

We note that at the �rst glance the equality in (ii) is not valid because a
Lipschitz continuous function G : R→ R is only almost everywhere di�erentiable,
so that the right-hand side in (ii) may not be de�ned. On the other hand, we have
two possible cases: if k ∈ R is a value such that G′(k) does not exist, then either
the set {x ∈ Ω : y(x) = k} has zero measure or the set {x ∈ Ω : y(x) = k} has
positive measure. In the �rst case, since the identity ∇G(y) = G′(y)∇y only
holds almost everywhere, this value does not give any problems. In this latter
case, however, we have both ∇y = 0 and ∇G(y) = 0 almost everywhere, so that
the identity ∇G(y) = G′(y)∇y still holds.
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In what follows, we will use the composition of functions of Sobolev space
W 1,p

0 (Ω; ΓD) with the following Lipschitz continuous function

Gk(z) = z − Tk−1(z) = (|z| − k|)+ sign (z), (3.3)

where k > 0 is a given value. Here, Tk−1(z) stands for the truncation operator (see
(2.20)). Then Lemma 3.2 implies the following equality forW 1,p

0 (Ω; ΓD)-functions

∇Gk(y) = ∇y χ{x∈Ω : |y(x)|≥k} almost everywhere in Ω, (3.4)

where χA denotes the characteristic function of the set A (for the details we refer
to L. Orsina [23]).

The �rst result concerning the boundedness of the weak solutions of Dirichlet
boundary value problem for elliptic equations comes from Stampacchia classical
work [25].

Theorem 3.1. Let y ∈W 1,p
0 (Ω) be the weak solution of the following BVP

−div
(
|∇y|p−2∇y

)
= g in Ω,

y = 0 on ∂Ω,

where g ∈W−1,q(Ω) and q > N
p−1 . Then y ∈ L

∞(Ω).

The proof of this result essentially based on the following technical lemma.

Lemma 3.3 ( [25]). Let ψ : R+ → R+ be a nonincreasing function such that

ψ(h) ≤ Mψδ(k)

(h− k)γ
, ∀h > k > 0, (3.5)

where M > 0, δ > 1, and γ > 0. Then ψ(d) = 0, where

dγ = Mψδ−1(0)2
δγ
δ−1 .

For the reader's convenience, we cite the proof of this lemma.

Proof. We de�ne the numerical sequence {dk}k∈N as follows dk = d(1 − 2−k) for
each k ∈ N. Let us show that

ψ(dk) ≤ ψ(0)2−
kγ
δ−1 , (3.6)

where ψ possesses the property (3.5). Indeed, inequality (3.6) is clearly true if
k = 0. If we suppose, by the induction, that it is true for some k, then (3.5)
implies

ψ(dk+1) ≤ Mψδ(dk)

(dk+1 − dk)γ
≤Mψδ(0)2−

kγδ
δ−1 2(k+1)γd−γ = ψ(0)2−

(k+1)γ
δ−1 .

Since (3.6) holds for every k, and since ψ is a non-increasing function, it follows
that

0 ≤ ψ(d) ≤ lim inf
k→∞

ψ(dk) ≤ lim
k→∞

ψ(0)2−
kγ
δ−1 = 0.

The proof is complete.
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We are now in a position to prove the main result of our paper that has been
announced in Theorem 1.1.

Proof. Let k > 0 and let (u, y) ∈ Ξ be a feasible solution to the original optimal
control problem. We de�ne the set Ωk as the bigest closed subset of Ω such that

Ωk ⊆ {x ∈ Ω : |∇y| ≤ k} .

Hereinafter, we suppose that the parameter k varies within a strictly increasing
sequence of positive real numbers tending to ∞ and such that

Ak := Ω \ Ωk (3.7)

is an open set with Lipschitz boundary for each k and {Ak}k>0 form a strictly
monotone by inclusion (i.e. Ah ⊂ Ak for h > k) sequence such that limk→∞ |Ak| =
0. We also set

ΓN,k := {σ ∈ ΓN : |γ0(y)(σ)| ≥ k} . (3.8)

By de�nition of the trace operator γ0 : W 1,p(Ω; ΓD) → W 1/p′,p(ΓN ), we can
suppose that ΓN,k ⊂ ∂Ak for each k ∈ N within a subset of ΓN,k with zero
Hausdor� surface (N − 1)-dimensional measure.

Since the integral identity (2.3) is valid for each function ϕ ∈W 1,p(Ω; ΓD), we
chose ϕ = Gk(y) as the test function in (2.3). Here, Gk(z) is de�ned in (3.3). Then
Gk(y) = Gk(y)χAk a.e. in Ω, and, by Lemma 3.2, ∇Gk(y) = ∇yχAk for almost
all x ∈ Ω. Moreover, the inclusion ΓN,k ⊂ ∂Ak implies the following relations

γ0(Gk(y)) = Gk(γ0(y)) and Gk(γ0(y)) = Gk(γ0(y))χΓN,k a.e. on ΓN .

Using the fact that g ∈ Lq(Ω) and q > p′ (see (1.8)), we deduce from (2.3) that

〈g,Gk(y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD) =

ˆ
Ω
gGk(y) dx

and, therefore,

ˆ
Ak

|∇Gk(y)|p dx =

ˆ
Ω
|∇y|p−2(∇y,∇y)χAk dx =

ˆ
Ω
f(y)Gk(y) dx

+

ˆ
ΓN

γ0(Gk(y))u dHN−1 + 〈g,Gk(y)〉W−1,p′ (Ω;ΓD);W 1,p(Ω;ΓD)

=

ˆ
Ak

f(y)Gk(y) dx+

ˆ
ΓN,k

γ0(Gk(y))u dHN−1 +

ˆ
Ak

gGk(y) dx

= I1 + I2 + I3. (3.9)

In order to estimate the terms Ii, we make use of the H�older inequality and the
following facts: W 1,p

0 (Ω; ΓD) ↪→ Lp
∗
(Ω) and W 1/p′,p(ΓN ) ↪→ Ls

∗
(ΓN ) with con-

tinuous embedding for p∗ = Np
N−p and s∗ = (N−1)p

N−p , respectively. As a result, we
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have

I1 ≤
(ˆ

Ak

|f(y)|p∗ dx
) 1
p∗
(ˆ

Ak

|Gk(y)|p∗ dx
) 1
p∗

(3.10)

I2 ≤

(ˆ
ΓN,k

|u|s∗ dx

) 1
s∗
(ˆ

ΓN,k

|γ0(Gk(y))|s∗ dx

) 1
s∗

, (3.11)

I3 ≤
(ˆ

Ak

|g|p∗ dx
) 1
p∗
(ˆ

Ak

|Gk(y)|p∗ dx
) 1
p∗

, (3.12)

where s∗ = (s∗)′ = p
p−1

N−1
N and p∗ is de�ned by (2.4).

To estimate the left-hand side of (3.9), we make use of the well-known Sobolev
inequality. Namely, in view of the Sobolev embedding theorem there exists a
constant Sp (depending only on N and p) such that

‖Gk(y)‖Lp∗ (Ak) ≤ Sp
(ˆ

Ak

|∇Gk(y)|p dx
) 1
p

provided 1 ≤ p < N. (3.13)

Then utilizing (3.13), Lemma 3.1 (see (3.2)), and our assumptions with respect
to the set Ak and its boundary, we obtain
ˆ
Ak

|∇Gk(y)|p dx ≥ 1

2

[
1

CpsC
p
γ0

‖γ0(Gk(y))‖p
Ls∗ (ΓN,k)

+

ˆ
Ak

|∇Gk(y)|p dx
]

≥ 1

2

[
1

CpsC
p
γ0

‖γ0(Gk(y))‖p
Ls∗ (ΓN,k)

+
1

Spp
‖Gk(y)‖p

Lp∗ (Ak)

]
≥ 1

2p
min

{
1

CpsC
p
γ0

,
1

Spp

}[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p
= Ĉ

[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p
. (3.14)

Combining this issue with estimates (3.10)�(3.12), we see from (3.9) that

Ĉ
[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p−1

≤ ‖f(y)‖Lp∗ (Ak) + ‖g‖Lp∗ (Ak) + ‖u‖Ls∗ (ΓN,k). (3.15)

We now take h > k so that

Ah ⊆ Ak and Gk(y) ≥ h− k on Ah,

ΓN,h ⊆ ΓN,k and γ0(Gk(y)) ≥ h− k on ΓN,h.

Then we have

‖Gk(y)‖Lp∗ (Ak) =

(ˆ
Ak

|Gk(y)|p∗ dx
)1/p∗

≥
(ˆ

Ah

|Gk(y)|p∗ dx
)1/p∗

≥ (h− k)|Ah|1/p
∗
, (3.16)
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‖γ0(Gk(y))‖Ls∗ (ΓN,k) =

(ˆ
ΓN,k

|Gk(y)|s∗ dHN−1

)1/s∗

≥

(ˆ
ΓN,h

|Gk(y)|s∗ dHN−1

)1/s∗

≥ (h− k)|ΓN,h|1/s
∗
. (3.17)

Since
1

s∗
=

N − p
(N − 1)p

=
N

N − 1

1

p∗
,

it follows that

Ĉ
[
‖γ0(Gk(y))‖Ls∗ (ΓN,k) + ‖Gk(y)‖Lp∗ (Ak)

]p−1

by (3.16)�(3.17)

≥ Ĉ(h− k)p−1
[
|Ah|1/p

∗
+ |ΓN,h|

N
N−1

1
p∗
]p−1

≥ Ĉ(h− k)p−1 [ψ(h)]
p−1
p∗ , (3.18)

where
ψ(h) := |Ah|+ |ΓN,h|

N
N−1 . (3.19)

For our further analysis, we make use of the following observations. Since, by the
initial assumptions, we have

p′ ≥ p∗ =
Np

Np−N + p
and q, r ≥ p′, (3.20)

it follows by the H�older inequality that

‖g‖Lp∗ (Ak) =

(ˆ
Ak

|g|p∗ dx
)1/p∗

≤ ‖g‖Lq(Ω)|Ak|
1
p∗

q−p∗
q , (3.21)

‖f(y)‖Lp∗ (Ak) =

(ˆ
Ak

|f(y)|p∗ dx
)1/p∗

≤ ‖f(y)‖Lr(Ω)|Ak|
1
p∗

r−p∗
r . (3.22)

As for the term ‖u‖Ls∗ (ΓN,k) in (3.15), following the similar arguments and

taking into account the inclusion u ∈ Lt(ΓN ) for t satisfying condition (1.9), we
get

‖u‖Ls∗ (ΓN,k) =

(ˆ
ΓN,k

|u|s∗ dx

) 1
s∗

≤ |ΓN,k|
t−s∗
ts∗ ‖u‖Lt(ΓN ). (3.23)

Since p∗/(p− 1) > 1, it follows from (3.15), (3.18), and (3.21)�(3.23) that

(h− k)p
∗
ψ(h) ≤

[
Ĉ−1

(
‖f(y)‖Lr(Ω) + ‖g‖Lq(Ω) + ‖u‖Lt(ΓN )

)] p∗
p−1︸ ︷︷ ︸

D

× 3
p∗−p+1
p−1

[
|Ak|

1
p∗ (1− p∗

r ) p∗
p−1 + |Ak|

1
p∗

(
1− p∗

q

)
p∗
p−1 + |ΓN,k|

1
s∗ (1− s∗

t ) p∗
p−1

]
. (3.24)
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We also see that

p∗ (r − p∗) p∗r(p− 1) =
Np
[
r(Np−N + p−Np+ p2 +N − p)−Np

]
(N − p)(Np−N + p)

=
Np

(N − p)(Np−N + p)

[
p2r −Np

] by (1.8)
> 0.

Hence,

δ1 :=
1

p∗

(
1− p∗

r

) p∗

p− 1
> 1. (3.25)

By analogy it can be shown that

δ2 :=
1

p∗

(
1− p∗

q

)
p∗

p− 1
> 1 provided inequality (1.8)1 holds true. (3.26)

As for the third exponent in (3.24), we see that

1

s∗

(
1− s∗

t

) p∗

p− 1
=

N

N − 1
δ3,

where

δ3 =
N − 1

N

1

s∗

(
1− s∗

t

) p∗

p− 1
=

[(N − 1)p−N + p] t− (N − 1)p

(N − p)(p− 1)t
> 1 (3.27)

provided the parameter t satis�es inequality (1.9).
Since |ΓN,k| < 1 and |Ak| < 1 for k large enough, it follows from (3.24) that

ψ(h) ≤ 3
p∗−p+1
p−1

D

(h− k)p∗

[
2
(
|Ak|+ |ΓN,k|

N
N−1

)]min{δ1;δ2;δ3}

=
Mψδ(k)

(h− k)p∗
, (3.28)

where

δ = min {δ1; δ2; δ3}
by (3.25)�(3.27)

> 1,

M = 3
p∗−p+1
p−1 2δ

[
Ĉ−1

(
‖f(y)‖Lr(Ω) + ‖g‖Lq(Ω) + ‖u‖Lt(ΓN )

)] p∗
p−1

.

Therefore, by Lemma 3.3 we �nally deduce that

ψ(d) := |Ad|+ |ΓN,d|
N
N−1 = 0

for

d = M
[
|Ω|+ |ΓN |

N
N−1

]δ−1
2
δp∗
δ−1 .

Thus, for the given feasible pair (u, y) ∈ Ξ, the following inference is valid:
conditions (1.8)�(1.9) imply that y ∈ L∞(Ω) and γ0(y) ∈ L∞(∂Ω). The proof
of Theorem 1.1 is complete.
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As for the proof of Theorem 1.1, its validity immediately follows from Theo-
rem 2.2 and Sobolev embedding theorem saying that the injectionW 1,p

0 (Ω; ΓD) ↪→
C(Ω) is compact if p > N .
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. . . It is true that at one time those who speculated as to the causes of physical phenomena,

were in the habit of accounting for each kind of action at a distance by means of a special æthereal

�uid, whose function and property it was to produce these actions. They �lled all space three and

four times over with æthers of di�erent kinds, the properties of which were invented merely to

`save appearances,' so that more rational enquirers were willing rather to accept not only Newton's

de�nite law of attraction at a distance, but even the dogma of Cotes, that action at a distance is

one of the primary properties of matter, and that no explanation can be more intelligible than this

fact. . .
<. . . >
But in all of these theories the question naturally occurs: � If something is transmitted from

one particle to another at a distance, what is its condition after it has left the one particle and

before it has reached the other?. . . Hence all these theories lead to the conception of a medium in

which the propagation takes place, and if we admit this medium as an hypothesis, I think it ought

to occupy a prominent place in our investigations, and that we ought to endeavour to construct

a mental representation of all the details of its action, and this has been my constant aim in

this treatise. [36]

1. Introduction

Maxwell's equations are foundational to electromagnetic theory. They are the cornerstone of

a myriad of technologies and are basic to the understanding of innumerable e�ects. Yet there are

a few e�ects or phenomena that cannot be explained by the conventional Maxwell theory. [2]

The governing equations of ideal magnetohydrodynamics (IMHD) are resulted
from coupling the Maxwell equations for ideal conductive medium and the Euler
equations for ideal �uid. A constitutive part of the IMHD governing equations is
the (magnetic) induction law

Bt = ∇× (u×B) , (1.1)

where u(x, t) is the �uid velocity, B(x, t) is the magnetic induction, (x, t) is
an inertial Cartesian orthogonal frame of reference, and the lower index t indicates
the partial derivative with respect to t.
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c© Vladimir L. Borsch, 2018.
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The Alfv�en theorem [14, 16, 21, 37] of IMHD implies that the following two
important properties of the magnetic induction B hold. The �rst property is the
conservation of the magnetic �ux

Ψ [L(t)] =

¨
S(t)

ν ·B δS , (1.2)

where L(t) is an arbitrary closed material (co-moving) contour, S(t) is a surface
bounded by the contour L(t), ν(x, t) is the unit vector normal to S(t), δ is
the (purely) `spatial' di�erential (at time t being constant). The property is proved
directly

Ψ̇ [L(t)] =
d

dt

¨
S(t)

ν ·B δS =

¨
S(t)

ν ·
[
∂B

∂t
−∇× (u×B)

]
δS (1.1)

= 0 , (1.3)

where dot over a symbol here and below indicates the material (`total') derivative
with respect to t.

An other proof follows from the �rst Zorawski criterion [53]. It says that the
necessary and su�cient condition for the �ux of an arbitrary vector �eld a(x, t)
through the material surface S(t) to conserve reads

ȧ− a · ∇u+ (∇ · u)a = 0 , (1.4)

or equivalently

at + u · ∇a− a · ∇u+ (∇ · u)a = 0 . (1.5)

Using the following well known vector identity

∇× (a× b) = b · ∇a− (∇ · a) b− a · ∇b+ (∇ · b)a , (1.6)

where b(x, t) = u(x, t), we obtain the condition (1.5) to be

at −∇× (u× a) + (∇ · a)u = 0 . (1.7)

When a = B, ∇·B = 0 (see the fourth equation of the system (2.1) or the second
equation of the system (2.3)), the condition (1.7) transforms into the induction
law (1.1).

The second property is the magnetic �eld line conservation, that is the magnetic
lines co-move with the �uid, or they are `frozen' into the �uid. The second
Zorawski criterion [53] says that the necessary and su�cient condition for the
vector �eld a(x, t) to be material reads

a×
[
at −∇× (u× a) + (∇ · a)u

]
= 0 . (1.8)

Again, if a = B, the above condition holds due to ∇ ·B = 0 and the induction
law (1.1).
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The both Zorawski criteria are thoroughly discussed in [42,48].

The second property of the magnetic induction is usually used to introduce
the magnetic �eld line velocityw(x, t) and to consider the induction equation (1.1)
in the following formulation

Bt = ∇× (w ×B) . (1.9)

The component w‖ of w in the direction of B is actually not determined because
a one-to-one correspon dence between �eld lines does not require one-to-one
correspondence between the individual points lying on them [41], whereas the com-
ponent of w in the direction normal to B is w⊥=u⊥. However, the usual con-
vention is to assume that w‖ = u‖, that is w = u.

The above two properties of the magnetic inductionB are exactly those known
in ideal hydrodynamics (IHD) for the vorticity

Ω = ∇× u (1.10)

and derived from the Kelvin theorem [25] or the Helmholtz equation [19,25]

Ωt = ∇× (u×Ω) . (1.11)

In IHD phenomena when all the hypotheses of the Kelvin theorem meet then
the property of the conservation of the vorticity lines holds. In contrast to IHD,
in IMHD the magnetic topology may change even when all the hypotheses of
the Alfv�en theorem meet. A well known example of such a change is magnetic
reconnection. The phenomenon occurs in the solar corona, the Earth's magneto-
sphere, and laboratory plasmas. Detailed surveys on the subject are presented
in [17, 22, 41, 43, 51, 52]. We note, just in case, that Barrett [2] set up a list of
electromagnetic phenomena not explained by the Maxwell equations.

Since in most theories of magnetic reconnection the induction law (whether
in ideal or non-ideal cases) plays an important role, our concern is the origin of
the induction law in the IMHD limit, rather then magnetic reconnection itself.

The article is arranged as follows.

In section 2 we consider the Minkowski approach currently adopted as a `stan-
dard' in most of the existing textbooks on MHD for deriving the Maxwell equations
in moving media.

In section 3 we consider the Maxwell approach based on the theory of molecular
vortices and some mechanical analogies to derive the induction law. One should
refer to [46] to learn more about the theory of molecular vortices and to [10, 26,
39] to know out much interesting on the Maxwell way of reasoning. We show
that in contrast to the well known common opinion Maxwell himself derived
the induction law not only for media at rest but for moving ones as well. In
the IMHD limit his induction law is nothing but the induction law (1.1) of
the IMHD. The history of electrodynamics of moving media is fundamentally
surveyed by Darrigol [11�13].
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In section 4 we consider some observations of Boltzmann concerning the Max-
well study on the subject. Boltzmann thoroughly studied the Maxwell legacy
on electromagnetism, namely three articles [29], [30�33], [34], and the two-volume
book [35,36]. He translated the �rst and the second articles in German [4,5] and
supplemented both translations with his own very detailed and insight comments.
He also published in English [6] the list of faults found by him in the �rst article.
We implement some comments of Boltzmann to the second article to derive
the corrected induction law.

In section 5 we consider the induction law corrected by Hornig [20] to preserve
the magnetic line topology and not to preserve the magnetic �ux. The induction
law after Hornig happens to include the induction law after Boltzmann as a parti-
cular case provided some conditions meet.

In section 6 we consider the analogy between the Kelvin and the Alfv�en theo-
rems and their consequences once again. Some of quite recently published results
of other authors, for example, by Tsinober [50], prove that the analogy is imperfect
or even does not hold. We show that the induction law after Boltzmann does not
actually obey the analogy.

In section 7 we list in brief our observations on the subject.

2. The induction law after Minkowski

Because of our incomplete knowledge of the structure of matter, however, we are entitled to

ask ourselves what statements the relativity principle allows us to make concerning (macroscopic)

processes in moving bodies, assuming processes in bodies at rest to be experimentally known. This

question was answered by Minkowski. . . He showed that the equations for moving bodies follow

unambiguously from the relativity principle and from Maxwell's equations for bodies at rest. . . [40]

We shall not use these formulae in the rather complicated form in which they can be found

in Maxwell's treatise, but in the clearer and more condensed form that has been given them by

Heaviside and Hertz. [28]

The �Maxwell's equations� of today are due to Heaviside's �redressing� of Maxwell's work, and

should, more accurately, be known as the �Maxwell �Heaviside equations.� Essentially, Heaviside

took the twenty equations of Maxwell and reduced them to the four now known as �Maxwell's

equations.� [2]

The governing equations of electromagnetism being actually the Hertz �Heavi-
side ones but usually attributed to Maxwell in the proper inertial Cartesian
orthogonal frame of reference (x′, t′), where an undeformable conductive medium
is at rest, read [14,16,21,40]

∇′ ×H ′ = +D′t′ + j
′ ,

∇′ ×E′ = −B′t′ ,

∇′ ·D′ = q ,

∇′ ·B′ = 0 ,

(2.1)

where the following constitutive equations: B′ = µH ′, D′ = εE′, and the Ohm
law j′ = σE′ are used; E and H being the electric and magnetic �elds, D being
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the electric induction (displacement), ε and µ being the electric and magnetic
impermeabilities of the medium, q being the volume density of the free electric
charges, j being the surface density of the electric current, σ being the conductivity
of the medium.

For an undeformable moving medium in an inertial frame of reference (x, t)
moving with the constant velocity v : |v|� c, where c is the speed of light, with
respect to the frame of reference (x′, t′) : t′ = t, x′ = x − tv, the following non-
relativistic transformations of the dependent variables [40]

H ′ = H − v ×D ,

E′ = E + v ×B ,

j′ = j − ρv ,

ρ′ = ρ + ε∇ · (v ×B) ,

are used for the system of equations (2.1) to hold.

In the IMHD limit the above transformations simplify to the following ones{
H ′ = H ,

E′ = E + v ×B = 0 ,
(2.2)

and the remaining part of the system (2.1) reads{
Bt −∇× (v ×B) = 0 ,

∇ ·B = 0 .
(2.3)

Accounting for the vector identity (1.6), where a = v, b = B, the magnetic
induction law (the �rst equation of the system (2.3)) simpli�es as follows

Bt −∇× (v ×B) = Bt + v · ∇B ≡ Ḃ = 0 . (2.4)

The above equation means that if an undeformable conductive medium moves
with constant velocity v the magnetic �eld B remains unaltered.

In case of a deformable medium it is usually assumed that there is a unique
continuously di�erentiable transformation between laboratory (x, t) (or Eulerean)
and material (X, t) (or Lagrangean) frames of reference

x = Φ(X, t) , (2.5)

referred to the law of motion. Actually, the transformation (2.5) is rarely known,
and the solution to the following Cauchy problem{

ẋ(t) = u(x, t) ,

x(0) = X,
(2.6)
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where u is the medium velocity, is implied by the law of motion.
Point-wise application of the transformations (2.2) at v = u leads to the induc-

tion equation for the moving deformable medium as follows

Bt −∇× (u×B) = 0 . (2.7)

These formulae are rigorously valid only for uniformly moving bodies and, because of the additivity

of the �elds, also when several bodies are present which move uniformly with di�erent velocities and

are separated by vacuum regions. The approximation to which. . . are correct will generally be the better,

the smaller the acceleration of the substance. [40]

Hence, obtaining the induction law after Minkowski implies supplementary
assumptions not referred to by most of the textbooks. Sedov [44,45] studied appli-
cability of these assumptions to moving media at large deformations.

3. The induction law after Maxwell

The consideration of the action of magnetism on polarized light leads, as we have seen, to

the conclusion that in a medium under the action of magnetic force something belonging to the same

mathematical class as an angular velocity, whose axis is in the direction of the magnetic force, forms

a part of the phenomenon.

This angular velocity cannot be that of any portion of the medium of sensible dimensions

rotating as a whole. We must therefore conceive the rotation to be that of very small portions of

the medium, each rotating on its own axis. This is the hypothesis of molecular vortices. [36]

We shall suppose at present that all the vortices in any one part of the �eld are revolving

in the same direction about axes nearly parallel, but that in passing from one part of the �eld

to another, the direction of the axes, the velocity of rotation, and the density of the substance of

the vortices are subject to change. [30]

Auch die Gleichungen, welche Maxwell hier f�ur die electromagnetische Wirkung in bewegten

medien aufstellt, hat Hertz anfangs �ubersehen. [5]

To derive the induction law (as a constitutive part of his set of the governing
equations for the electromagnetic phenomena) Maxwell, �rstly, introduced an invis-
cid continuum (or a medium, referred to themicro�uid below) consisting of cylind-
rical vortices rotating as quasi-rigid bodies (prop. I [30], pp. 165 � 167), as shown
in Fig. 1.

Secondly, Maxwell interpreted quantities used in electrodynamics as follows:
µ (magnetic impermeability) being a value depending on the density of the micro-
�uid and the position of the vortices (prop. I [30], pp. 165 � 167, prop. III [30],
pp. 167 � 175), E (the electric �eld induced by free electric charges) being the force
with what intermediate particles treated as free electric charges act on the vorti-
ces (prop. VII [31], pp. 288 � 289), and H (the magnetic �eld, the magnetic
inductionB = µH) being the following vector (prop. I [30], pp. 165 � 167, prop. III
[30], pp. 167 � 175)

H = w τ = rω τ = rω , (3.1)

where r, w, and ω are denoted in Fig. 1, a.
In prop. VIII [31], pp. 289 � 291, Maxwell derived the induction law for the

micro�uid at rest (the second equation of the system (2.1)), i. e. for the case when
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Fig. 1. Micromotion of the element of a vortex tube: before

deformation at instant t (a) and after deformation at instant t′ (b)

magnetic induction changes being in�uenced by the only �eld E. In props. IX
and X he considered the change of magnetic �eld being in�uenced by only small
deformation, treating separately the strain and the rigid rotation between two
instants t and t′= t+ ∆t, ∆t = dt = Dt.

In prop. IX [31], p. 340, Maxwell considered the in�nitesimal `parallelopiped'
(not the in�nitesimal cylinder, as the element of a vortex tube!) with its three
edges being parallel to the axes x1, x2, x3 of a �xed orthogonal frame of reference
(or a Cartesian laboratory frame, see Fig. 2) and equaled to h1, h2, h3. From
the continuity property of the medium (this means that the volume of the parallele-
piped remains unaltered) and the conservation of energy Maxwell concluded that
due to the strain the following relations hold

DstrHκ

Hκ

=
Dstrhκ
hκ

≡ λκ , κ = 1, 2, 3, (3.2)

where D stands for the `deformational' di�erential (one should not confuse the
di�erential D with the di�erential δ in the magnetic �ux de�nition (1.2) and
the magnetic �ux conservation property (1.3), since the di�erential δ is used
only for the spatial integration, as the increment for spatial variables at t being
constant), Hκ are the Cartesian components of the magnetic �eld H, and λκ are
the extensions of the corresponding edges.

In the modern notation the above relations read

DstrH = H · Ŝ∆t , (3.3)

where Ŝ∆t is the symmetric tensor of small deformation, Ŝ being the Euler
stretching tensor [49].

In prop. X [31], pp. 340 � 341, Maxwell considered the rigid rotation of the
`parallelopiped' and derived the following equation (in the modern notation)
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DrotH = H · Ŵ ∆t , (3.4)

where Ŵ ∆t is the skew-symmetric tensor of small rigid rotation, Ŵ being the
Cauchy spin tensor [49].

It is evident that the equations (3.3) and (3.4) are valid for the magnetic
induction B being rewritten as follows

DstrB

Dt
= B · Ŝ, DrotB

Dt
= B · Ŵ ,

DB

Dt
= B ·

(
Ŝ + Ŵ

)
.

In prop. XI [31], pp. 341 � 348, Maxwell collected all the results obtained in
props. VIII, IX, and X for the rates of change of B and equated the substantial
derivative of B to the sum of the rates of change of B due to: 1) the action of
the electric �eld E, given by the second equation of the system (2.1); 2) the strain,
given by the �rst of the above equations; and 3) the rigid rotation, given by the se-
cond of the above equations, to obtain

Ḃ ≡ dB

dt
≡ Bt + u · ∇B = B · ∇u−∇×E , (3.5)

where the unique decomposition ∇u = Ŝ + Ŵ [49] is applied.

Then Maxwell used the micro�uid incompressibility condition ∇ · u = 0 once
again, the condition of 'the absence of free magnetism' ∇ · B = 0 (Maxwell
formulated this condition in terms of magnetic �eld, i. e. as ∇ ·H = 0, µ being
constant), and the vector identity (1.6) to derive from the equation (3.5) the induc-
tion law for the moving micro�uid

Bt = ∇× (B × u)−∇×E . (3.6)

The above equation was not aimed to be principal or �nal in the Maxwell
theory and happened to be hidden in his calculations. Actually, Maxwell tried
to account for the notion of electrotonic state introduced by Faraday [15].

The conception of such a quantity, on the changes of which, and not on its absolute magnitude,

the induction current depends, occurred to Faraday at an early stage of his researches (Exp. Res.,

series I, 60). . . He therefore recognised. . . a 'peculiar electrical condition of matter,' to which he gave

the name of the Electrotonic State. He afterwards found that he could dispense with this idea by means

of considerations founded on the lines of magnetic force (Exp. Res., series II, 242), but even in his latest

researches (Exp. Res., series II, 3269), he says, 'Again and again the idea of an electrotonic state (Exp.

Res., 60, 1114, 1661, 1729, 1733) has been forced upon my mind.' [36]

Central to the Maxwell formulation of electromagnetism was the Faraday concept of the electrotonic

state (from the new Latin tonicus, �of tension or tone�; from the Greek tonos, �a stretching�). [2]

Hence, following the idea of electrotonic state, Maxwell introduced the vector
potential A: B = ∇ ×A, and derived from equation (3.6) the following one for
the electric �eld

E = At + u×B +∇ϕ ,
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where ϕ is a scalar potential.

Subsequently, the A �eld was banished from playing the central role in Maxwell's theory and

relegated to being a mathematical (but not physical) auxiliary. This banishment took place during

the interpretation of Maxwell's theory by the Maxwellians, i. e. chie�y by Heaviside, Fitzgerald, Lodge

and Hertz. The �Maxwell theory� and �Maxwell's equations� we know today are really the interpretation

of Maxwell by these Maxwellians. It was Heaviside who �murdered the A �eld� (Heaviside's description)

and whose work in�uenced the crucial discussion which took place at the 1888 Bath meeting of the British

Association (although Heaviside was not present). [2]

In the IMFD limit the induction law (3.6) of Maxwell reads

Ḃ −B · ∇u ≡ Bt + u · ∇B −B · ∇u ≡ Bt +∇× (u×B) = 0 . (3.7)

4. The induction law after Boltzmann

Boltzmann, being an inquisitive and shrewd researcher of the Maxwell legacy,
noticed (comment 39 to prop. IX [5], p. 114) that Maxwell had derived the induc-
tion equation (3.6) not accounting for the de�nition of the magnetic �eld (3.1)
of his own. And it was Boltzmann who supplemented both the conditions used
by Maxwell, the incompressibility one and the conservation of energy for the medi-
um, with the condition of preserving the cylindrical shape of the vortex tubes
to obtain the following correct constraints for the deformation of any element of
the vortex tubes

1

2

Dω

ω
=

Dw

w
= −Dr

r
=

1

2

Dh

h
. (4.1)

Boltzmann showed that the corresponding Maxwell constraints were as follows

Dω

ω
=

Dw

w
= −Dr

r
=

Dh

h
(4.2)

and did not agree with preserving the cylindrical shape of the vortex tubes.

Unfortunately Boltzmann himself did not implement the constraints (4.1) and
the Maxwell de�nition of the magnetic �eld (3.1) to derive the correct induction
law. Hence, in what follows, we implement the Boltzmann correction.

For this we consider the material vector h = hτ = xN − xM, determining
the position of the vortex tube element MN at instant t (Fig. 2, a). At instant t′

the material vector transforms into h′ = h′τ ′ = xN′ − xM′ (Fig. 2, b), where τ is
the unit vector tangent to the axis of the element: |τ | = |τ ′| = 1.

Using the law of motion of the medium (2.5) we represent the change of h
through the material variables X and the time increment ∆t as follows

h′ − h =
[
Φ(XN, t

′)−Φ(XM, t
′)
]
−
[
Φ(XN, t)−Φ(XM, t)

]
,

and consequently �nd that [49]
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Fig. 2. Macromotion of the element MN of a vortex tube: before

deformation at instant t (a) and after deformation at instant t′ (b)

Dh

Dt
= lim

∆→0

h′ − h
∆t

= h · ∇u , (4.3)

where the material variablesX are assumed to coincide with the laboratory ones x
at instant t (see the formulation of the Cauchy problem (2.6)).

From the above relation for the `deformational' time derivative of the material
vector h we �nd for the squared length of h

h · Dh

Dt
=

1

2

Dh2

Dt
=

1

2

Dh2

Dt
= h

dh

dt
= h ·

(
Ŝ + Ŵ

)
· h = h · Ŝ · h = h2 θ , (4.4)

where the scalar function

θ
(
Ŝ,h

)
= |h|−2 h · Ŝ · h = τ · Ŝ · τ (4.5)

is the normal component of Ŝ in the direction of the axis of the element.

Then, di�erentiating the de�nition of the magnetic �eld (3.1), we obtain

DH

Dt
=

Dw

Dt
τ + w

Dτ

Dt

(4.1)
=

1

2

w

h

Dh

Dt
τ + w

Dτ

Dt
, (4.6)

where the logarithmic `deformational' derivative of the length h of the material
vector h is already known from the equation (4.4) to be

1

h

Dh

Dt
= θ , (4.7)

and the only derivative is needed to be �nd is the following one

Dτ

Dt
=

D

Dt

(
h

h

)
=

1

h2

(
h

Dh

Dt
− Dh

Dt
h

)
(4.3)
= τ · ∇u− θ τ . (4.8)
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Substituting the `deformational' derivatives of lnh (4.7) and τ (4.8) into the
right hand side of the equation (4.6) we �nd for the `deformational' derivative of
the magnetic �eld

DH

Dt
=

1

2
wθ τ + w τ · ∇u− wθ τ = −1

2
θH +H · ∇u .

The same equation is evident to hold for the magnetic induction

DB

Dt
= −1

2
θB +B · ∇u . (4.9)

Combining the `deformational' derivative of B (4.9) with the time derivative
ofB due to the action of the electric �eld (the second equation of the system (2.1))
we obtain the induction law after Boltzmann

Ḃ ≡ dB

dt
= B · ∇u− 1

2
θB −∇×E ,

and in the IMFD limit it reads

Ḃ ≡ dB

dt
= B · ∇u− 1

2
θB .

Representing the total time derivative (material) at the left hand side of
the above equation as the sum of the local and the convective derivatives we obtain
the induction law in more usual formulation

Bt + u · ∇B −B · ∇u+ 1
2 θB ≡ Bt +∇× (B × u) + 1

2 θB = 0 . (4.10)

5. The induction law after Hornig

Besides, some models are based not on a solution of the corresponding MHD equations but

on some geometrical consideration and on ideas about the motion of frozen-in magnetic �eld lines.

This concept of magnetic �eld line motion has often led to some confusion; because of that, some

models based on that concept were accurately criticized by Alfv�en (1976, 1977). We also believe that

physical models cannot be based on the qualitative and to some degree speculative ideas on magnetic

�eld line motion (the more so because in some regions the frozen-in conditions are surely violated);

physical models must be constructed on the basis of meaningful solutions of the problems of magnetic

hydrodynamics (or even better, kinetics). [43]

It is known [17,41] that in non-ideal conductive media (plasmas) the magnetic
�ux conservation and the magnetic �eld line conservation properties are no longer
equivalent, and the �eld line velocity w is not determined uniquely.

Hornig [20] considered this case in a purely geometric way and proved that
the most general form of the induction equation preserving the magnetic �eld
lines (magnetic topology) and not preserving the magnetic �ux is as follows

Bt +∇× (B ×w) = λB , (5.1)
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w being the �eld line velocity, the componentw⊥ of the �eldw not being uniquely
determined, λ being a scalar function of the �elds w and B.

We note that the equation (5.1) at w = u directly follows from the second
Zorawski criterion (1.8) applied to the vector �eld a(x, t) = B(x, t) when accoun-
ting for the second equation of the system (2.3).

Kozlov [24] used even more general form of the condition for the vector
�eld a(x, t) to be material, a(x, t),u(x, t) : Rn+1 → Rn, as follows

at + [a,u] = λa , (5.2)

where [a,u] is the commutator of the vector �elds a(x, t) and u(x, t).
Preserving the magnetic topology means that the corresponding topological

invariants of the �led lines, for example, knottedness, linkage etc., remain unaltered.
Topological invariants of the �eld lines are explained in [1, 37].

6. Magnetohydrodynamic Analogy

The MHD analogy was originated by Batchelor [3] whose reasoning had been
based on the well known fact that the equations for the vorticity in non-ideal �uids
and for the magnetic induction (or for magnetic �eld) in non-ideal conductive
media

Ω̇ = ∇× (u×Ω) + ν∇2Ω ,

Ḃ = ∇× (u×B) + ε∇2B ,

where ν and ε are the kinematic and the magnetic viscosities, are identical in
form.

There is thus a formal analogy between the two solenoidal vectors Ω and H, provided Ω refers to

the motion of non-conducting �uid and H to the motion of conducting liquid.

Many of the results concerning vorticity in classical hydrodynamics can now be interpreted in terms

of magnetic �eld in the electromagnetic hydrodynamic problem. [3]

The MHD analogy �is, in fact, an extension of the popular analogy between
vorticity Ω and material line elements h (proposed by Taylor 1938 [47], and
which goes back to Helmholtz 1858 [19] and Kelvin 1880 [23]), equations for
which in the absence of viscosity are identical in form as well� [19] (see the above
equations (1.11), (4.3)):

Ω̇ = Ωt + u · ∇Ω = Ω · ∇u ,

ḣ = ht + u · ∇h = h · ∇u .

We note that it was surely Maxwell who �rst proposed the IMHD analogy. In
the footnote at the last page of [31] he remarked the following.

Since the �rst part of this paper was written, I have seen in Crelle's Journal for 1859, a paper by

Prof. Helmholtz on Fluid Motion, in which he has pointed out that the lines of �uid motion are arranged

according to the same laws as the lines of magnetic force, the path of an electric current corresponding

to a line of axes of those particles of the �uid which are in a state of rotation. This is an additional
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instance of a physical analogy, the investigation of which may illustrate both electro-magnetism and

hydrodynamics. [30]

Later on he referred to the IMHD analogy, but as an assumption.

It is impossible, in our present state of ignorance as to the nature of the vortices, to assign the form

of the law which connects the displacement of the medium with the variation of the vortices. We shall

therefore assume that the variation of the vortices caused by the displacement of the medium is subject to

the same conditions which Helmholtz, in his great memoir on Vortex-motion [19], has shewn to regulate

the variation of the vortices of a perfect liquid. [36]

Nowadays these analogies are utilized in most of textbooks on HD and MHD,
for example, the analogy between Ω and h is considered to be valid in [27], though
�the above analogies have since been realized to be �awed� [50].

Indeed, at the kinematic level, Ω = ∇×u, whereas B = ∇×A, but the vector
potential A is not present in the induction law for B (for both cases, the ideal and
the non-ideal ones). At the dynamic level the di�erences between Ω andH (orB)
are even more evident. One should address directly to the article of Tsinober [50]
to �nd much more on the subject, including experimental evidence.

The current study explains the absence of the MHD analogy between Ω andH
(or B) and some known �aws of the analogy, since the de�nition of the magnetic
�eld H (3.1) given by Maxwell has nothing in common with the de�nition of
the vorticity Ω of a medium or the angular velocity ω of quasi-rigid rotation of
the vortex tubes of Faraday. And it is the Boltzmann correction to the magnetic
induction law that explicitly accounts for the di�erence betweenH (or B) and Ω.

7. Conclusions

1. The induction law after Minkowski is based on relativistic geometrical
approach involving no physics of deformable media.

2. The induction law after Maxwell is fully based on the evident theory of mo-
lecular vortices but contradicts the de�nition of magnetic �eld by Maxwell.

3. The induction law after Boltzmann �xes faults of the Maxwell approach
but implies the tubular foliation of the space �lled with a deformable medium.

4. The induction law after Hornig involves an undetermined scalar function
and looks as it were a more general case compared to the induction law after
Boltzmann, nevertheless the former does not imply tubular foliation of the space.
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Abstract. We study a Dirichlet-Navier optimal design problem for a quasi-linear mono-

tone p-biharmonic equation with control and state constraints. The coe�cient of the

p-biharmonic operator we take as a design variable in BV (Ω)∩L∞(Ω). In order to handle

the inherent degeneracy of the p-Laplacian and the pointwise state constraints, we use

regularization and relaxation approaches. We derive existence and uniqueness of solutions

to the underlying boundary value problem and the optimal control problem. In fact,

we introduce a two-parameter model for the weighted p-biharmonic operator and Henig
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solutions to regularized problem on each (ε, k)-level as the parameters tend to zero and

in�nity, respectively.

Key words: p-biharmonic problem, optimal control, control in coe�cients, approximation,

existence result.

2010 Mathematics Subject Classi�cation: 49J20, 49K20, 58J37.

Communicated by Prof. P.O. Kasyanov

1. Introduction

The aim of this article is to study a state constrained Dirichlet-Navier optimal
control problem (OCP) for a quasi-linear monotone elliptic equation, the so-called
weighted p-biharmonic problem. The coe�cient of the p-biharmonic operator, the
weight u, we take as a control in BV (Ω)∩L∞(Ω). Since an important matter for
applications is to obtain a solution to a given boundary value problem with desired
properties, it leads to the reasonable questions: can we de�ne an appropriate
coe�cient of p-biharmonic operator to minimize the discrepancy between a given
displacement yd and an expected solution to such problem. More precisely, we
analyse the following optimal design problem, which can be regarded as an optimal
control problem, for quasi-linear partial di�erential equation (PDE) with mixed
boundary conditions

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|p dx+

ˆ
Ω
|Du|

}
(1.1)

∗Department of Di�erential Equations, Oles Honchar Dnipro National University, 72, Gagarin av.,
Dnipro, 49010, Ukraine, p.kogut@i.ua
†Department of System Analysis and Control, National Mining University, 19, Yavornitskii av., 49005

Dnipro
‡Institute of Applied System Analysis, National Academy of Sciences and Ministry of Education and

Science of Ukraine, 37/35, Peremogy av., IASA, 03056 Kyiv, Ukraine, kupenko.olga@gmail.com

c© P. I. Kogut, O. P. Kupenko, 2018.



46 P. I. Kogut, O. P. Kupenko

subject to the quasi-linear equation

∆(u|∆y|p−2∆y) = f in Ω, (1.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (1.3)

the pointwise state constraints

0 6
∂y(s)

∂ν
6 ζmax(s) a.e. on ΓS , (1.4)

and the design (control) constraints

u ∈ BV (Ω) and 0 < α 6 ξ1(x) 6 u(x) 6 ξ2(x) a.e. in Ω. (1.5)

Here, ΓD and ΓS are the disjoint part of the boundary ∂Ω (∂Ω = ΓD ∪ ΓS),
BV (Ω) ∩ L∞(Ω) stands for the control space, yd ∈ Lp(Ω), ξ1, ξ2 ∈ L∞(Ω), f ∈
Lp
′
(Ω), and ζmax ∈ Lp(ΓS) are given distributions. Problems of this type appear

for p−power-like elastic isotropic �at plates of uniform thickness, where the design
variable u is to be chosen such that the de�ection of the plate matches a given
pro�le. The model extends the classical weighted biharmonic equation, where the
weight u = a3 involves the thickness a of the plate, see e.g. [8,21,25,26], or u can
be regarded as a rigidity parameter. The OCP (1.1)�(1.4) can be considered as
a prototype of design problems for quasilinear state equations. For an interesting
exposure to this subject we can refer to the monographs [8, 16,17].

A particular feature of OCP (1.1)�(1.4) is the restriction by the pointwise
constraints (1.4) in Lp(ΓS)-space. In fact, the ordering cone of positive elements in
Lp-spaces is typically non-solid, i.e. it has an empty topological interior. Following
the standard multiplier rule, which gives a necessary optimality condition for
local solutions to state constrained OCPs, the constraint quali�cations such as
the Slater condition or the Robinson condition should be applied in this case.
However, these conditions cannot be veri�ed for cones such as

Lp+(ΓS) = {v ∈ Lp(ΓS) | v > 0 a.e. in Ω}

due to the fact that int
(
Lp+(ΓS)

)
= ∅, where int (A) stands for the topologi-

cal interior of the set A. Therefore, it would be reasonable to propose a suitable
relaxation of the pointwise state constraints in the form of some inequality condi-
tions involving a so-called Henig approximation

(
Lp+(ΓS)

)
ε

(B) of the ordering
cone of positive elements Lp+(ΓS). Here, B is a �xed closed base of Lp+(ΓS).
As it was shown in our recent publication [12], due to fact that Lp+(ΓS) ⊂(
Lp+(ΓS)

)
ε

(B) for all ε > 0, we can replace the cone Lp+(ΓS) by its approximation(
Lp+(ΓS)

)
ε

(B). As a result, it leads to some relaxation of the inequality constraints
of the considered problem, and, hence, to the approximation of the feasible set
to the original OCP. Hence, the solvability of a given class of OCPs can be
characterized by solving the corresponding Henig relaxed problems in the limit
ε→ 0 (for the details, we refer to [12,13]).
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The ones more characteristic feature of the OCP (1.1)�(1.4) is related with
degeneracy of quasilinear di�erential operator ∆(u|∆y|p−2∆y) as ∆y tends to
zero and also if u approaches zero. Moreover, when the term u|∆y|p−2 is regarded
as the coe�cient of the harmonic operator, we also have the case of unbounded
coe�cients. In spite of the fact that the Control in the coe�cients of elliptic
problems has a long history of its own starting with work of Murat [19, 20] and
Tartar [27] (see also Casas [4], where the constrained optimal control problem in
the coe�cients of the leading order di�erential expressions was �rst discussed in
details), analogous results for the case of weighted p-biharmonic equations of the
type ∆(u|∆y|p−2∆y) remained open. In this paper, in order to avoid degeneracy
with respect to the control u, we assume that u is bounded away from zero.
For the precise statements see the next section. We leave the case of potentially
degenerating controls to a future contribution. Instead, in this article, we focus
on the degeneracies related to the nonlinearity. A number of regularizations have
been suggested in the literature. See [22] for a discussion for what has come to

be known as ε-p-Laplace problem, such as ∆u,ε,py := div(u(ε + |∇y|2)
p−2

2 )∇y.
While the ε-p-Laplacean regularizes the degeneracy as the gradients tend to zero,
the term u|∇y|p−2, viewed again as a coe�cient for the otherwise linear problem,
may grow large. Therefore, we introduce yet another regularization that leads to
a sequence of monotone and bounded approximation Fk(|∆y|2) of |∆y|2 (see our
recent publication [6], where this approach was developed for p-Laplace problem).
For �xed parameter p ∈ [2,∞), and control u, we arrive at a two-parameter
problem governed by

∆2
ε,k,py := ∆(u(ε+ Fk(|∆y|2))

p−2
2 )∆y.

Finally, we have to deal with a two-parameter family of optimal control problems
in the coe�cients for monotone nonlinear di�erential equations and Henig relaxation
of the the inequality state constraints. We consequently provide the well-posedness
analysis for the underlying partial di�erential equations as well as for the optimal
control problems. After that we pass to the limits as k → ∞ and ε → 0. The
approximations and Henig relaxation are not only considered to be useful for the
mathematical analysis, but also for the purpose of numerical simulations.

2. Preliminaries

Let Ω be a bounded open connected subset of RN (N > 2). We assume that
the boundary ∂Ω is Lipschitzian so that the unit outward normal ν = ν(x) is
well-de�ned for a.e. x ∈ ∂Ω, where a.e. means here with respect to the (N − 1)-
dimensional Hausdor� measure. We also assume that the boundary ∂Ω consists
of two disjoint parts ∂Ω = ΓD ∪ ΓS , where the sets ΓD and ΓS have positive
(N − 1)-dimensional measures, and ΓS is now C2. Let p be a real number such
that 2 6 p <∞.

ByW 2,p(Ω) we denote the Sobolev space as the subspace of Lp(Ω) of functions
y having generalized derivatives Dky up to order k = 2 in Lp(Ω). We note that
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due to the interpolation theory, see [1, Theorem 4.14], W 2,p(Ω) is a Banach space
with respect to the norm

‖y‖W 2,p(Ω) =
(
‖y‖pLp(Ω) + ‖D2y‖pLp(Ω)

)1/p
=

(ˆ
Ω

(
|y|p + |D2y|p

)
dx

)1/p

,

where

D2y ·D2v =

 N∑
i1,i2=1

∂2y

∂xi1∂xi2

∂2v

∂xi1∂xi2

1/2

, and |D2y| =
(
D2y ·D2y

)1/2
.

Since ∂Ω is Lipschitzian and ΓS is of C2, it follows that a function y ∈ W 2,p(Ω)
admits some traces on ∂Ω. In particular, if ν denotes the unit outer normal to
∂Ω, then for any y ∈ C2(Ω) we can de�ne the traces

γ0(y) = y |∂Ω , γ1(y) =
∂y

∂ν

∣∣∣∣
ΓD

and γ2(y) =
∂2y

∂ν2

∣∣∣∣
ΓS

,

where ∂y/∂ν denotes the outer normal derivative of y on ΓD de�ned by ∂y/∂ν =
(∇y, ν). By [15, Theorem 8.3], these linear operators can be extended continuously
to the space W 2,p(Ω). We set

W 2−1/p,p(∂Ω) := γ0

[
W 2,p(Ω)

]
, W 1−1/p,p(ΓD) := γ1

[
W 2,p(Ω)

]
as closed subspaces of W 1,p(∂Ω) and Lp(ΓD), respectively. Since 1− 1/p = 1/p′,
where p′ stands for the conjugate of p (that is p+p′ = pp′), we have γ1

[
W 2,p(Ω)

]
=

W 1/p′,p(ΓD). Moreover, the injections

W 2−1/p,p(∂Ω) ↪→W 1,p(∂Ω) and W 1/p′,p(ΓD) ↪→ Lp(ΓD) (2.1)

are compact by the Sobolev embedding theorem. We also put

γ2

[
W 2,p(Ω)

]
= W−1/p,p(ΓS) :=

[
W 1/p,p′(ΓS)

]∗
= the dual space of W 1/p,p′(ΓS).

Let

C∞0 (RN ; ΓD) =

{
ϕ ∈ C∞0 (RN ) :

ϕ = 0 on ∂Ω, ∂ϕ
∂ν = 0 on ΓD,

and ∆ϕ = 0 on ∂Ω \ ΓD.

}

We de�ne the Banach space W 2,p
0 (Ω; ΓD) as the closure of C∞0 (RN ; ΓD) with

respect to the norm ‖y‖W 2,p(Ω). LetW
−2,p′(Ω; ΓD) be the dual space toW 2,p

0 (Ω; ΓD).

We also de�ne the space W 1,p
0 (Ω) as the closure of C∞0 (Ω) with respect to the

norm ‖y‖
W 1,p

0 (Ω)
=
(´

Ω ‖∇y‖
p dx

)1/p
.
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Throughout this paper, we use the notation Wp(Ω) := W 2,p
0 (Ω; ΓD). Let us

notice that Wp(Ω) equipped with the norm

‖y‖p,∆ := ‖∆y‖Lp(Ω) =

(ˆ
Ω
|∆y|p dx

)1/p

=

(ˆ
Ω

∣∣∣∣∣
N∑
i=1

∂2y

∂x2
i

∣∣∣∣∣
p

dx

)1/p

(2.2)

is a uniformly convex Banach space [3]. Moreover, the norm ‖ · ‖p,∆ is equivalent
on Wp(Ω) to the usual norm ‖ · ‖W 2,p(Ω) of W

2,p(Ω). For reader's convenience, we
give below the proof of the equivalence between the standard Sobolev space norm
‖ · ‖W 2,p(Ω) and the norm ‖ · ‖p,∆. For that, let us consider the classical Dirichlet
problem for the famous Poisson's equation

∆y = f in Ω, y = 0 on ∂Ω. (2.3)

Since the Laplace operator −∆ acts from Wp(Ω) in Lp(Ω), it is well-known that
this problem is uniquely solvable in Wp(Ω) for all f ∈ Lp(Ω). Hence, the inverse

operator T := (−∆)−1 : Lp(Ω)→W 2,p(Ω) ∩W 1,p
0 (Ω) is well de�ned and satis�es

the following elliptic regularity estimate [9]

‖Tf‖W 2,p(Ω) 6 Cp‖f‖Lp(Ω).

This allows us to conclude the following. If f ∈ Lp(Ω) and y ∈ W 1,p
0 (Ω) are such

that ∂y∂ν = 0 on ΓD, ∆y = 0 on ΓS , and y is a solution of (2.3), then −∆y ∈ Lp(Ω),
y = 0 on the boundary ∂Ω, and, therefore, y ∈Wp(Ω). Hence,

‖y‖W 2,p(Ω) = ‖T (−∆y)‖W 2,p(Ω) 6 Cp‖∆y‖Lp(Ω) = Cp‖y‖p,∆, (2.4)

for a suitable positive constant Cp independent of f . On the other hand, it is easy
to observe that

‖y‖p,∆ 6 ‖y‖W 2,p(Ω).

Thus, by the Closed Graph Theorem, we can conclude that y 7→ ‖y‖p,∆ =(´
Ω |∆y|

p dx
)1/p

is equivalent to the norm induced by W 2,p(Ω) (for the details
we refer to [7, 18]).

Remark 2.1. Observe that J : Wp(Ω)→ (Wp(Ω))∗ de�ned by

J(y) =

{
‖∆y‖2−pLp(Ω)|∆y|

p−2∆y, if y 6= 0,

0, if y = 0

is the duality mapping of Wp(Ω) assicuated with the norm ‖ · ‖p,∆ (see [23]).

By BV (Ω) we denote the space of all functions in L1(Ω) for which the norm

‖f‖BV (Ω) = ‖f‖L1(Ω) +

ˆ
Ω
|Df | = ‖f‖L1(Ω)

+ sup
{ˆ

Ω
f divϕdx : ϕ ∈ C1

0 (Ω;RN ), |ϕ(x)| 6 1 for x ∈ Ω
}
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is �nite.

We recall that a sequence {fk}∞k=1 converges weakly-∗ to f in BV (Ω) if and
only if the two following conditions hold (see [10]): fk → f strongly in L1(Ω) and
Dfk ⇀ Df weakly-* in the space of Radon measuresM(Ω, i.e.

lim
k→∞

ˆ
Ω
ϕDfk =

ˆ
Ω
ϕDf ∀ϕ ∈ C0(Ω).

It is well-known also the following compactness result for BV -spaces (Helly's
selection theorem, see [2]).

Theorem 2.1. If {fk}∞k=1 ⊂ BV (Ω) and supk∈N ‖fk‖BV (Ω) < +∞, then there

exists a subsequence of {fk}∞k=1 strongly converging in L1(Ω) to some f ∈ BV (Ω)

such that Dfk
∗
⇀ Df weakly-∗ in the space of Radon measuresM(Ω). Moreover,

if {fk}∞k=1 ⊂ BV (Ω) strongly converges to some f in L1(Ω) and satis�es

supk∈N
´

Ω |Dfk| < +∞, then

(i) f ∈ BV (Ω) and

ˆ
Ω
|Df | 6 lim inf

k→∞

ˆ
Ω
|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(2.5)

3. Setting of the Optimal Control Problem

Let ξ1, ξ2 be �xed elements of L∞(Ω) ∩BV (Ω) satisfying the conditions

0 < α 6 ξ1(x) 6 ξ2(x) a.e. in Ω, (3.1)

where α is a given positive value.

Let f ∈W−2,p′(Ω; ΓD), yd ∈ Lp(Ω), and ζmax ∈ Lp(ΓS) be given distributions.
The optimal control problem, we consider in this paper, is to minimize the discre-
pancy between yd and the solutions of the following homogeneous Dirichlet-Navier
boundary valued problem

∆2
p(u, y) = f in Ω, (3.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (3.3)

0 6
∂y(s)

∂ν
6 ζmax(s) a.e. on ΓS (3.4)

by choosing an appropriate weight function u ∈ Aad as control. Here, ∆2
p(u, ·) is

the generalized p-biharmonic operator, i.e.

∆2
p(u, y) := ∆(u|∆y|p−2∆y), ∆y =

N∑
i=1

∂2y

∂x2
i
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and the class of admissible controls Aad we de�ne as follows

Aad =
{
u ∈ L1(Ω)

∣∣∣ ξ1(x) 6 u(x) 6 ξ2(x) a.e. in Ω
}
. (3.5)

It is clear that Aad is a nonempty convex subset of L1(Ω) with an empty topological
interior.

More precisely, we are concerned with the following optimal control problem

Minimize

{
I(u, y) =

ˆ
Ω
|y − yd|p dx+

ˆ
Ω
|Du|

}
subject to the constraints (3.2)�(3.5).

(3.6)

De�nition 3.1. We say that an element y ∈Wp(Ω) is the weak solution (in the
sense of Minty) to the boundary value problem (3.2)�(3.3), if

ˆ
Ω
u∆ϕ (∆ϕ−∆y) dx > 〈f, ϕ− y〉 , ∀ϕ ∈ C∞0 (Ω; ΓD). (3.7)

Here, 〈·, ·〉 = 〈·, ·〉(Wp(Ω))∗;Wp(Ω) stands for the duality pairing between (Wp(Ω))∗

and Wp(Ω) and, in the sequel, we will omit this index when it is from the context.

The existence of a unique solution to the boundary value problem (3.2)�(3.3)
follows from an abstract theorem on monotone operators; see, for instance, [14]
or [24, �II.2].

Theorem 3.1. Let V be a re�exive separable Banach space. Let V ∗ be the dual

space, and let A : V → V ∗ be a bounded, semicontinuous, coercive and strictly

monotone operator. Then the equation Ay = f has a unique solution for each

f ∈ V ∗. Moreover, Ay = f if and only if 〈Aϕ,ϕ− y〉 > 〈f, ϕ− y〉 for all ϕ ∈ V ∗.

Here, the above mentioned properties of the strict monotonicity, semicontinuity,
and coercivity of the operator A have respectively the following meaning:

〈Ay −Av, y − v〉V ∗;V > 0, ∀ y, v ∈ V ; (3.8)

〈Ay −Av, y − v〉V ∗;V = 0 =⇒ y = v; (3.9)

the function t 7→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V ; (3.10)

lim
‖y‖V→∞

〈Ay, y〉V ∗;V
‖y‖V

= +∞. (3.11)

In our case, we can de�ne the operator A as a mapping Wp(Ω)→ (Wp(Ω))∗ by

〈Aϕ, v〉(Wp(Ω))∗;Wp(Ω) :=

ˆ
Ω
u|∆ϕ|p−2∆ϕ∆v dx.

Remark 3.1. The reason of such representation comes from the following ob-
servation: having applied Green's formula twice to the operator ∆(u|∆y|p−2∆y)
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tested by v ∈ C∞0 (Ω; ΓD), where y is an element of Wp(Ω), we arrive at the
identity ˆ

Ω
∆(u|∆y|p−2∆y)v dx = −

ˆ
Ω

(
∇(u|∆y|p−2∆y),∇v

)
dx

+

ˆ
∂Ω

∂

∂ν
(u|∆y|p−2∆y)v dHN−1 =

ˆ
Ω
u|∆y|p−2∆y∆v dx

−
ˆ

ΓD

u|∆y|p−2∆y
∂v

∂ν
dHN−1 −

ˆ
ΓS

u|∆y|p−2∆y
∂v

∂ν
dHN−1

=

ˆ
Ω
u|∆y|p−2∆y∆v dx ∀ v ∈ C∞0 (Ω; ΓD).

Then it is easy to show that A satis�es all assumptions of Theorem 3.1 (for
the details we refer to [14, 22]). As a consequence of this theorem, we also know
that y ∈ Wp(Ω) satis�es (3.7) if and only if the relations (3.2)�(3.3) are ful�lled
as follows (for the details, we refer to [22, Section 2.4.4] and [8, Section 2.4.2])

∆2(u, y) = f in (C∞0 (Ω; ΓD))∗ ,

γ0(y) = 0 in W 2−1/p,p(∂Ω),

γ1(y) = 0 in W 1/p′,p(ΓD),

γ0(∆y) = 0 in W−1/p,p(ΓS) :=
(
W 1/p,p′(ΓS)

)∗
,


that is, the integral identity holdsˆ

Ω
u|∆y|p−2∆y∆ϕdx =

ˆ
Ω
fϕ dx ∀ϕ ∈Wp(Ω). (3.12)

In particular, taking ϕ = y in (3.12), this yields the relationˆ
Ω
u|∆y|p dx =

ˆ
Ω
fy dx, (3.13)

which is usually referred to as the energy equality. As a result, conditions (3.1),
(3.5), Friedrich's inequality, and identity (3.13) lead us to the following a priori
estimate

‖y‖p,∆ :=

(ˆ
Ω
|∆y|p dx

)1/p

6 CΩ

(
α−1‖f‖Lp′ (Ω)

)p′/p
∀u ∈ Aad. (3.14)

Taking this fact into account, we adopt the following notion.

De�nition 3.2. We say that (u, y) is a feasible pair to the OCP (3.6) if u ∈
Aad ⊂ L1(Ω), y ∈Wp(Ω), the pair (u, y) is related by the integral identity (3.12),
and

∂y

∂ν
∈ Lp+(ΓS), ζmax − ∂y

∂ν
∈ Lp+(ΓS), (3.15)

where Lp+(ΓS) stands for the natural ordering cone of positive elements in Lp(ΓS),
i.e.

Lp+(ΓS) :=
{
v ∈ Lp(ΓS) | v > 0 HN−1-a.e. on ΓS

}
.



On Approximation of OCP in Coe�cients for p-Biharmonic Equation 53

We denote by Ξ the set of all feasible pairs for the OCP (3.6).

Remark 3.2. Before we proceed further, we need to make sure that minimization
problem (3.6) is consistent, i.e. there exists at least one pair (u, y) such that
(u, y) satisfying the control and state constraints (3.3)�(3.5), and (u, y) would be
a physically relevant solution to the boundary value problem (3.2)�(3.3). In fact,
one needs the set of feasible solutions to be nonempty. But even if we are aware
that Ξ 6= ∅, this set must be su�ciently rich in some sense, otherwise the OCP
(3.6) becomes trivial. From a mathematical point of view, to deal directly with the
control and especially state constraints is typically very di�cult [4, 11,23]. Thus,
the consistency of OCPs with control and state constraints is an open question
even for the simplest situation.

In view of this remark, it is reasonably now to make use of the following
Hypothesis.

(H1) OCP (3.6) is regular in the following sense � there exists at least one pair
(u, y) ∈ L1(Ω)×Wp(Ω) such that (u, y) ∈ Ξ.

Let τ be the topology on the set Ξ ⊂ L1(Ω) ×Wp(Ω) which we de�ne as the

product of the norm topology of L1(Ω) and the weak topology of W 2,p
0 (Ω; ΓD).

We say that a pair (u0, y0) ∈ L1(Ω) ×Wp(Ω) is an optimal solution to problem
(3.6) if

(u0, y0) ∈ Ξ and I(u0, y0) = inf
(u,y)∈Ξ

I(u, y).

With this notation, the control problem (3.6) can be written as follows

(P) min
(u,y)∈Ξ

I(u, y).

4. Existence of Optimal Solutions

In this section we focus on the solvability of optimal control problem (3.2)�
(3.6). Hereinafter, we suppose that the space L1(Ω)×Wp(Ω) is endowed with the
norm ‖(u, y)‖L1(Ω)×Wp(Ω) := ‖u‖L1(Ω) + ‖y‖p,∆.

We begin with a couple of auxiliary results.

Lemma 4.1. Let {(uk, yk) ∈ Ξ}k∈N be a sequence such that (uk, yk)
τ−→ (u, y) in

L1(Ω)×Wp(Ω). Then we have

lim
k→∞

ˆ
Ω
uk∆yk∆ϕdx =

ˆ
Ω
u∆y∆ϕdx ∀ϕ ∈ C∞0 (Ω; ΓD). (4.1)

Proof. Since uk → u in L1(Ω) and {uk}k∈N is bounded in L∞(Ω), we get that
uk → u strongly in Lr(Ω) for every 1 6 r < +∞. In particular, we have that
uk → u in Lp

′
(Ω) and ∆yk∆ϕ ⇀ ∆y∆ϕ in Lp(Ω). Hence, it is immediate to pass

to the limit and to deduce (4.1).



54 P. I. Kogut, O. P. Kupenko

As a consequence, we have the following property.

Corollary 4.1. Let {(uk, yk) ∈ Ξ}k∈N and {ζk ∈Wp(Ω)}k∈N be sequences such

that (uk, yk)
τ−→ (u, y) in L1(Ω)×Wp(Ω) and ζk → ζ in Wp(Ω). Then

lim
k→∞

ˆ
Ω
uk∆yk∆ζk dx =

ˆ
Ω
u∆y∆ζ dx.

Our next step concerns the study of topological properties of the set of feasible
solutions Ξ to problem (3.6).

The following result is crucial for our further analysis.

Theorem 4.1. Let {(uk, yk)}k∈N ⊂ Ξ be a bounded sequence in BV (Ω)×Wp(Ω).
Then there is a pair (u, y) ∈ L1(Ω) × Wp(Ω) such that, up to a subsequence,

(uk, yk)
τ−→ (u, y) and (u, y) ∈ Ξ.

Proof. By Theorem 2.1 and re�exivity of the space Wp(Ω), there exists a subse-
quence of {(uk, yk) ∈ Ξ}k∈N, still denoted by the same indices, and functions
u ∈ BV (Ω) and y ∈Wp(Ω) such that

uk → u in L1(Ω), yk ⇀ y in Wp(Ω), and, hence, yk ⇀ y in W 1,p
0 (Ω).

(4.2)

Then by Lemma 4.1, we have

lim
k→∞

ˆ
Ω
uk∆ϕ∆yk dx =

ˆ
Ω
u∆ϕ∆y dx, ∀ϕ ∈ C∞0 (Ω; ΓD).

It remains to show that the limit pair (u, y) is related by inequality (3.7) and
satis�es the state constraints (3.15). With that in mind we write down the Minty
relation for (uk, yk):ˆ

Ω
uk∆ϕ (∆ϕ−∆yk) dx > 〈f, ϕ− yk〉 , ∀ϕ ∈ C∞0 (Ω; ΓD). (4.3)

In view of (4.2) and Lemma 4.1, we have

lim
k→∞

ˆ
Ω
|∆ϕ|2uk dx =

ˆ
Ω
|∆ϕ|2u dx, lim

k→∞

ˆ
Ω
uk∆ϕ∆yk dx =

ˆ
Ω
u∆ϕ∆y dx.

Thus, passing in relation (4.3) to the limit as k →∞, we arrive at the inequality
(3.7) which means that y ∈ W2(Ω) is a weak solution to the boundary value
problem (3.2)�(3.3) in the sense of Minty. Since the injections (2.1) are compact
and the cone Lp+(ΓS) is closed with respect to the strong convergence in Lp(ΓS),

it follows that ∂yk
∂ν →

∂y
∂ν strongly in Lp(ΓS) and, hence,

lim
k→∞

γ1(yk) = γ1(y) ∈ Lp+(ΓS) and γ1(y) ∈ ζmax − Lp+(ΓS).

This fact together with u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξ, i.e. the limit
pair (u, y) is feasible to optimal control problem (3.6). The proof is complete.
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In conclusion of this section, we give the existence result for optimal pairs to
the problem (3.6).

Theorem 4.2. Assume that, for given distributions f ∈ Lp′(Ω), yd ∈ Lp(Ω), and
ζmax ∈ Lp(∂Ω), the Hypothesis (H1) is valid. Then optimal control problem (3.6)
admits at least one solution (uopt, yopt) ∈ BV (Ω)×Wp(Ω).

Proof. Since the set of feaasible pairs Ξ is nonempty and the cost functional is
bounded from below on Ξ, it follows that there exists a minimizing sequence
{(uk, yk) ∈ Ξ}k∈N to problem (3.6). Then the inequality

inf
(u,y)∈Ξ

I(u, y) = lim
k→∞

[ˆ
Ω
|yk(x)− yd(x)|p dx+

ˆ
Ω
|Duk|

]
< +∞,

implies the existence of a constant C > 0 such that

sup
k∈N

ˆ
Ω
|Duk| 6 C.

Hence, in view of the de�nition of the class of admissible controls Aad and a priori
estimate (3.14), the sequence {(uk, yk) ∈ Ξ}k∈N is bounded in BV (Ω) ×Wp(Ω).
Therefore, by Theorem 4.1, there exist functions u∗ ∈ Aad and y

∗ ∈ Wp(Ω) such
that (u∗, y∗) ∈ Ξ and, up to a subsequence, uk → u∗ strongly in L1(Ω) and
yk ⇀ y∗ weakly in Wp(Ω). To conclude the proof, it is enough to show that the
cost functional I is lower semicontinuous with respect to the τ -convergence. Since
yk → y∗ strongly in Lp(Ω) by Sobolev embedding theorem, it follows that

lim
k→∞

ˆ
Ω
|yk(x)− yd(x)|p dx =

ˆ
Ω
|y∗(x)− yd(x)|p dx,

lim inf
k→∞

ˆ
Ω
|Duk| >

ˆ
Ω
|Du∗| by (2.5).

Thus,
I(u∗, y∗) 6 lim inf

k→∞
I(uk, yk) = inf

(u, y)∈Ξ
I(u, y).

Hence, (u∗, y∗) is an optimal pair, and we arrive at the required conclusion.

5. Regularization of OCP (3.6)

As was pointed out in [22], the p-Laplacian ∆p(u, y) provides an example of
a quasi-linear elliptic operator with a so-called degenerate nonlinearity for p > 2.
In this context we have non-di�erentiability of the state y with respect to the
control u. As follows from Theorem 4.2, this fact is not an obstacle to prove
existence of optimal controls in the coe�cients, but it causes certain di�culties
when deriving the optimality conditions for the considered problem. On the other
hand, the ordering cone of positive elements Lp+(ΓS) is non-solid, i.e. it has an
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empty topological interior in Lp-space. Therefore, it is reasonably to apply a
suitable relaxation of the pointwise state constraints in the form of some inequality
conditions involving the so-called Henig approximation

(
Lp+(ΓS)

)
ε

(B) of Lp+(ΓS),

where B is a �xed closed base of Lp+(ΓS). Since Lp+(ΓS) ⊂
(
Lp+(ΓS)

)
ε

(B) for all

ε > 0, it allows us to replace the cone Lp+(ΓS) by its approximation
(
Lp+(ΓS)

)
ε

(B).
In fact, it leads to some relaxation of the inequality constraints of the considered
problem, and, hence, to the approximation of the feasible set to the original
OCP. As a result, we introduce the following family of approximating control
problems (see, for comparison, the approach of Casas and Fernandez [5] for quasi-
linear elliptic equations with a distributed control in the right hand side and the
approach of Kogut and Leugering [12], where the Henig regularization of pointwise
state constraints have been proposed).

Minimize
{
I(u, y) =

ˆ
Ω
|y − zd|p dx+

ˆ
Ω
|Du|

}
(5.1)

subject to the constraints

∆2
ε,k,p(u, y) = f in Ω, (5.2)

y =
∂y

∂ν
= 0 on ΓD, y = ∆y = 0 on ΓS , (5.3)

∂y

∂ν
∈
(
Lp+(ΓS)

)
ε

(B), ζmax − ∂y

∂ν
∈
(
Lp+(ΓS)

)
ε

(B), (5.4)

u ∈ Aad =
{
v ∈ BV (Ω)

∣∣∣ ξ1(x) 6 v(x) 6 ξ2(x) a.e. in Ω
}
. (5.5)

Here, k ∈ N, ε is a small parameter, which varies within a strictly decreasing
sequence of positive numbers converging to 0,

∆2
ε,k,p(u, y) = ∆

(
u(x)

(
ε+ Fk

(
|∆y|2

)) p−2
2 ∆y

)
, (5.6)

Fk : R+ → R+ is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈
[
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t 6 Fk(t) 6 t+ δ, if k2 6 t < k2 + 1 for some δ ∈ (0, 1),
(5.7)

B :=
{
ξ ∈ Lp+(ΓS)

∣∣∣ ˆ
ΓS

ξ dHN−1 = 1
}

(5.8)

is a closed base of ordering cone Λ := Lp+(ΓS),(
Lp+(ΓS)

)
ε

(B) := cl‖·‖Lp(ΓS)

(
cone

(
B +Bε(0)

))
:= cl‖·‖Lp(ΓS)

({
µz
∣∣µ ≥ 0, z ∈ B +Bε(0)

})
is the Henig dilating cone, and 1

εBε(0) :=
{
v ∈ Lp(ΓS) | ‖v‖Lp(ΓS) 6 1

}
is the

closed unit ball in Lp(ΓS) centered at the origin.
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As for the function Fk : R+ → R+, it can e.g. be de�ned by

Fk(t) =


t, if 0 6 t 6 k2,
(k2 − t)3 + (k2 − t)2 + t, if k2 6 t 6 k2 + 1,
k2 + 1, if t > k2 + 1.

A direct calculation shows that in this case δ = 4/27.
It is clear that the e�ect of such perturbations of ∆2

p(u, y) is its regularization
around critical points where |∆y(x)| vanishes or becomes unbounded. In particular,

if y ∈ W 2,p
0 (Ω) and Ωk(y) :=

{
x ∈ Ω : |∆y(x)| >

√
k2 + 1

}
, then the following

chain of inequalities

|Ωk(y)| :=
ˆ

Ωk(y)
1 dx 6

1√
k2 + 1

ˆ
Ωk(y)

|∆y(x)| dx

6
1√

k2 + 1
|Ωk(y)|

1
p′

(ˆ
Ω
|∆y|p dx

) 1
p

=
‖y‖

W 2,p
0 (Ω)√

k2 + 1
|Ωk(y)|

p−1
p

shows that the Lebesgue measure of the set Ωk(y) satis�es the estimate

|Ωk(y)| 6
(

1√
k2 + 1

)p
‖y‖p

W 2,p
0 (Ω)

6 ‖y‖p
W 2,p

0 (Ω)
k−p, ∀ y ∈W 2,p

0 (Ω), (5.9)

i.e. the approximation Fk(|∆y|2) is essential on sets with small Lebesgue measure.
The main goal of this section is to show that for each ε > 0 and k ∈ N, the
perturbed optimal control problem (5.1)�(5.5) is well posed and its solutions
can be considered as a reasonable approximation of optimal pairs to the original
problem (3.6). To begin with, we establish a few auxiliary results concerning
monotonicity and growth conditions for the regularized p-harmonic operator ∆2

ε,k,p.
For our further analysis, we make use of the following the notation

‖ϕ‖ε,k,u =

(ˆ
Ω

(
ε+ Fk(|∆ϕ|2)

) p−2
2 |∆ϕ|2u dx

)1/p

∀ϕ ∈W 2,2
0 (Ω).

Remark 5.1. For an arbitrary element y∗ ∈ W 2,2
0 (Ω) let us consider the level set

Ωk(y
∗) :=

{
x ∈ Ω : |∆y∗(x)| >

√
k2 + 1

}
. Then

|Ωk(y
∗)| :=

ˆ
Ωk(y∗)

1 dx 6
1√

k2 + 1

ˆ
Ωk(y∗)

|∆y∗(x)| dx

6
1

k
|Ωk(y

∗)|
1
2

(ˆ
Ωk(y∗)

|∆y∗|2 dx

) 1
2

=
1

k

(
1

ε+ k2 + 1

) p−2
4

(ˆ
Ωk(y∗)

(
ε+ Fk(|∆y∗|2)

) p−2
2 |∆y∗|2 dx

) 1
2

|Ωk(y
∗)|

1
2

6
1

k
p
2

|Ωk(y
∗)|

1
2 α−

1
2 ‖y∗‖

p
2
ε,k,u.
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Hence, the Lebesgue measure of the set Ωk(y
∗) satis�es the estimate

|Ωk(y
∗)| 6 α−1

kp
‖y∗‖pε,k,u, ∀ y∗ ∈W 2,2

0 (Ω). (5.10)

Now, we establish the following results.

Proposition 5.1. For every u ∈ Aad, k ∈ N, and ε > 0, the operator

Aε,k,u := −∆2
ε,k,p(u, ·) : W2(Ω)→ (W2(Ω))∗

is bounded and ‖Aε,k,u‖ 6
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω), where

W2(Ω) := W 2,2
0 (Ω; ΓD).

Proof. From the assumptions on Fk and the boundedness of u we obtain

‖Aε,k,u‖ = sup
‖y‖

W
2,2
0 (Ω)

61
‖Aε,k,uy‖(W2(Ω))∗

= sup
‖y‖

W
2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61
〈Aε,k,uy, v〉(W2(Ω))∗;W2(Ω)

= sup
‖y‖

W
2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61

ˆ
Ω

(
ε+ Fk(|∆y|2)

) p−2
2 ∆y∆vu dx

6
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω) sup

‖y‖
W

2,2
0 (Ω)

61
sup

‖v‖
W

2,2
0 (Ω)

61
‖y‖

W 2,2
0 (Ω)

‖v‖
W 2,2

0 (Ω)

=
(
ε+ k2 + 1

) p−2
2 ‖ξ2‖L∞(Ω),

which concludes the proof.

Proposition 5.2. For every u ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k,u is
strictly monotone.

Proof. To begin with, we make use of the following algebraic inequality:[(
ε+ Fk(|a|2)

) p−2
2 a−

(
ε+ Fk(|b|2)

) p−2
2 b

]
(a− b) > ε

p−2
2 |a− b|2, ∀ a, b ∈ R.

(5.11)
In order to prove it, we note that the left hand side of (5.11) can be rewritten as
follows((

ε+ Fk(|a|2)
) p−2

2 a−
(
ε+ Fk(|b|2)

) p−2
2 b

)
(a− b)

=

ˆ 1

0

d

ds

{(
ε+ Fk(|sa+ (1− s)b|2)

) p−2
2 (sa+ (1− s)b)

}
ds(a− b)

=

ˆ 1

0

(
ε+Fk(|sa+(1−s)b|2)

) p−2
2 |a−b|2 dx+(p−2)

ˆ 1

0

{(
ε+Fk(|sa+(1−s)b|2)

) p−4
2

×F ′k(|sa+ (1− s)b|2) |(sa+ (1− s)b) (a− b)|2
}
ds = I1 + I2.
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Since p > 2 and Fk : R+ → R+ is a non-decreasing C1(R+)-function, it follows
that I2 > 0 for all a, b ∈ RN . It remains to observe that(

ε+ Fk(|sa+ (1− s)b|2)
)
> ε, ∀ a, b ∈ R.

Hence, I1 > ε
p−2

2 |a − b|2 and we arrive at the inequality (5.11). With this we
obtain〈
−∆ε,k,p(u, y) + ∆ε,k,p(u, v), y − v

〉
(W2(Ω))∗;W2(Ω)

=

ˆ
Ω
u(x)

(
(ε+ Fk(|∆y|2))

p−2
2 ∆y − (ε+ Fk(|∆v|2))

p−2
2 ∆v

)
(∆y −∆v) dx

> αε
p−2

2

ˆ
Ω
|∆y −∆v|2 dx = αε

p−2
2 ‖y − v‖2

W 2,2
0 (Ω)

> 0.

Since the relation 〈
Aε,k,uy −Aε,k,uv, y − v

〉
(W2(Ω))∗;W2(Ω)

= 0

implies that y = v almost everywhere in Ω, it follows that the strict monotonicity
property (3.9) holds in this case.

Proposition 5.3. For every u ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k,u is
coercive (in the sense of relation (3.11)).

Proof. In order to check this property it is enough to observe that for any y ∈
W2(Ω), k ∈ N, ε > 0, and u ∈ Aad, we have〈

Aε,k,uy,y
〉

(W2(Ω))∗;W2(Ω)
=
〈
−∆ε,k,p(u, y), y

〉
(W2(Ω))∗;W2(Ω)

=

ˆ
Ω

(
ε+ Fk(|∆y|2)

) p−2
2 |∆y|2u dx > αε

p−2
2 ‖y‖2

W 2,2
0 (Ω)

.

We are now in a position to apply the abstract theorem on monotone operators
(see Theorem 3.1) to the equation Aε,k,uy = f with f ∈ Lp′(Ω). Closely following
the arguments of Section 3, we arrive at the following assertion.

Theorem 5.1. For each ε > 0, k ∈ N, u ∈ Aad, and f ∈ Lp
′
(Ω), the boundary

value problem (5.2)�(5.3) admits a unique weak solution yε,k ∈W2(Ω), i.e.
ˆ

Ω
u(ε+ Fk(|∆yε,k|2))

p−2
2 ∆yε,k∆ϕdx =

ˆ
Ω
fϕ dx, ∀ϕ ∈W2(Ω), (5.12)

or equivalentlyˆ
Ω
u(x)(ε+Fk(|∆ϕ|2))

p−2
2 ∆ϕ (∆ϕ−∆yε,k) (5.13)

>
ˆ

Ω
f(ϕ− yε,k) dx, ∀ϕ ∈ C∞0 (Ω; ΓD). (5.14)



60 P. I. Kogut, O. P. Kupenko

For every ε > 0 and k ∈ N, we denote the set of feasible pairs to the problem
(5.1)�(5.5) as follows

Ξε,k =

(u, y)

∣∣∣∣∣∣
u ∈ Aad, y ∈W2(Ω),

(u, y) are related by equality (5.12),
∂y
∂ν satis�es the inclusions (5.4).

 . (5.15)

It is worth to notice that Hypothesis (H1) about regularity of the original OCP
(3.6) can be characterized by the non-emptiness properties of the sets of feasible
solutions Ξε,k for approximating control problem (5.1)�(5.5). Indeed, we have the
following result (see [12, Theorem 8]).

Theorem 5.2. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence

converging to 0 as k →∞. Then, for given distributions f ∈ Lp′(Ω), yd ∈ Lp(Ω),
and ζmax ∈ Lp(ΓS), the Hypothesis (H1) implies that the approximating control

problem (5.1)�(5.5) has a nonempty set of feasible solutions Ξε,k for all ε = εk, k ∈
N. And vice versa, if there exists a sequence

{
(uk, yk)

}
k∈N satisfying conditions

(uk, yk) ∈ Ξεk,k for all k ∈ N, and sup
k∈N

I(uk, yk) < +∞, (5.16)

then the sequence
{

(uk, yk)
}
k∈N is τ -compact and each of its τ -cluster pairs is a

feasible solution to the original OCP (3.6).

Thus, in view of Theorem 5.2 and Hypothesis (H1), we can suppose that the
sets Ξε,k are always nonempty and, therefore, the approximating control problem

(Pε,k) min
(u,y)∈Ξε,k

I(u, y) (5.17)

is consistent.
Analogously to problem (P), we can prove the following theorem

Theorem 5.3. For every positive value ε > 0 and integer k ∈ N, the optimal

control problem (Pε,k) has at least one solution.

The proof follows the steps of that of Theorem 4.2. Indeed, it is immediate to
check that Ξε,k is not empty. Then, we can take a minimizing sequence {(ui, yi)}i∈N ⊂
Ξε,k. The lower boundedness of I implies the boundedness of {(ui, yi)}i∈N in

BV (Ω)×W 2,2
0 (Ω). Then, arguing as in the proof of Theorem 4.2, we deduce the

existence of a subsequence, denoted in the same way, and a pair (u∗, y∗) ∈ Ξε,k
such that ui

∗
⇀ u∗ in BV (Ω) and yi ⇀ y∗ in W 2,2

0 (Ω). Hence, I(u∗, y∗) 6
lim infi→∞ I(ui, yi). Since

∂y
∂ν ∈W

1/2,2(ΓS) for any y ∈W 2,2
0 (Ω; ΓD), the injection

W 1/2,2(ΓS) ↪→ L2(ΓS) is compact, and the Henig dilating cone
(
Lp+(ΓS)

)
ε

(B) is

closed with respect to the strong convergence in L2(ΓS), it follows that ∂yk∂ν →
∂y∗

∂ν
strongly in L2(ΓS) and, hence,

lim
k→∞

∂yk
∂ν

=
∂y∗

∂ν
∈ Lp+(ΓS) and

∂y∗

∂ν
∈ ζmax −

(
Lp+(ΓS)

)
ε

(B).
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This fact together with u ∈ Aad leads us to the conclusion: (u, y) ∈ Ξε,k, i.e. the
limit pair (u∗, y∗) is optimal to the problem (Pε,k).

For our further analysis, we need to obtain some appropriate a priory estimates
for the weak solutions to problem (5.2)�(5.3). With that in mind, we make use of
the following auxiliary results.

Proposition 5.4. Let u ∈ Aad, k ∈ N, and ε > 0 be given. Then, for arbitrary
g ∈ L2(Ω) and y ∈W 2,2

0 (Ω), we have∣∣∣∣ˆ
Ω
gy dx

∣∣∣∣ 6 CΩ‖g‖L2(Ω)

[
α
− 1
p |Ω|

p−2
2p ‖y‖ε,k,u + α−

1
2 ‖y‖

p
2
ε,k,u

]
. (5.18)

Proof. Let us �x an arbitrary element y of W 2,2
0 (Ω). We associate with this

element the set Ωk(y), where Ωk(y) := {x ∈ Ω : |∆y(x)| > k}. Then, by Friedrich's
inequality,

ˆ
Ω
gy dx 6 ‖g‖L2(Ω)‖y‖L2(Ω)

6 CΩ‖g‖L2(Ω)

(
‖∆y‖L2(Ω\Ωk(y)) + ‖∆y‖L2(Ωk(y))

)
. (5.19)

Using the fact that

‖∆y‖L2(Ω\Ωk(y)) 6 |Ω|
p−2
2p ‖∆y‖Lp(Ω\Ωk(y))

6 |Ω|
p−2
2p

(ˆ
Ω\Ωk(y)

(ε+ |∆y|2)
p−2

2 |∆y|2 dx

) 1
p

and

Fk(|∆y|2) = |∆y|2 a.e. in Ω \ Ωk(y), and

k2 6 Fk(|∆y|2) 6 k2 + 1 a.e. in Ωk(y), ∀ k ∈ N,

we obtain

‖∆y‖L2(Ω\Ωk(y)) 6 |Ω|
p−2
2p

(ˆ
Ω\Ωk(y)

(ε+ Fk(|∆y|2))
p−2

2 |∆y|2 dx

) 1
p

6 |Ω|
p−2
2p α

− 1
p ‖y‖ε,k,u, (5.20)

‖∆y‖L2(Ωk(y)) 6

(ˆ
Ωk(y)

(ε+ Fk(|∆y|2))
p−2

2 |∆y|2 dx

) 1
2

6 α−
1
2 ‖y‖

p
2
ε,k,u. (5.21)

As a result, inequality (5.18) immediately follows from (5.19)�(5.21). The proof
is complete.
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De�nition 5.1. Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible

controls. We say that a two-parametric sequence {yε,k} ε>0
k∈N
⊂W 2,2

0 (Ω) is bounded

with respect to the ‖ · ‖ε,k,uε,k -quasi-seminorm if sup ε>0
k∈N
‖yε,k‖ε,k,uε,k < +∞.

To conclude this section, let us show that for every u ∈ Aad and f ∈ Lp
′
(Ω), the

sequence {yε,k = yε,k(u, f)} ε>0
k∈N

of weak solutions to the boundary value problem

(5.2)�(5.3) is bounded with respect to the ‖ · ‖ε,k,u-quasi-seminorm in the sense
of De�nition 5.1.

Indeed, the integral identity (5.12) together with estimate (5.18) (for g = f)
immediately lead us to the relation

‖yε,k‖pε,k,u :=

ˆ
Ω

(
ε+ Fk(|∆yε,k|2)

) p−2
2 |∆yε,k|2u dx

6
ˆ

Ω

(
ε+ Fk(|∆yε,k|2)

) p−2
2 |∆yε,k|2u dx =

ˆ
Ω
fyε,k dx

6 CΩ‖f‖L2(Ω)

[
α
− 1
p |Ω|

p−2
2p ‖yε,k‖ε,k,u + α−

1
2 ‖yε,k‖

p
2
ε,k,u

]
. (5.22)

As a result, it follows from (5.22) that

‖yε,k‖ε,k,u 6 max

{
C

2
p

f , C
1
p−1

f

}
, ∀ ε > 0, ∀ k ∈ N, ∀u ∈ Aad, (5.23)

where Cf := C‖f‖L2(Ω) = CΩ

(
α
− 1
p |Ω|

p−2
2p + α−

1
2

)
‖f‖L2(Ω).

6. Asymptotic Analysis of the Approximating OCP (Pε,k)

Our main intention in this section is to show that optimal solutions to the
original OCP (P) can be attained (in some sense) by optimal solutions to the
approximated problems (Pε,k). With that in mind, we make use of the concept of
variational convergence of constrained minimization problems (see [11]) and study
the asymptotic behaviour of a family of OCPs (Pε,k) as ε → 0 and k → ∞. We

also utilize the fact that the sequence of cones
{(
Lp+(ΓS)

)
εk

(B)
}
k∈N

converges

to Lp+(ΓS) in Kuratowski sense with respect to the norm topology of Lp(ΓS) as
εk tends monotonically to zero (see Proposition 7 in [12]), that is

K− lim inf
k→∞

(
Lp+(ΓS)

)
εk

(B) = Lp+(ΓS) = K− lim sup
k→∞

(
Lp+(ΓS)

)
εk

(B), (6.1)
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where

K− lim inf
k→∞

(
Lp+(ΓS)

)
εk

(B)

:=
{
z ∈ Lp(ΓS)

∣∣ for all neighborhoods N of z there is a

k0 ∈ N such that N ∩
(
Lp+(ΓS)

)
εk

(B) 6= ∅ ∀ k ≥ k0

}
,

K− lim sup
k→∞

(
Lp+(ΓS)

)
εk

(B)

:=
{
z ∈ Lp(ΓS)

∣∣ for all neighborhoods N of z and every k0 ∈ N
there is a k ≥ k0 such that N ∩

(
Lp+(ΓS)

)
εk

(B) 6= ∅
}
.

We begin with some auxiliary results concerning the weak compactness in
W 2,2

0 (Ω) of ‖ · ‖ε,k,u-bounded sequences.

Lemma 6.1. Let {uε,k} ε>0
k∈N
⊂ Aad be an arbitrary sequence of admissible controls

with associated states {yε,k} ε>0
k∈N
⊂ W 2,2

0 (Ω; ΓD), yε,k = yε,k(uε,k). Then the se-

quence {yε,k} ε>0
k∈N

is bounded in W 2,2
0 (Ω). Moreover, each cluster point y of the

sequence {yε,k} ε>0
k∈N

with respect to the weak convergence in W 2,2
0 (Ω), satis�es:

y ∈W 2,p
0 (Ω; ΓD).

Proof. The boundedness in W 2,2
0 (Ω) immediately follows from (5.23) and the

estimates

‖yε,k‖W 2,2
0 (Ω)

6 ‖∆yε,k‖L2(Ω\Ωk(yε,k)) + ‖∆yε,k‖L2(Ωk(yε,k))

by (5.20)�(5.21)

6 CΩ

[
α
− 1
p |Ω|

p−2
2p ‖yε,k‖ε,k,u + α−

1
2 ‖yε,k‖

p
2
ε,k,u

]
,

where u ∈ Aad is an admissible control and Ωk(yε,k) := {x ∈ Ω : |∆yε,k(x)| > k}
for each k ∈ N.

To establish the second part of the lemma, let us take a subsequence {yεi,ki}i∈N
of {yε,k} ε>0

k∈N
(here, εi → 0 and ki →∞ as i→∞) and a function y ∈W 2,2

0 (Ω; ΓD)

such that yεi,ki ⇀ y in W 2,2
0 (Ω) as i → ∞. Further, we �x an index i ∈ N and

associate it with the following set

Bi :=

∞⋃
j=i

Ωkj (yεj ,kj ), where Ωkj (yεj ,kj ) :=
{
x ∈ Ω : |∆yεj ,kj (x)| >

√
k2
j + 1

}
.

(6.2)
Due to estimates (5.10) and (5.23), we see that

|Bi| 6 α−1
∞∑
j=i

1

kpj
‖yεj ,kj‖

p
εj ,kj ,uεj ,kj

6 α−1 sup
j∈N
‖yεj ,kj‖

p
εj ,kj ,uεj ,kj

∞∑
j=i

1

kpj

6 α−1 max

{
C2
f , C

p
p−1

f

} ∞∑
j=i

1

kpj
< +∞,
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and, therefore,
lim
i→∞
|Bi| = LN (lim sup

i→∞
Bi) = 0. (6.3)

Using again (5.23), we getˆ
Ω\Bi

|∆yεj ,kj |
p dx 6

ˆ
Ω\Bi

(
εj + |∆yεj ,kj |

2
) p−2

2 |∆yεj ,kj |
2 dx

6 α−1

ˆ
Ω\Bi

(
εj + Fkj (|∆yεj ,kj |

2)
) p−2

2 |∆yεj ,kj |
2uεj ,kj dx

6 α−1 max

{
C2
f , C

p
p−1

f

}
, ∀ j > i, (6.4)

hence {∆yεj ,kj} is bounded in Lp(Ω \ Bi)N . Since, ∆yεj ,kj ⇀ ∆y in L2(Ω), we
infer χΩ\Bj∆yεj ,kj ⇀ ∆y in Lp(Ω), where χΩ\Bj is the characteristic function of
the set Ω \Bj . Hence, we obtainˆ

Ω
|∆y|p dx by (6.3)

= lim
i→∞

ˆ
Ω\Bi

|∆y|p dx 6 lim
i→∞

lim inf
j→∞
j>i

ˆ
Ω\Bi

|∆yεj ,kj |
p dx

by (6.4)

6 α−1 max

{
C2
f , C

p
p−1

f

}
.

Since y ∈ W 2,2
0 (Ω; ΓD), it follows from the last estimate that y ∈ W 2,p

0 (Ω; ΓD)
and this concludes the proof.

Lemma 6.2. Let {εi}i∈N, {ki}i∈N and {ui}i∈N ⊂ Aad be sequences such that

εi → 0, ki →∞, ui → u strongly in L1(Ω).

Let yi = yεi,ki(ui) and y = y(u) be the solutions of (5.3)-(5.5) and (3.2)-(3.3),
respectively. Then

yi → y in W 2,2
0 (Ω) as i→∞, (6.5)

χΩ\Ωk(yi)∆yi → ∆y strongly in Lp(Ω), (6.6)

lim
i→∞

ˆ
Ω

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx =

ˆ
Ω
|∆y|pu dx, (6.7)

where Ωki(yi) is de�ned by (6.2).

Proof. The proof is divided into �ve steps.
Step 1: yi ⇀ y in W 2,2

0 (Ω).- From Lemma 6.1 we deduce the existence of a

subsequence, denoted in the same way {yi}i∈N ⊂ W 2,2
0 (Ω; ΓD) and an element

y ∈W 2,p
0 (Ω; ΓD) such that yi ⇀ y in W 2,2

0 (Ω). Let us prove that y is the solution
of (3.2)-(3.3). Let us �x an arbitrary test function ϕ ∈ C∞0 (Ω; ΓD) and pass to
the limit in the Minty inequality

ˆ
Ω
ui(x)(εi + Fki(|∆ϕ|

2))
p−2

2 ∆ϕ (∆ϕ−∆yi) dx >
ˆ

Ω
f(ϕ − yi) dx, (6.8)
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as i→∞. Taking into account that

(εi + Fki(|∆ϕ|
2))

p−2
2 ∆ϕ→ |∆ϕ|p−2∆ϕ strongly in Lr(Ω), for all 1 6 r <∞,

ui → u strongly in Lr(Ω), for all 1 6 r <∞,
∆yi ⇀ ∆y in L2(Ω),

we obtain

lim
i→∞

ˆ
Ω

(εi + Fki(|∆ϕ|
2))

p−2
2 |∆ϕ|2ui dx =

ˆ
Ω
|∆ϕ|pu dx,

lim
i→∞

ˆ
Ω

(εi + Fki(|∆ϕ|
2))

p−2
2 ∆ϕ∆yiui dx =

ˆ
Ω
|∆ϕ|p−2∆ϕ∆yu dx.

Thus, passing to the limit in relation (6.8) as i→∞, we arrive at the inequality
(3.7) for every ϕ ∈ C∞0 (Ω; ΓD). From density of C∞0 (Ω; ΓD) in W 2,p

0 (Ω; ΓD), we

infer that (3.7) holds for every ϕ ∈W 2,p
0 (Ω; ΓD), and hence y ∈W 2,p

0 (Ω; ΓD) is the
solution to the boundary value problem (3.2)�(3.3) in the sense of distributions.
Since the solution of (3.2)-(3.3) is unique, the whole sequence {yi}i∈N converges
weakly to y = y(u) in W 2,2

0 (Ω).

Step 2: χΩ\Ωk(yi)∆yi ⇀ ∆y in Lp(Ω).- Following the de�nition of the sets
Ωki(yi) and using (5.23), we obtain

ˆ
Ω
|χΩ\Ωki (yi)

∆yi|p dx =

ˆ
Ω\Ωki (yi)

|∆yi|p dx

6 α−1

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx,

6 α−1‖yi‖pεi,ki,ui 6 C < +∞, ∀ i ∈ N.

Hence, taking a new subsequence if necessary, we infer the existence of a
function g ∈ Lp(Ω) such that χΩ\Ωki (yi)

∆yi ⇀ g in Lp(Ω) as i→∞. Since ui → u

in Lp
′
(Ω), we conclude that

lim
i→∞

ˆ
Ω\Ωki (yi)

∆yiϕui dx =

ˆ
Ω
gϕu dx, ∀ϕ ∈ C∞0 (Ω). (6.9)

On the other hand, in view of the weak convergence ∆yi ⇀ ∆y in L2(Ω),

ˆ
Ω

∆yϕu dx = lim
i→∞

ˆ
Ω

∆yiϕui dx

= lim
i→∞

ˆ
Ω\Ωki (yi)

∆yiϕui dx+ lim
i→∞

ˆ
Ωki (yi)

∆yiϕui dx. (6.10)

Since
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∣∣∣∣∣
ˆ

Ωki (yi)
∆yiϕui dx

∣∣∣∣∣ 6 ‖ui‖L∞(Ω)‖ϕ‖C(Ω)

√
|Ωki(yi)|

(ˆ
Ωki (yi)

|∆yi|2 dx

)1/2

6
‖ui‖L∞(Ω)‖ϕ‖C(Ω)(
εi + k2

i + 1
) p−2

4

√
|Ωki(yi)|‖yi‖

p
2
εi,ki,ui

by (5.10),(5.23)

6 ‖ξ2‖L∞(Ω)‖ϕ‖C(Ω)

C

kp−1
i

→ 0 as i→∞,

it follows from (6.9) and (6.10) that

ˆ
Ω
gϕu dx =

ˆ
Ω

∆yϕu dx, ∀ϕ ∈ C∞0 (Ω).

Hence, g = ∆y almost everywhere in Ω and the convergence χΩ\Ωk(yi)∆yi ⇀ ∆y
in Lp(Ω) holds.

Step 3: χΩ\Ωk(yi)∆yi → ∆y in Lp(Ω).- For each i ∈ N, we have the energy
equalities

ˆ
Ω
ui(εi + Fki(|∆yi|

2))
p−2

2 |∆yi|2 dx =

ˆ
Ω
fyi dx,

ˆ
Ω
u(x)|∆y|p dx =

ˆ
Ω
fy dx.

(6.11)

From (6.11) and the fact that yi ⇀ y in W 2,2
0 (Ω), we deduce

lim
i→∞

ˆ
Ω
ui(εi + Fki(|∆yi|

2))
p−2

2 |∆yi|2 dx = lim
i→∞

[ˆ
Ω
fyi dx

]
=

ˆ
Ω
fy dx

by (6.11)2
=

ˆ
Ω
u|∆y|p dx. (6.12)

Moreover, we have

ˆ
Ω
u|∆y|p dx = lim

i→∞

ˆ
Ω

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx

> lim sup
i→∞

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx

by (5.7)

> lim sup
i→∞

ˆ
Ω\Ωki (yi)

(
εi + |∆yi|2

) p−2
2 |∆yi|2ui dx

> lim sup
i→∞

ˆ
Ω
χΩ\Ωki (yi)

|∆yi|pui dx > lim inf
i→∞

ˆ
Ω
χΩ\Ωki (yi)

|∆yi|pui dx. (6.13)
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Since ui → u in Lr(Ω) for every 1 6 r < +∞, {ui}i is bounded in L∞(Ω) and

ui(x) > α for almost all x ∈ Ω, it is easy to check that χΩ\Ωki (yi)
∆yiu

1/p
i ⇀ ∆yu1/p

in Lp(Ω). Using this convergence and (6.13) we getˆ
Ω
u|∆y|p dx > lim sup

i→∞

ˆ
Ω
uiχΩ\Ωki (yi)

|∆yi|p dx

> lim inf
i→∞

ˆ
Ω
uiχΩ\Ωki (yi)

|∆yi|p dx = lim inf
i→∞

‖χΩ\Ωki (yi)
∆yiu

1/p
i ‖

p
Lp(Ω)

> ‖∆yu1/p‖pLp(Ω) =

ˆ
Ω
u|∆y|p dx.

The weak convergence χΩ\Ωki (yi)
∆yiu

1/p
i ⇀ ∆yu1/p in Lp(Ω) and the convergence

of their norms ‖χΩ\Ωki (yi)
∆yiu

1/p
i ‖Lp(Ω) → ‖∆yu1/p‖Lp(Ω) imply the strong con-

vergence χΩ\Ωki (yi)
∆yiu

1/p
i → ∆yu1/p in Lp(Ω). Now, it is a simple exercise to

check the strong convergence χΩ\Ωki (yi)
∆yi → ∆y in Lp(Ω).

Step 4: Proof of (6.7).- From (6.6) and (6.13) we obtain

lim
i→∞

ˆ
Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx = 0. (6.14)

Let us prove that

lim
i→∞

ˆ
Ω\Ωki (yi)

(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2ui dx =

ˆ
Ω
|∆y|pu dx. (6.15)

This is established as follows. From (5.7) we deduce(
εi + Fki(|∆yi|

2)
) p−2

2 |∆yi|2χΩ\Ωki (yi)

6 (εi + δ + |∆yi|2)
p−2

2 |∆yi|2χΩ\Ωki (yi)

6 2
p−2

2 ((εi + δ)
p−2

2 |∆yi|2 + |∆yi|p)χΩ\Ωki (yi)
.

From (6.6) we know that the last term converges in L1(Ω). Taking a subsequence
if necessary we can dominate it by a L1(Ω) function. Then by a simple application
of Lebesgue's dominated convergence theorem we deduce (6.15). Finally, (6.14)
and (6.15) imply (6.7).

Step 5: yi → y in W 2,2
0 (Ω).- First, we apply (6.14) to deduce

lim
i→∞

ˆ
Ωk(yi)

|∆yi|2 dx 6
1

α
lim
i→∞

ˆ
Ωk(yi)

(εi + Fk(|∆yi|2))
p−2

2 |∆yi|2ui dx = 0.

Now, combining this estimate and (6.6) we conclude that

∆yi = χΩk(yi)∆yi + χΩ\Ωk(yi)∆yi → ∆y strongly in L2(Ω).
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We are now in a position to show that optimal pairs to the approximated OCP
(Pε,k) lead in the limit to optimal solutions of the original OCP (P).

Theorem 6.1. Let
{

(u0
ε,k, y

0
ε,k)
)
} ε>0
k∈N

be an arbitrary sequence of optimal pairs

to the approximating problems (Pε,k). Then, this sequence is bounded in BV (Ω)×
W 2,2

0 (Ω) and any cluster point (u0, y0) with respect to the (weak-*,weak) topology

is a solution of the OCP (P). Moreover, if for one subsequence we have u0
ε,k

∗
⇀ u0

in BV (Ω) and y0
ε,k ⇀ y0 in W 2,2

0 (Ω), then the following properties hold

lim
ε→0
k→∞

(u0
ε,k, y

0
ε,k) = (u0, y0) strongly in L1(Ω)×W 2,2

0 (Ω), (6.16)

lim
ε→0
k→∞

ˆ
Ω
|Du0

ε,k| =
ˆ

Ω
|Du0|, (6.17)

lim
ε→0
k→∞

χΩ\Ωk(y0
ε,k)∆y

0
ε,k = ∆y0 strongly in Lp(Ω), (6.18)

lim
ε→0
k→∞

ˆ
Ω

(
ε+ Fk(|∆y0

ε,k|2)
) p−2

2 |∆y0
ε,k|2u0

ε,k dx =

ˆ
Ω
|∆y0|pu0 dx, (6.19)

lim
ε→0
k→∞

I(u0
ε,k, y

0
ε,k) = I(u0, y0). (6.20)

Proof. The boundedness of
{

(u0
ε,k, y

0
ε,k)
)
} ε>0
k∈N

inBV (Ω)×W 2,2
0 (Ω) is an immediate

consequence of the boundedness of Aad in BV (Ω) and Lemma 6.1. Let us take

a subsequence, denoted in the same way, such that u0
ε,k

∗
⇀ u0 in BV (Ω) and

y0
ε,k ⇀ y0 in W 2,2

0 (Ω). From compactness property of BV -bounded sequences, we
get that

lim
ε→0
k→∞

u0
ε,k = u0 strongly in L1(Ω) and

ˆ
Ω
|Du0| 6 lim inf

ε→0
k→∞

ˆ
Ω
|Du0

ε,k|. (6.21)

From this convergence properties we infer that u0 ∈ Aad. Moreover, Lemma 6.2
implies that y0 is the solution of (3.2)-(3.3) corresponding to u = u0, therefore,
in virew of (6.1), we deduce that (u0, y0) ∈ Ξ. Combining (6.5) and (6.21) we
deduce (6.16). Convergences (6.18) and (6.19) follow from (6.6) and (6.7). Let us
prove that (u0, y0) is a solution of (P). Given an arbitrary element (u, y) ∈ Ξ, we
de�ne uε,k = u and yε,k as the solution of (5.2)-(5.3), hence (uε,k, yε,k) ∈ Ξε,k.
From (6.5) and (6.7) we get

I(u, y) = lim
ε→0
k→∞

I(u, yε,k) = lim
ε→0
k→∞

I(uε,k, yε,k).

Now, using (6.5), (6.16), (6.21), the above identity and the fact that (u0
ε,k, y

0
ε,k) is



On Approximation of OCP in Coe�cients for p-Biharmonic Equation 69

a solution of (Pε,k), we get

I(u0, y0) 6 lim inf
ε→0
k→∞

I(u0
ε,k, y

0
ε,k) 6 lim sup

ε→0
k→∞

I(u0
ε,k, y

0
ε,k)

6 lim sup
ε→0
k→∞

I(uε,k, yε,k) = I(u, y).

Since (u, y) is arbitrary in Ξ, this implies that (u0, y0) is a solution of (P).
Moreover, taking (u, y) = (u0, y0) in the above inequalities, (6.20) is proved.
Finally, (6.17) is an immediate consequence of (6.20) and the convergence pro-
perties established before.

Since Theorem 6.1 does not give an answer whether the entire set of solutions
Ξopt to problem (3.2)�(3.6) can be attained in such a way, the following result
shed some light on this matter.

Corollary 6.1. Let (u0, y0) ∈ Ξopt be an optimal solution to the OCP (P) such

that there is a closed neighborhood U(u0) of u0 in the norm topology of L1(Ω)
satisfying

I(u0, y0) < I(u, y) ∀u ∈ Aad ∩ U(u0) such that (u, y) ∈ Ξ and u 6= u0. (6.22)

Then there exists a sequence of local minima (u0
ε,k, y

0
ε,k) of problems (Pε,k) such

that

(u0
ε,k, y

0
ε,k)→ (u0, y0) in the sense of Theorem 6.1.

Proof. By the strict local optimality of (u0, y0), we have that it is the unique
solution of

(Q) min
(u,y)∈Ξ,u∈U(u0)

I(u, y).

For every ε and k let us consider the control problems

(Qε,k) min
(u,y)∈Ξε,k,u∈U(u0)

I(u, y).

Since (u0, yε,k(u
0)) ∈ Ξε,k, it follows that (Qε,k) has feasible controls, hence there

exists at least one solution (u0
ε,k, y

0
ε,k) of (Qε,k) for every (ε, k). Now, arguing as

in the proof of Theorem 6.1, we deduce that (u0
ε,k, y

0
ε,k) → (ũ0, ỹ0) strongly in

L1(Ω) × W 2,2
0 (Ω), and (ũ0, ũ0) is the unique solution of (Q). This implies the

existence of ε0 and k0 such that u0
ε,k belongs to the interior of U(u0) for every

ε 6 ε0 and k > k0. Consequently, (u0
ε,k, y

0
ε,k) is a local minimum of (Pε,k) for every

ε 6 ε0 and k > k0. This concludes the proof.
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ON A REPRESENTATION OF THE SOLUTION TO
THE DIRICHLET PROBLEM IN A DISK. THE POISSON

INTEGRAL BASED SOLUTION IN POLYNOMIALS
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Communicated by Prof. P. I. Kogut

Abstract. The representation u(x) = F2(x)Qm−2(x)+Qm(x) for the solution to the Di-

richlet problem for the Laplace equation in a disk: F2(x) = |x− x0|2 − c2 6 0, is proved

using the Poisson integral; Qm(x) being the polynomial boundary function of degree m,

Qm−2(x) being the uniquely determined polynomial of degree m− 2.

Key words: the Dirichlet problem, the Poisson integral.

2010 Mathematics Subject Classi�cation: 31A25, 31B20, 35A09, 35G15, 35J25.

1. Introduction

Consider the well known Dirichlet problem for the Laplace equation in a disk
of radius c centered at point x0 in the plane R2 parameterized by the cartesian
orthogonal coordinates x = (x1, x2){

∆u(x) = 0 , x ∈ B2
c (x0) :=

{
x : |x− x0|2 < c2

}
,

u(x) = u0(x) , x ∈ S2
c (x0) :=

{
x : |x− x0|2 = c2

}
,

(1.1)

where the boundary function u0(x) ∈PC
(
S2
c (x0)

)
.

The unique solution u(x)∈C a
(
B2
c (x0)

)⋂
PC

(
B2
c (x0)

)
to the problem is known

to have some representations [3], for example, a) as the trigonometric series

ů(r, ϕ) =
a0

2
+
∞∑
µ=1

(r
c

)µ (
aµ cos (µϕ) + bµ cos (µϕ)

)
, (1.2)

where the circle over the function name indicates changing the cartesian coordina-
tes to the polar ones: x1 = x1,0 + r cosϕ, x2 = x2,0 + r sinϕ, (r, ϕ) ∈ B2

c (x0); a0,
aµ, and bµ are the Fourier coe�cients for ů0(ϕ); b) as the Poisson integral

ů(r, ϕ) =
1

2π

ˆ 2π

0

ů0(θ) (c2 − r2) dθ

c2 − 2cr cos (θ − ϕ) + r2
, (1.3)
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being the convolution of the boundary function and the Poisson kernel, or c) as
the real part of the Cauchy integral.

But what happens to the solution to the Dirichlet problem (1.1) when the boun-
dary function is a polynomial

u0(x) = Qm(x) =
m∑

p+q=0

ap,q x
p
1 x

q
2 = {(x1, x2)→ (c, ϕ)} = ů0(ϕ) , (1.4)

where p, q ∈ Z\Z−, ap,q ∈ R? It is a very simple question to be answered quickly.
The solution is of course a polynomial of the same degree m as the boundary
function Qm(x) (1.4). But has the polynomial solution a morphology suitable
for checking the solution to be valid? The question had puzzled us in academic
year 2012 � 2013 we started as the lecturer and the instructor in the partial
di�erential equations course at the Faculty of Mech & Math of DNU. Setting up
the tutorial Dirichlet problems in polynomials we tried to compose the solution
manual in such a way to check the solutions to the problems not pointwise but
functionally. The linear boundary functions are exactly the solutions to the prob-
lems provided the domains of de�nition of the boundary functions are extended
form S2

c (x0) to B2
c (x0). The quadratic boundary functions Q2(x) lead to the quad-

ratic solutions and are easily represented as follows

u(x) = F2(x) b0 +Q′2(x) , (1.5)

where b0 are the uniquely determined constants, and the prime over the boundary
functions is explained below in the formulation of the proposition 1.1.

But what about the solution to the Dirichlet problem when the boundary
function is a polynomial of the degree higher than second? We had thoroughly
studied all the known to us textbooks and solution manuals on the subject
in Russian and English but in vain. We had been amazed that no one of the
above textbooks or solution manuals answers the question. Therefore, we had to
conjecture that the morphology of the solution remains the same as that given by
the formula (1.5) where the constant b0 is replaced with a polynomial Pm−2(x)
of the order m− 2. The conjecture had been formulated in [2] as the following

Proposition 1.1. Solution to the Dirichlet problem (1.1), where the boundary
function is a polynomial Qm(x) (1.4), admits the following representation

u(x) = F2(x)Qm−2(x) +Q′m(x) , (1.6)

where the polynomial F2(x) of second degree speci�es the boundary of the disk:
F2(x) = |x−x0|2−c2 = 0, Qm−2(x) is the uniquely determined polynomial of de-
gree m− 2, and Q′m(x) is the evident extension of the boundary function Qm(x)
from S2

c (x0) to B2
c (x0) (this means that c is replaced with r ∈ [0, c] in (1.4)) .



74 V. L. Borsch, I. E. Platonova

Applying some environments allowing symbolic algebraic manipulations we
had successfully tested the conjecture using a lot of the boundary functions,
including those of very high degree. Finally, we had proved the proposition using
the direct approach based on the trigonometric series representation (1.2) for
the solution to the Dirichlet problem and published the proof in [2].

Then we had succeeded in proving the proposition in quite di�erent ways, say,
applying the symmetry methods [1,5,6]. But when proving the above proposition
we had turned out to be involved in the problem of �nding the morphology of
the Neumann problem in a disk. We had tried to �nd the representation formula
to the Neumann problem posed in polynomials and had found that the integral
formula for the solution known in R2 as the Dini integral suits well for this. So,
completing our exercises with the Dirichlet problem in a disk posed in polynomials
we'd like to present a proof of the above statement fully based on the Poisson
integral for the Dirichlet problem.

2. Proving the representation

Proof. Firstly, we expand the Poisson kernel into the series [3]

P (θ; r, ϕ) =
c2 − r2

c2 − 2cr cos θ + r2

=
1− %2

1− 2% cos θ + %2
=
{
z = % eiθ

}
= −1 +

1

1− z
+

1

1− z̄
= −1 +

∞∑
γ=0

zγ +
∞∑
γ=0

z̄γ

= 1 + 2
∞∑
γ=1

%γ cos (γθ) = 1 + 2
∞∑
γ=1

(r
c

)γ
cos (γθ) ,

absolutely and uniformly convergent in the disk B2
c (x0) and rewrite the Poisson

integral (1.3) as follows

ů(r, ϕ) =
1

2π

ˆ 2π

0
ů0(θ)P (θ − ϕ; r, ϕ) dθ = I0(ϕ) + 2

∞∑
γ=1

(r
c

)γ
Iγ(ϕ) , (2.1)

where the integral terms are

Iγ(ϕ) =
1

2π

ˆ 2π

0
ů0(θ) cos[γ (θ − ϕ)] dθ , γ ∈ Z\Z− . (2.2)

Secondly, we consider the monomials xp1 x
q
2 ⊆ Qm(x) = u0(x) (1.4), where

2 6 p+ q 6 m, separately, accounting for the following cases to be possible:
1) p+ q is an odd: a) p is an odd, q = 0; b) p = 0, q is an odd; c) p is an odd, q is
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an even; d) p is an even, q is an odd; 2) p+ q is an even: a) p is an even, q = 0;
b) p = 0, q is an even; c) p is an odd, q is an odd; d) p is an even, q is an even,
and for the sake of brevity assume that x0 = 0.

Let p is an odd: p > 3, and q = 0, then [4]

u0(x) = xp1 = c p cosp ϕ =
c p

2p−1

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ] = ů0(ϕ) , (2.3)

and we calculate the integral terms (2.2) to be

I0(ϕ) =
1

4π

c p

2p−1

p−1
2∑

µ=0

Cµp

ˆ 2π

0
cos [(p− 2µ) θ] dθ = 0 ,

Iγ(ϕ) =
1

4π

c p

2p−1

p−1
2∑

µ=0

Cµp

ˆ 2π

0
cos [(p− 2µ+ γ) θ − γϕ] dθ

+
1

4π

c p

2p−1

p−1
2∑

µ=0

Cµp

ˆ 2π

0
cos [(p− 2µ− γ) θ + γϕ] dθ

=
1

2

c p

2p−1
C
p−γ

2
p cos(γϕ), γ = p− 2µ, 2µ = 0, . . . , p− 1 .

Since (p− 2µ) ∈ N, all the integrals of the formula for the term I0(ϕ) vanish.
The same is true for all the integrals in the �rst sum of the formula for the
terms Iγ(ϕ), and for p− 2µ− γ ∈ N and the corresponding integrals in the second
sum of the formula. But when γ = p − 2µ, then cos [(p− 2µ− γ) θ + γϕ] =
cos (γϕ), and the corresponding integrals in the second sum are equaled to
2π cos (γϕ).

Thirdly, we substitute the above non-zero integral terms Iγ(ϕ) into the integral
formula (2.1)

ů(r, ϕ) =
c p

2p−1

p−1
2∑

µ=0

Cµp

(r
c

)γ
cos (γϕ)

=
rp

2p−1
cos (pϕ) +

1

2p−1

p−1
2∑

µ=1

Cµp r
p−2µ c2µ cos [(p− 2µ)ϕ]

and rearrange the last sum as follows
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p−1
2∑

µ=1

Cµp r
p−2µ c2µ cos [(p− 2µ)ϕ] =

p−1
2∑

µ=1

Cµp r
p−2µ

(
c2µ ∓ r2µ

)
cos [(p− 2µ)ϕ]

=

p−1
2∑

µ=1

Cµp r
p cos [(p− 2µ)ϕ] +

p−1
2∑

µ=1

Cµp r
p−2µ

(
c2µ − r2µ

)
cos [(p− 2µ)ϕ]

=

p−1
2∑

µ=1

Cµp r
p cos [(p− 2µ)ϕ]−

(
r2 − c2

) p−1
2∑

µ=1

Cµp r
p−2µAµ(r) cos [(p− 2µ)ϕ] ,

where the factorization of the binoms c2µ − r2µ is used, and

Aµ(r) =

{
1 , µ = 1 ,

r2µ−2 + c2r2µ−4 + . . .+ c2µ−4r2 + c2µ−2 , µ > 1 .

Gathering all the terms, we obtain the solution to the Dirichlet problem (1.1)

ů(r, ϕ) =
rp

2p−1

p−1
2∑

µ=0

Cµp cos [(p− 2µ)ϕ]

− r2 − c2

2p−1

p−1
2∑

µ=1

Cµp r
p−2µAµ(r) cos [(p− 2µ)ϕ]

(2.3)
= ů′0(r, ϕ) + F̊2(r, ϕ) Q̊p−2(r, ϕ) .

The other monomials xp1 x
q
2 are treated the same way.
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Abstract. The inverse problems for di�erential equations are investigated, the solutions
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Such inverse problems have not yet become widespread, but they are of great practical

importance. Some approaches to solving inverse problems of this type are suggested.
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1. Introduction

Consider some types of inverse problems for di�erential equations [9], [10].
Let the physical process be characterized in the general case by a certain

number of variables x1, x2, ..., xn(state variables). The choice of the physical process
characteristics is determined by the ultimate research goals. Let us assume that
the variables x1, x2, ..., xn satisfy a linear system of ordinary di�erential equations
with constant coe�cients:

ẋ = Ex+ Fz, (1.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T is a vector function of state variables, z(t) =
(z1(t), z2(t), . . . , zm(t))T is a vector function of external loads (some of components
are unknown), (.)T is transpose sign; E = {eik}, 1 ≤ i, k ≤ n, F = {fjl}, 1 ≤
j ≤ n, 1 ≤ l ≤ m are matrices with constant coe�cients of the corresponding
dimension, t ∈ [0, T ], [0, T ] is interval of time where the solution of inverse problem
is investigated. By mathematical description of the physical process we consider
the set of the system of equations (1.1) with symbols of external loads, the vector
function of the external loads as z(t) = (z1(t), z2(t), . . . , zm(t))T in the special
form for individual problem and the initial condition x(0) = x0 . Thus, the
mathematical description is a collection of mathematical model, vector function
of external loads and initial conditions.

Brie�y concerning the justi�cation of such the de�nition. In inverse problems
for the system (1.1) there are two main classes of inverse problems: - the determi-
nation of the coe�cients of the matrices E,F using the some experimentally deter-
mined components of the vector function x(t), the given initial conditions and the

∗Department of Di�erential Equations, Oles Honchar Dnipro National University, 72, Gagarin av.,
Dnipro, 49010, Ukraine, Men0605Ude@gmail.com

c© Yurii L. Menshikov, 2018.
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vector function z(t); - the unknown components of the vector function z(t) are
determined under the some experimentally determined of the components of the
vector function x(t), the given initial conditions and the coe�cients of the matrices
E,F [7]. For the purpose of separating these two basic problems it is necessary
to introduce the mathematical description of the physical process in the form of
a collection of mathematical model (di�erential equations (1.1)) with symbols of
external loads (general form of external loads) and separately the vector function
of external loads z(t) in the special form for individual problem [9].

The combination of these two inverse problems into one inverse problem is
undesirable since it leads to a high degree of uncertainty. This is con�rmed by
the results of a review of the literature. Among the mathematical descriptions,
one can single out descriptions that give the results of mathematical simulation
which coincide with the given experimental measurements of the components of
the vector function x(t) with the experiment accuracy. Such descriptions are called
adequate mathematical descriptions (AMD) [11].

2. Statement of problem

For system (1.1) it is possible to obtain several types of inverse problems in
frame of second class of inverse problems for ordinary di�erential equations [9],
[10], [11]. Let us investigate only two inverse problems from them.

Inverse problems of type I: it is necessary to de�ne all unknown components
z1(t), z2(t), . . . , zm(t) of vector function of external loads z(t) on segment [0, T ]
using given from experiment functions of state variables x1(t), x2(t), . . . , xn(t)
on segment [0, T ], matrixes E,F and initial conditions aimed at constructing
of AMD. Such inverse problems have not yet become widespread, but they have
important mean for problems of mathematical modeling [11], as well as for problems
of physical processes prediction [16], [15] and control problems [8], [4], [2].

Inverse problems of type II:it is necessary to de�ne all unknown components
of vector function of external loads z1(t), . . . , zm(t) on segment [0, T ] using some
components of vector function of state variables x1(t), . . . , xn(t) on segment [0, T ]
(which are given from experiment) and initial condition x(0) = x0 aimed at
obtaining the useful information about exact characteristics of real unknown
external loads on system (1.1).

These inverse problems have applications for problems of diagnostics [3], for
problems where it is necessary to obtain a new knowledge about the world around
us [12].

Suppose that system (1.1) has only one unknown component zj(t), 1 < j ≤ m
of vector function z(t) and only one given component x1(t) of vector function x(t).

Using the linearity of the system (1.1), Volterra's integral equation of the �rst
kind with respect to the unknown function z1(t) can be obtained with use the
additional condition (see later)

ˆ t

0
K(t, τ)zj(τ) dτ = uδ,j(t), orAp,jzj = uδ,j , t ∈ [0, T ], (2.1)
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where zj(t) ∈ Z, uδ,j ∈ U ;U,Z are some normed functional spaces.

The function uδ,j(t) is de�ned in terms of the initial conditions x(0) = x0,
the given function x1(t) and the known components z2(t), . . . , zm(t) of the vector
function of the external loads z(t) with a predetermined error

‖ uδ,j − uexδ,j ‖U≤ δj , (2.2)

where uexδ,j are exact right parts in (2.1).

Notice that inverse problems of type I, II have the same equations for unknown
functions zj(t) [9], [11].

The properties of operators Ap,j are saved for inverse problems of both types:
operators Ap,j are compact operators for typical cases of functional spaces choice.
Let us consider the set of possible solutions Qδ,p,j of equation (2.1):

Qδ,p,j = {z ∈ Z :‖ Ap,jzj − uδ,j ‖U≤ δj}. (2.3)

The sets Qδ,p,j are not bounded at any δj while operators Ap,j are compact
operators. So inverse problems of type I belongs to class of incorrect problems [9],
[17] and special methods have to be used for their solution [9], [17].

In inverse problem of type I it is enough to obtain any function from the set
Qδ,p,j . The inverse problems with such ultimate goals will be called as the inverse
problems of synthesis [9], [11]. Let us consider exact equation zexj of exact equation
(2.1)

Aexp,jz
ex
j = uexj , 1 < j ≤ m, (2.4)

where Aexp,j is the exact operator in (2.1), uexj is exact right part (initial data).

Besides the exact solution zexj of the equation (2.4) may not belong to set of
possible solutions Qδ,p,j since the operator Ap,j is being described inexactly of the
real physical process.

In such inverse problems there is no need to require the convergence of the
approximate solution of the problem to an exact solution zexj of equation (2.4)
by δj → 0 [10]. Therefore, the approximate solution cannot have properties of
regularization [10], [11].

In addition these inverse problems have the following features:

• the approximate solution can considerably di�er from the exact solution zexj
as zexj /∈ Qδ,p,j ;

• the size of an error of the approximate solution in relation to the exact
solution zexj has no importance for further use of the approximate solution;

• the exact solution zexj of an inverse problem in aggregate with initial mathema-
tical model can give worse results of mathematical modeling than the approxi-
mate solution as zexj /∈ Qδ,p,j ;



On some types of inverse problems 81

• the error of the operator Ap,j to the exact operator Aexp,j is possible not
to take into account, as the initial inexact mathematical model of physical
process will be used at mathematical modeling further.

The solution of such problems can interpret only as a good model for purposes
of mathematical modeling.

In [9], [17] it is assumed that exact solution of equation (2.1) zexj belongs to
the set of possible solutions Qδ,p,j . This property was used by construction of
regularized algorithms. So in case of inverse problems of type I (zexj /∈ Qδ,p,j) it is
necessary to choose another approaches.

Now the conditions will be obtained when the set of possible solution is not
empty.

Let us assume that in system (1.1) there is only one state variable x̃1, which
is obtained by experiment and only one unknown component zj(t), 1 < j ≤ m
of vector function z(t) of external loads. The matrix F = F̂ = fk,i, 1 ≤ k ≤
n, 1 ≤ i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m) element
f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j.

Then �rst equation of system (1.1) with matrices E, F̂ is di�erentiates (n−1)-
times on t:

d2x̃1

dt2
= B1E

2x̃(t) + f̂ljzj(t),

d3x̃1

dt3
= B1E

3x̃(t) + f̂lj żj(t),

. . .

d(n−1)x̃1

dt(n−1)
= B1E

(n−1)x̃(t) + f̂ljz
(n−3)
j (t),


(2.5)

where matrix-string B1 is de�ned as B1 = {b1i }, 1 ≤ i ≤ n, b11 = 1, b1k = 0, k 6=
1, 1 ≤ k ≤ n.

System (2.5) and �rst equation of (1.1) are solved relatively state variables

x̃2(t), ...., x̃n(t) through variables x̃1(t), ˜̇x1(t), ..., x̃
(n−1)
1 (t) and is substituted in

following equation

dnx̃1

dtn
= B1E

nx̃(t) + f̂ljz
(n−2)
j (t)

.

Consequently the next equation was obtained

dnx̃1

dtn
= Φ(t, x̃1, ˜̇x1, . . . , x̃

(n−1)
1 (t), f̂ljzj , . . . , f̂ljz

(n−2)
j ). (2.6)

For solving system from equations (2.5) and �rst equation of (1.1) relatively
state variables x̃2(t), . . . , x̃n(t) it is su�cient that the Jacobian of such a transforma-
tion is nonzero.

Hence this condition has the form
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J =
D(B1Ex̃,B1E

2x̃, . . . , B1E
n−1x̃)

D(x̃2, x̃3, . . . , x̃n)
=

= det



∂B1Ex̃
∂x̃2

∂B1Ex̃
∂x̃3

. . . ∂B1Ex̃
∂x̃n

∂B1E2x̃
∂x̃2

∂B1E2x̃
∂x̃3

. . . ∂B1E2x̃
∂x̃n

. . . . . . . . . . . .

∂B1En−1x̃
∂x̃2

. . . . . . ∂B1En−1x̃
∂x̃n


6= 0. (2.7)

The di�erential equation of n -th order (2.6) is obtained under condition (2.7).

Ln[x̃1(t)] = Ln−2[zj(t)], (2.8)

where Ln[x̃1(t)], Ln−2[zj(t)] are linear di�erential operators of n -order and (n−2)
-order respectively.

Thus, the su�cient condition for the reduction of the inverse problem for
system (1.1) to the inverse problem for one high-order equation (2.8) is condition
(2.7).

In inverse problem for equation (2.8) it is necessary to de�ne the function of
external load zj(t) , using function of state variable x̃1(t) that is obtained from
experiment data with error.

Let the inaccuracy of function x̃1(t) relatively to exact function xex1 (t) in metric
C[0, T ] is given as follow

‖ x̃1(t)− xex1 ‖C[0,T ]≤ δ1. (2.9)

Theorem 2.1. The set of possible solutions Qδ,p,j of inverse problem for system

(1.1) is non-empty if condition (2.7) is valid.

Proof. The inverse problem for system (1.1)(1.1) can be reduced to inverse problem
for equation (2.8) if the condition (2.7) is satis�ed.

It is well-known that any continuous function x̃1(t) can be approximate in
metric C[0, T ] with any accuracy δ by polynomial of q -order x1,q(t) [1]:

‖ x̃1(t)− x1,q(t) ‖C[0,T ]≤ δ, q = q(δ). (2.10)

Initial conditions for function x1,q(t) are values

x1,q(0) = x0,0
1,q , ẋ1,q(0) = x1,0

1,q , ẍ1,q(0) = x2,0
1,q , ..., x

(n−1)
1,q (0) = x

(n−1),0
1,q . (2.11)

Let us consider the function γ1(t)

γ1(t) = Ln[x1,q(t)]. (2.12)
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It is evident that γ1(t) ∈ C[0, T ].
The solutions x1,q(t) of nonhomogeneous di�erential equation

γ1(t) = Ln−2[zj,q(t)]. (2.13)

with di�erent initial conditions form the set Zj,q, zj,q(t) ∈ Zj,q.
The solution x̂1,q(t) of di�erential equation (2.8) with initial conditions (2.11)

and any functions from set Zj,q will satisfy the inequality (2.10).
The right part uδ,j of equation (2.1) is determined with the help of function

x̃1(t) only through continuous operations. So the set of possible solutions Qδ,p,j
for equation (2.1) is non-empty for any δ and this set contains the functions
continuously di�erentiable any number number of times.

3. Possible approaches of solving synthesis inverse problems

Let us consider the possibility of constructing stable algorithms for solving
inverse synthesis problems without assuming that the exact solution zexj of the
inverse problem belongs to the set of possible solutions Qδ,p,j .

If the functional spaces Z,U are Banach spaces and the operator Ap,j is linear,
then the set of functions Qδ,p,j is convex, closed, and unbounded. Let's show it.

Let z1, z2 ∈ Qδ,p,j . Then for zα = αz1 +(1−α)z2 ∈ Qδ,p,j inequality is realized

‖Ap,jzα − uδ,j‖U ≤‖ αAp,jz1 + (1 + α)Ap,jz2 − αuδ,j − (1− α)uδ,j ‖U≤ δj .

Consequently, the sets Qδ,p,j are convex.
Let the sequence zk ∈ Qδ,p,j strongly converges to the element z0.
Then

‖ Ap,jz0 − uδ,j ‖U ≤‖ Ap,jzk −Ap,jz0 ‖U + ‖ Ap,jzk − uδ,j ‖U
≤‖ Ap,j ‖‖ zk − z0 ‖ +δj.

Let us pass to the limit in the last inequality when k →∞. Then we have

‖ Ap,jz0 − uδ,j ‖U≤ δj.

Thus, the sets Qδ,p,j are closed.
In inverse synthesis problems the exact solution zexj of the inverse problem

does not belong to the set of possible solutions Qδ,p,j . Therefore, it is impossible
to construct the regularizing algorithms which give solutions converging to an
exact solution. However, in inverse problems of synthesis there are no need in
such algorithms property, but it is su�cient to �nd any function from the set
of possible solutions Qδ,p,j . This set is unbounded for arbitrary δ because of the
compactness of the operator Ap,j . Therefore, it makes sense to choose from the set
Qδ,p,j a non-arbitrary element but an element with additional properties which are
suitable for further research. For example, we can choose as the solution of inverse
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problem the most "convenient"element from the set Qδ,p,j for the mathematical
modeling purposes. It is possible to choose fromQδ,p,j the simplest element [9], [11]
that is the most stable to small changes of the initial data, the best element for
prediction purposes [9], [11] and so on. Some algorithms of a choice from set Qδ,p,j
of an element with additional properties based on a variation principle can are
proposed.

Consider now the following extreme problem

Ω[zδj ,p] = inf
z∈Qδ,p,j

Ω[z], (3.1)

where functional Ω[z] has been de�ned on set Z [17].

Theorem 3.1. Assume that system (1.1) has only one state variable x̃1(t), which
is obtained by experiment, and only one unknown component zj(t), 1 ≤ j ≤ m
of vector function of external loads. The matrix F = F̂ = fk,i, 1 ≤ k ≤ n, 1 ≤
i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m) element

f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j. Suppose that Z is a re�exive Banach function

space, that the functional Ω[z] is convex and lower semi continuous on Qδ,p,j
, that the Lebesgue set M(v) bounded for a certain function from v ∈ Qδ,p,j:
M(v) = {z ∈ Qδ,p,j : Ω[z] ≤ Ω[v]} . Then the solution of the extreme problem

(3.1) exists and belongs to Qδ,p,j.

Proof. It is obvious that the exact lower bound of the functional Ω[z] on Qδ,p,j
can be achieved only from the points of the set M(v) [19].

We show that the set M(v) closed. Let the sequence zk ⊂ M(v) strongly
converges to w . Since the set Qδ,p,j is closed we have w ∈ Qδ,p,j . The following
inequality holds since the functional Ω[z] is lower semi continuous on Qδ,p,j :

Ω[w] ≤ lim
k→∞

Ω[zk] ≤ C = Ω[v].

Hence we have w ∈M(v) . The closedness of the set M(v) is proved.

Let us show that the set M(v) is convex. Let z1, z2 ∈ M(v). Since the
functional Ω[z] is convex, we have

Ω[zα] = Ω[αz1 + (1− α)z2] ≤ αΩ[z1] + (1− α)Ω[z2] ≤

≤ αΩ[v] + (1− α)Ω[v] = Ω[v].

Consequently the element zα = αz1 + (1− α)z2 ∈M(v). The convexity of set
M(v) is proved.

It is known that any bounded closed convex set from a re�exive Banach space
Z is weakly compact. So the set M(v) is weakly compact set.

We choose an arbitrary minimizing sequence zk ∈M(v)

lim
k→∞

Ω[zk] = Ω∗.
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Since the set M(v) is weakly compact, it follows that there is at least one
subsequence zkm ∈M(v) that weakly converges to some point z∗

zkm−→z∗ as m→∞, z∗ ∈M(v).

The following inequality is valid

Ω∗ ≤ Ω[z∗] ≤ lim
k→∞

Ω[zkm ] = lim
k→∞

Ω[zk] = Ω∗,Ω∗ = Ω[z∗].

Theorem 3.2. Let us assumed that system (1.1) has only one state variable

x̃1(t), which is obtained by experiment, and there is only one unknown component

zj(t), 1 ≤ j ≤ m of vector function of external loads. The matrix F = F̂ = fk,i, 1 ≤
k ≤ n, 1 ≤ i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m)
element f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j. Suppose that Z is a Gilbert functional space,

that the functional Ω[z] is strongly convex and lower semi continuous on Qδ,p,j
, that the Lebesgue set M(v) is bounded for a certain function from v ∈ Qδ,p,j:
M(v) = {z ∈ Qδ,p,j : Ω[z] ≤ Ω[v]} . Then the solution of the extreme problem

(3.1) exists, unique and belongs to Qδ,p,j.

Proof. According to Theorem 3.1, the set Z∗ = z ∈ Qδ,p,j : Ω[z] = Ω∗ is not
empty. Since the functional Ω[z] is strictly convex the set Z∗ consists of a single
point.

The choice of the function v is determined from physical considerations.
Thus, there is a principal possibility of constructing solutions of inverse synthesis

problems on the basis of the variation principle. Satisfaction of additional conditions
is determined by a special choice of the functional Ω[z]. These solutions should be
interpreted only as functions necessary for the subsequent mathematical modeling
of physical processes in order to predict the behavior of physical processes, optimize
the characteristics of these processes, etc.

In inverse problems of type II it is necessary to �nd such function from the set
Qδ,p,j which gives the useful information about exact solution of equation (2.1).
However, such information cannot be obtained if the exact solution zexj does not
belong to the set Qδ,p,j .

Thus, it is necessary to take into account the error of operator Ap,j in relation
to the exact operator Aexj .

Let the characteristic of the deviation of the exact operator Aexj from the
approximate operator Ap,j be given [17] for linear operators Ap,j , A

ex
j in case U

is normed functional space:

‖ Ap,j −Aexj ‖Z→U= sup
‖z‖≤1

‖ Ap,jz −Aexj z ‖U≤ hj . (3.2)

A similar error characteristic can be determined in another way
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‖ Ap,j −Aexj ‖Ω= sup
z∈Z1

ρU (Ap,jz,A
ex
j z)

{Ω[z]}0.5
≤ hj (3.3)

for �xed positive functional Ω[z] de�ned on Z1 ⊂ Z,Z1 everywhere dense in Z.

In this case the set of possible solutions of (2.1) Qδ,h,p,j should be expanded
so that the exact solution zexj belongs to it with guarantee zexj ∈ Qδ,h,p,j [17]:

Qδ,h,p,j = {z :‖ Ap,jz − uδ,j ‖U≤ δj + hj‖z‖Z}, (3.4)

where hj is the error characteristic of the operator Ap,j .

The sets Qδ,h,p,j are not bounded at any δ and any hj while operators Ap,j
are compact operators. So inverse problems of type II belong to class of incorrect
problems [9], [17] and special methods are used for their solutions [9], [10], [11],
[17], [6].

To this type of inverse problems should be attributed the problems of diagnosis
in various areas of activity [5], de�nition of real properties of physical objects [12]
and etc. The inverse problems with such ultimate goals will be called as the inverse
problems of measurement (or interpretation) [9], [10].

Consider now the following extreme problem:

Ω[zhj ,δj ,p] = inf
z∈Qδ,h,p,j∩Z1

Ω[z], (3.5)

where functional Ω[z] has been de�ned on set Z1 ⊂ Z,Z1 everywhere dense in
Z [17].

During solving the practical inverse problems there are a big di�culties of
de�nition of the value hj since the structure and parameters of the exact operator
Aexj cannot be determined in principle. Consequently, the exact solution zexj of the
inverse problem does not belong in an expanded set of possible solutions Qδ,h,p,j
with a guarantee as a rule.

In addition, the approximate solution obtained in this way after substituted
into equation (2.1), gives a big value of deviation from the experimental data which
excludes an objective evaluation of the results of solving the inverse problem.

A certain di�erent approach for solving of inverse measurement problems is
proposed in the works [13], [18]. To obtain the useful information on the exact
solution zexj , a hypothesis is proposed [14]. Such an approach makes it possible to
obtain objective estimates from below of the exact solution zexj in the sense of a
priori given functional Ω[z].

When solving the well known inverse problem of astrodynamics (the measure-
ment problem), Adams and Leverier did not take into account the error of the
operator Ap,j [12]. Nevertheless, the solution was obtained which turned out to
be quite accurate. This contradiction gives a strong impetus for the search of new
methods for solving measurement inverse problems.
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4. Conclusion

It is shown that the algorithms for �nding approximate solutions of inverse
synthesis problems and inverse measurement problems for di�erential equations
can be created without assuming that an exact solution of inverse problem belongs
to the set of possible solutions.
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